Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.561
Filter
1.
Commun Biol ; 7(1): 645, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802499

ABSTRACT

Throughout succession, communities undergo structural shifts, which can alter the relative abundances of species and how they interact. It is frequently asserted that these alterations beget stability, i.e. that succession selects for communities better able to resist perturbations. Yet, whether and how alterations of network structure affect stability during succession in complex communities is rarely studied in natural ecosystems. Here, we explore how network attributes influence stability of different successional stages of a natural network: symbiotic arthropod communities forming food webs inside red wood ant nests. We determined the abundance of 16 functional groups within the symbiont community across 51 host nests in the beginning and end stages of succession. Nest age was the main driver of the compositional shifts: symbiont communities in old nests contained more even species abundance distributions and a greater proportion of specialists. Based on the abundance data, we reconstructed interaction matrices and food webs of the symbiont community for each nest. We showed that the enhanced community evenness in old nests leads to an augmented food web stability in all but the largest symbiont communities. Overall, this study demonstrates that succession begets stability in a natural ecological network by making the community more even.


Subject(s)
Ants , Food Chain , Symbiosis , Animals , Ants/microbiology , Ants/physiology , Ecosystem , Nesting Behavior
2.
Proc Natl Acad Sci U S A ; 121(20): e2317305121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709919

ABSTRACT

Infanticide and adoption have been attributed to sexual selection, where an individual later reproduces with the parent whose offspring it killed or adopted. While sexually selected infanticide is well known, evidence for sexually selected adoption is anecdotal. We report on both behaviors at 346 nests over 27 y in green-rumped parrotlets (Forpus passerinus) in Venezuela. Parrotlets are monogamous with long-term pair bonds, exhibit a strongly male-biased adult sex ratio, and nest in cavities that are in short supply, creating intense competition for nest sites and mates. Infanticide attacks occurred at 256 nests in two distinct contexts: 1) Attacks were primarily committed by nonbreeding pairs (69%) attempting to evict parents from the cavity. Infanticide attacks per nest were positively correlated with population size and evicting pairs never adopted abandoned offspring. Competition for limited nest sites was a primary cause of eviction-driven infanticide, and 2) attacks occurred less frequently at nests where one mate died (31%), was perpetrated primarily by stepparents of both sexes, and was independent of population size. Thus, within a single species and mating system, infanticide occurred in multiple contexts due to multiple drivers. Nevertheless, 48% of stepparents of both sexes adopted offspring, and another 23% of stepfathers exhibited both infanticide and long-term care. Stepfathers were often young males who subsequently nested with widows, reaching earlier ages of first breeding than competitors and demonstrating sexually selected adoption. Adoption and infanticide conferred similar fitness benefits to stepfathers and appeared to be equivalent strategies driven by limited breeding opportunities, male-biased sex ratios, and long-term monogamy.


Subject(s)
Parrots , Animals , Male , Female , Venezuela , Parrots/physiology , Nesting Behavior/physiology , Sex Ratio , Sexual Behavior, Animal/physiology , Sexual Selection
3.
Sci Prog ; 107(2): 368504241245222, 2024.
Article in English | MEDLINE | ID: mdl-38745552

ABSTRACT

A significant body of evidence indicates that climate change is influencing many aspects of avian ecology. Yet, how climate change is affecting, and is expected to influence some aspects of the breeding ecology of cavity-nesting birds remains uncertain. To explore the potential linkage between timing of first clutch, and the influence of ambient temperature on hatching success, we used Eastern Bluebird (Sialia sialis) nest records over a nine-year period from Alabama, USA. We investigated changes to annual clutch initiation dates, as well as variability in hatching success associated with ambient air temperatures during the incubation period. Using a simple linear model, we observed earlier annual egg laying dates over the nine years of this study with a difference of 24 days between earliest egg-laying date of the season. Daily temperature minima increased 2 °C across the nine-year time frame of this study. These data also indicate that Eastern Bluebird hatching success was the highest when mean ambient air temperature during incubation was between 19 °C and 24 °C (78%, as opposed to 69% and 68% above and below this temperature range, respectively). Our findings of increasing maxima, earlier maxima each year, and the lower minima of temperatures within our study area could expand the breadth of temperatures experienced by nesting Eastern Bluebirds possibly exposing them to temperatures outside of what promotes nesting success. These findings with a cavity-nesting bird highlight an optimal range of ambient temperatures associated with highest hatching success, conditions likely to be affected by climate change.


