Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34470826

ABSTRACT

Netrin-1, a secreted protein recently characterized as a relevant cancer therapeutic target, is the antiapoptotic ligand of the dependence receptors deleted in colorectal carcinoma and members of the UNC5H family. Netrin-1 is overexpressed in several aggressive cancers where it promotes cancer progression by inhibiting cell death induced by its receptors. Interference of its binding to its receptors has been shown, through the development of a monoclonal neutralizing antinetrin-1 antibody (currently in phase II of clinical trial), to actively induce apoptosis and tumor growth inhibition. The transcription factor p53 was shown to positively regulate netrin-1 gene expression. We show here that netrin-1 could be a target gene of the N-terminal p53 isoform Δ40p53, independent of full-length p53 activity. Using stable cell lines, harboring wild-type or null-p53, in which Δ40p53 expression could be finely tuned, we prove that Δ40p53 binds to and activates the netrin-1 promoter. In addition, we show that forcing immortalized human skeletal myoblasts to produce the Δ40p53 isoform, instead of full-length p53, leads to the up-regulation of netrin-1 and its receptor UNC5B and promotes cell survival. Indeed, we demonstrate that netrin-1 interference, in the presence of Δ40p53, triggers apoptosis in cancer and primary cells, leading to tumor growth inhibition in preclinical in vivo models. Finally, we show a positive correlation between netrin-1 and Δ40p53 gene expression in human melanoma and colorectal cancer biopsies. Hence, we propose that inhibition of netrin-1 binding to its receptors should be a promising therapeutic strategy in human tumors expressing high levels of Δ40p53.


Subject(s)
Carcinogenesis , Netrin Receptors/physiology , Netrin-1/physiology , Protein Isoforms/physiology , Tumor Suppressor Protein p53/physiology , Up-Regulation/physiology , Apoptosis/physiology , Cell Line, Tumor , Gene Silencing , Humans , Netrin-1/genetics , Promoter Regions, Genetic , Protein Binding
2.
J Neurosci ; 41(35): 7350-7362, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34301831

ABSTRACT

Neuron migration is a hallmark of nervous system development that allows gathering of neurons from different origins for assembling of functional neuronal circuits. Cortical inhibitory interneurons arise in the ventral telencephalon and migrate tangentially forming three transient migratory streams in the cortex before reaching the final laminar destination. Although migration defects lead to the disruption of inhibitory circuits and are linked to aspects of psychiatric disorders such as autism and schizophrenia, the molecular mechanisms controlling cortical interneuron development and final layer positioning are incompletely understood. Here, we show that mouse embryos with a double deletion of FLRT2 and FLRT3 genes encoding cell adhesion molecules exhibit an abnormal distribution of interneurons within the streams during development, which in turn, affect the layering of somatostatin+ interneurons postnatally. Mechanistically, FLRT2 and FLRT3 proteins act in a noncell-autonomous manner, possibly through a repulsive mechanism. In support of such a conclusion, double knockouts deficient in the repulsive receptors for FLRTs, Unc5B and Unc5D, also display interneuron defects during development, similar to the FLRT2/FLRT3 mutants. Moreover, FLRT proteins are chemorepellent ligands for developing interneurons in vitro, an effect that is in part dependent on FLRT-Unc5 interaction. Together, we propose that FLRTs act through Unc5 receptors to control cortical interneuron distribution in a mechanism that involves cell repulsion.SIGNIFICANCE STATEMENT Disruption of inhibitory cortical circuits is responsible for some aspects of psychiatric disorders such as schizophrenia or autism. These defects include interneuron migration during development. A crucial step during this process is the formation of three transient migratory streams within the developing cortex that determine the timing of interneuron final positioning and the formation of functional cortical circuits in the adult. We report that FLRT proteins are required for the proper distribution of interneurons within the cortical migratory streams and for the final laminar allocation in the