Subject(s)
Climate Change , Nesting Behavior , Temperature , Animals , Nesting Behavior/physiology , Reproduction/physiology , Songbirds/physiology , Alabama , Seasons , Birds/physiology
4.
Curr Biol ; 34(9): R335-R337, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38714157

ABSTRACT

A new study compiles compelling evidence that stingless bees construct their brood combs in a self-organised manner in which local modification of a structure stimulates further modifications, a process known as stigmergy.


Subject(s)
Nesting Behavior , Animals , Bees/physiology , Nesting Behavior/physiology , Social Behavior , Behavior, Animal/physiology
5.
Science ; 384(6699): 1030-1036, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815013

ABSTRACT

Coevolution between interacting species is thought to increase biodiversity, but evidence linking microevolutionary processes to macroevolutionary patterns is scarce. We leveraged two decades of behavioral research coupled with historical DNA analysis to reveal that coevolution with hosts underpins speciation in brood-parasitic bronze-cuckoos. At a macroevolutionary scale, we show that highly virulent brood-parasitic taxa have higher speciation rates and are more likely to speciate in sympatry than less-virulent and nonparasitic relatives. We reveal the microevolutionary process underlying speciation: Hosts reject cuckoo nestlings, which selects for mimetic cuckoo nestling morphology. Where cuckoos exploit multiple hosts, selection for mimicry drives genetic and phenotypic divergence corresponding to host preference, even in sympatry. Our work elucidates perhaps the most common, but poorly characterized, evolutionary process driving biological diversification.


Subject(s)
Birds , Genetic Speciation , Nesting Behavior , Animals , Host-Parasite Interactions , Biological Coevolution , Sympatry , Biological Mimicry , Biological Evolution , Biodiversity
6.
Ecology ; 105(6): e4307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38724013

ABSTRACT

The risk of predation directly affects the physiology, behavior, and fitness of wild birds. Strong social connections with conspecifics could help individuals recover from a stressful experience such as a predation event; however, competitive interactions also have the potential to exacerbate stress. Few studies have investigated the interaction between environmental stressors and the social landscape in wild bird populations. In 2 years of field studies, we experimentally simulated predation attempts on breeding female tree swallows (Tachicyneta bicolor). At the same time, we manipulated female breast plumage color, a key social signal. Simulated predation events on tree swallows early in the nestling period reduced young nestlings' mass by approximately 20% and shortened telomere lengths. Ultimately, only 31% of nestlings in the predation group fledged compared with 70% of control nestlings. However, the effects of experimental manipulations were timing dependent: the following year when we swapped the order of the experimental manipulations and simulated predation during incubation, there were no significant effects of predation on nestling condition or fledging success. Contrary to our expectations, manipulation of the social environment did not affect the response of tree swallows to simulated predation. However, manipulating female plumage during the nestling period did reduce nestling skeletal size and mass, although the effects depended on original plumage brightness. Our data demonstrate that transient stressors on female birds can have carry-over effects on their nestlings if they occur during critical periods in the breeding season.


Subject(s)
Predatory Behavior , Swallows , Animals , Swallows/physiology , Predatory Behavior/physiology , Female , Nesting Behavior , Feathers/physiology
7.
Anim Cogn ; 27(1): 39, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789697

ABSTRACT

The Australian red honey ant, Melophorus bagoti, stands out as the most thermophilic ant in Australia, engaging in all outdoor activities during the hottest periods of the day during summer months. This species of desert ants often navigates by means of path integration and learning landmark cues around the nest. In our study, we observed the outdoor activities of M. bagoti workers engaged in nest excavation, the maintenance of the nest structure, primarily by taking excess sand out of the nest. Before undertaking nest excavation, the ants conducted a single exploratory walk. Following their initial learning expedition, these ants then engaged in nest excavation activities. Consistent with previous findings on pre-foraging learning walks, after just one learning walk, the desert ants in our study demonstrated the ability to return home from locations 2 m away from the nest, although not from locations 4 m away. These findings indicate that even for activities like dumping excavated sand within a range of 5-10 cm outside the nest, these ants learn and utilize the visual landmark panorama around the nest.


Subject(s)
Ants , Animals , Ants/physiology , Australia , Learning , Walking , Nesting Behavior , Desert Climate , Homing Behavior , Cues , Spatial Navigation
8.
Mar Pollut Bull ; 203: 116485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754319

ABSTRACT

In this study, the accumulation rate of plastic litter was investigated by sampling quadrats placed on the North Island of Qilianyu, and the composition was analyzed and identified to determine its source. The results showed that the annual average accumulation rate of plastic litter on North Island was 0.64 ± 0.32 pieces·m-2·month-1, with a mass accumulation rate of 11.30 ± 7.73 g·m-2·month-1. The accumulation rate of plastic litter was mainly influenced by wind speed and direction, with higher accumulation rates occurring during the southwest monsoon season and tropical cyclones. ATR-FTIR analysis indicated that polyethylene (44 %) and polypropylene (41 %) were the most abundant types of polymers. This study reveals the current status of plastic litter pollution in green turtle nesting grounds on North Island in Qilianyu, which can be used as a reference for management strategies that mitigate plastic litter pollution.


Subject(s)
Environmental Monitoring , Plastics , Turtles , Animals , Plastics/analysis , China , Water Pollutants, Chemical/analysis , Islands , Nesting Behavior
9.
Glob Chang Biol ; 30(5): e17335, 2024 May.
Article in English | MEDLINE | ID: mdl-38771086

ABSTRACT

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.


Subject(s)
Animal Migration , Climate Change , Nesting Behavior , Seasons , Animals , Arctic Regions , Animal Migration/physiology , Female , Charadriiformes/physiology , Reproduction
10.
Commun Biol ; 7(1): 638, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796601

ABSTRACT

In order to cope with the complexity and variability of the terrestrial environment, amphibians have developed a wide range of reproductive and parental behaviors. Nest building occurs in some anuran species as parental care. Species of the Music frog genus Nidirana are known for their unique courtship behavior and mud nesting in several congeners. However, the evolution of these frogs and their nidification behavior has yet to be studied. With phylogenomic and phylogeographic analyses based on a wide sampling of the genus, we find that Nidirana originated from central-southwestern China and the nidification behavior initially evolved at ca 19.3 Ma but subsequently lost in several descendants. Further population genomic analyses suggest that the nidification species have an older diversification and colonization history, while N. adenopleura complex congeners that do not exhibit nidification behavior have experienced a recent rapid radiation. The presence and loss of the nidification behavior in the Music frogs may be associated with paleoclimatic factors such as temperature and precipitation. This study highlights the nidification behavior as a key evolutionary innovation that has contributed to the diversification of an amphibian group under past climate changes.


Subject(s)
Anura , Phylogeny , Animals , Anura/physiology , Anura/genetics , China , Phylogeography , Climate Change , Biological Evolution , Nesting Behavior
11.
Sci Rep ; 14(1): 9248, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649736

ABSTRACT

Urbanisation has contributed to a severe decline in biodiversity worldwide. However, urban ecosystems can also play an important role in the conservation of threatened species, including ground-nesting birds such as the Eurasian Oystercatcher (Haematopus ostralegus). While the coastal populations of this shorebird have declined sharply, there is growing evidence that pairs nesting on urban flat roofs have high reproductive success. However, the reasons for rooftop nesting and the species' habitat use in urban areas remain poorly understood. In this study, we investigate the territory selection and foraging behaviour of the Eurasian Oystercatcher in the city of Münster (NW Germany). All nesting sites were located on flat roofs (N = 24), most of which were covered with gravel. Overall, reproductive success was high. This was mainly because the roofs provided protection from mammalian predators, leading to increased nest and chick survival. Moreover, breeding performance in the study area was favoured by the proximity of sports pitches. According to our observations, they provided a large amount of easily accessible prey throughout the breeding season. Overall, our study highlights that the reproductive success of the Eurasian Oystercatcher in urban environments is highly dependent on both safe nesting sites on flat roofs and the availability of suitable foraging habitats. Although our study suggests that breeding in urban areas can be beneficial for the model organism, the species' strong territory fidelity makes it very sensitive to the rapid environmental changes occurring in cities. The value of urban ecosystems for bird conservation should therefore be better integrated into urban planning and management.


Subject(s)
Ecosystem , Nesting Behavior , Animals , Nesting Behavior/physiology , Conservation of Natural Resources/methods , Reproduction/physiology , Germany , Charadriiformes/physiology , Cities , Sports , Endangered Species
12.
Neotrop Entomol ; 53(3): 552-567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684598

ABSTRACT

Solitary bees and wasps that nest in cavities in tree trunks are important components of terrestrial ecosystems, providing pollination services, and in the case of wasps, the regulation of their prey populations. However, little is known about the vertical strata where bees and wasps build their nests. This is especially the case of urban forest remnants in the Amazon, which is relevant in the context of the global crisis in insect losses. We investigated the existence of vertical stratification in the nesting of solitary bees and wasps in an urban forest in Rio Branco, state of Acre, in the western Brazilian Amazon. We focused on whether wood temperature, ants, and termites are predictors of bee and wasp nesting. We sampled bee and wasp nests in the forest using trap-nests made with wooden blocks containing cavities with three different diameters for twelve months. Trap-nests were installed randomly at three heights in the forest. We collected 145 nests of 25 species, belonging to 11 genera and 6 families. A higher number of nests and species were collected in the upper stratum of the forest, strengthening the hypothesis that there is vertical stratification in the assemblage of solitary bees and wasps. Wood surface temperature and termite attacks on trap-nests were significantly different between strata, which may explain the vertical stratification of bee and wasp assemblages. Considering the importance of these insects for tropical forest ecosystems, the conservation of structurally complex and stratified forests is of paramount importance to maintain the diversity of this insect group.


Subject(s)
Forests , Wasps , Animals , Brazil , Bees/classification , Wasps/physiology , Wasps/classification , Nesting Behavior , Temperature
13.
Mar Pollut Bull ; 202: 116321, 2024 May.
Article in English | MEDLINE | ID: mdl-38574501

ABSTRACT

Currently, sea turtle habitats are being altered by climate change and human activities, with habitat loss posing an urgent threat to Indian sea turtles. Thus, the objective of this study is to analyze the dynamic shoreline alterations and their impacts on Olive Ridley Sea Turtle (ORT) nesting sites in Gahirmatha Marine Wildlife Sanctuary from 1990 to 2022. Landsat satellite images served as input datasets to assess dynamic shoreline changes. This study assessed shoreline alterations and their rates across 929 transects divided into four zones using the Digital Shoreline Analysis System (DSAS) software. The results revealed a significant 14-km northward shift in the nesting site due to substantial coastal erosion, threatening the turtles' Arribada. This study underscores the need for conservation efforts to preserve nesting environments amidst changing coastal landscapes, offering novel insights into the interaction between coastal processes and marine turtle nesting behaviors.


Subject(s)
Conservation of Natural Resources , Ecosystem , Nesting Behavior , Turtles , Animals , Turtles/physiology , India , Environmental Monitoring , Climate Change
14.
Commun Biol ; 7(1): 406, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570618

ABSTRACT

Adaptations are driven by specific natural selection pressures throughout biological evolution. However, these cannot inherently align with future shifts in selection dynamics, thus manifesting in opposing directions. We performed field experiments on cuckoo hosts to investigate the coexistence and conflict between two evolutionarily successive but opposing behavioral adaptations-egg retrieval and rejection. Our findings provide key insights. (1) Egg rejection against brood parasites in hosts reshapes egg retrieval to flexible reactions-retrieval, ignoring, or outright rejection of foreign eggs outside the nest cup, departing from instinctual retrieval. (2) Parasitism pressure and egg mimicry by parasites remarkably alter the proportions of the three host reactions. Host species with higher parasitism pressure exhibit frequent and rapid rejection of non-mimetic foreign eggs and reduced ignoring or retrieval responses. Conversely, heightened egg mimicry enhances retrieval behaviors while diminishing ignoring responses. (3) Cuckoos employ consistent mechanisms for rejecting foreign eggs inside or outside the nest cup. Direct rejection of eggs outside the nest cup shows that rejection precedes retrieval, indicating prioritization of specific adaptation over instinct. (4) Cuckoo hosts navigate the conflict between the intentions and motivations associated with egg rejection and retrieval by ignoring foreign eggs, a specific outcome of the rejection-retrieval tradeoff.


Subject(s)
Birds , Nesting Behavior , Animals , Nesting Behavior/physiology , Birds/physiology , Biological Evolution
15.
Exp Appl Acarol ; 92(3): 369-384, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485887

ABSTRACT

Management, brood nest structure and factors associated with varroa mite infestation were studied in 60 apiaries of Africanized honey bees in the northwest region of the Central Valley of Costa Rica. Apiaries were monitored two times. The first monitoring was taken forward during the rainy season between May and November 2019. The second monitoring during the dry season between February and March 2020. Information about the beekeepers, apiaries and management was collected through a survey. Amount of open and capped brood, honey and pollen were measured in the field. The infestation rate of varroa (IRV) was quantified using standard laboratory methods. A determination of multi-residue pesticides in bee bread was made through GC-MS/MS and LC-MS/MS techniques. According to the results, most of the beekeepers produce honey (96.7%), participate in training activities (82.2%), and change the bee queens annually (70%). The first monitoring was characterized by a lower amount of capped brood and honey reserves compared to the second one. IRV was significantly higher in the first monitoring (6.0 ± 0.4) in comparison with the second one (3.0 ± 0.3) (U Mann-Whitney p < 0.001). The maximum value for the first monitoring exceeds 40%, while this value was close to 25% in the second monitoring. Mite infestation exposed significant differences in relation to the variables associated to the beekeeper's management, i.e., change of bee queen (p = 0.002) or when beekeepers monitor varroa mites (p = 0.004). Additionally, the IRV had inverse correlations (p < 0.01) with the number of comb sides with capped brood (Spearman's rho coefficient = - 0.190), and honey reserves (Spearman's rho coefficient = - 0.168). Furthermore, 23 of 60 bee bread samples presented one to five pesticide residues, being the most frequent antifungal agrochemicals.


Subject(s)
Beekeeping , Mite Infestations , Varroidae , Animals , Bees/parasitology , Bees/physiology , Varroidae/physiology , Costa Rica , Mite Infestations/veterinary , Mite Infestations/parasitology , Honey/analysis , Nesting Behavior
16.
Mar Pollut Bull ; 201: 116246, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531203

ABSTRACT

We examined the probability of past sea turtle nesting as a function of light intensity and patterns of temporal changes of light along nesting beaches in the Egyptian Red Sea. Beaches had a lower probability of past sea turtle nesting as light intensity increased. Light has been significantly increasing on mainland nesting beaches between 1992 and 2021 except for temporary declines. Island beaches historically had lower light pollution, but there was a sudden increase of light starting in 2014 that continued through 2021, except for the precipitous decline in 2020 during the Covid 19 pandemic. Light pollution on past nesting beaches has now approached levels that may be too polluted and discourage nesting. The impacts of the increased light pollution on nesting density and hatchling survival of hawksbill, Eretmochelys imbricata, and green turtles, Chelonia mydas, is likely negative.


Subject(s)
Light Pollution , Turtles , Animals , Egypt , Indian Ocean , Nesting Behavior
17.
Curr Biol ; 34(9): 1996-2001.e3, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38508185

ABSTRACT

The transmission of complex behavior and culture in humans has long been attributed to advanced forms of social learning,1,2 which play a crucial role in our technological advancement.3 While similar phenomena of behavioral traditions and cultural inheritance have been observed in animals,1,2,4,5,6 including in primates,7 whales,8 birds,9 and even insects,10 the underlying mechanisms enabling the persistence of such animal traditions, particularly in insects, are less well understood. This study introduces pioneering evidence of enduring architectural traditions in the stingless bee Scaptotrigona depilis, which are maintained without any evidence for social learning. We demonstrate that S. depilis exhibits two distinct nest architectures, comprising either helicoidal or flat, stacked horizontal combs, which are transmitted across generations through stigmergy11,12,13,14,15,16,17-an environmental feedback mechanism whereby the presence of the existing comb structures guides subsequent construction behaviors-thereby leading to a form of environmental inheritance.18,19,20 Cross-fostering experiments further show that genetic factors or prior experience does not drive the observed variation in nest architecture. Moreover, the experimental introduction of corkscrew dislocations within the combs prompted helicoidal building, confirming the use of stigmergic building rules. At a theoretical level, we establish that the long-term equilibrium of building in the helicoidal pattern fits with the expectations of a two-state Markov chain model. Overall, our findings provide compelling evidence for the persistence of behavioral traditions in an insect, based on a simple mechanism of environmental inheritance and stigmergic interactions, without requiring any sophisticated learning mechanism, thereby expanding our understanding of how traditions can be maintained in non-human species.


Subject(s)
Nesting Behavior , Animals , Bees/physiology , Bees/genetics , Social Learning , Social Behavior
18.
J Biol Rhythms ; 39(3): 295-307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459718

ABSTRACT

The study of chronobiology of foraging behavior in social insects offers valuable models for the investigation of circadian rhythms. We scored hourly nest entries and exits of Oecophylla smaragdina (Asian weaver ant) workers in 9 active non-polydomous nests on days with and without rain and with and without a primarily diurnal predator present. After determining that Oecophylla display a high nest fidelity, we focused exclusively on analyzing nest entry counts: we found a significant decrease in overall entry counts of individual ants on rainy days compared with non-rainy days (p < 0.0001). They usually maintain a typical diurnal pattern of foraging activity; however, that regularity was often distorted during rainy periods but appeared to quickly revert to typical patterns following rain. This lack of compensatory foraging activity following a period of rain supports the hypothesis that these ants have enough food reserves to withstand a pure masking-induced suppression of foraging activity. Predation through bird anting, too, decreased foraging activity but appeared to cause a reversal in foraging activity timing from diurnal to nocturnal foraging. Daily periodicity of foraging was significantly disrupted in most nests during rain; however, daily foraging periodicity was disrupted in only one nest due to presence of predators. Thus, rain and predation both exert significant impacts on the overall foraging activity of Asian weaver ants, but while persistent pressure from rain seemed to primarily cause masking (diminution) of circadian foraging activity, predation restricted to the daytime resulted in phase-inversion to nocturnal foraging activity, with little diminution. This is consistent with different energetic strategies being used in response to different pressures by this species.


Subject(s)
Ants , Circadian Rhythm , Predatory Behavior , Rain , Animals , Ants/physiology , Circadian Rhythm/physiology , Feeding Behavior/physiology , Energy Metabolism , Nesting Behavior
19.
J Exp Zool A Ecol Integr Physiol ; 341(5): 563-577, 2024 06.
Article in English | MEDLINE | ID: mdl-38470019

ABSTRACT

Future climate change scenarios project that the increase in surface temperatures will affect ocean temperatures, inducing shifts in marine biodiversity. Sea turtles are species that are particularly vulnerable to the effects of climate change because temperature is a factor that influences embryonic development. We collected clutches of olive ridley turtles from a mass-nesting beach in the Mexican Pacific, which were incubated in ex situ conditions. When the hatchlings emerged, we measured the body condition index-which evaluates the weight-length relationship-and swim thrust, both were considered traits associated with fitness, termed "fitness proxies," and evaluated the effects of incubation temperature, maternal effects, and paternity on these fitness proxies. The body condition index was correlated positively and significantly with the arribada month and temperature during the last third of the incubation period but showed an inverse relationship with the maternal effect. While swim thrust was positively correlated with the maternal effect and the arribada month, there was an inverse relationship with incubation temperature during the first third of the period. Paternity, whether single or multiple, did not have a significant effect on either fitness proxies; however, it may have effects on the average fitness of a population of hatchlings. These results underscore the need to expand research on the sublethal effects of high incubation temperatures on the adaptation and survival of sea turtles, particularly in scenarios of rapid climate change.


Subject(s)
Temperature , Turtles , Animals , Turtles/physiology , Female , Mexico , Male , Climate Change , Pacific Ocean , Nesting Behavior/physiology
20.
J Anim Ecol ; 93(6): 691-704, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38525599

ABSTRACT

As humans increasingly modify the natural world, many animals have responded by changing their behaviour. Understanding and predicting the extent of these responses is a key step in conserving these species. For example, the tendency for some species of birds to incorporate anthropogenic items-particularly plastic material-into their nests is of increasing concern, as in some cases, this behaviour has harmful effects on adults, young and eggs. Studies of this phenomenon, however, have to date been largely limited in geographic and taxonomic scope. To investigate the global correlates of anthropogenic (including plastic) nest material use, we used Bayesian phylogenetic mixed models and a data set of recorded nest materials in 6147 species of birds. We find that, after controlling for research effort and proximity to human landscape modifications, anthropogenic nest material use is correlated with synanthropic (artificial) nesting locations, breeding environment and the number of different nest materials the species has been recorded to use. We also demonstrate that body mass, range size, conservation status and brain size do not explain variation in the recorded use of anthropogenic nest materials. These results indicate that anthropogenic materials are more likely to be included in nests when they are more readily available, as well as potentially by species that are more flexible in their nest material choice.


Subject(s)
Bayes Theorem , Birds , Nesting Behavior , Animals , Birds/physiology , Anthropogenic Effects , Phylogeny , Plastics , Conservation of Natural Resources
SELECTION OF CITATIONS
SEARCH DETAIL
...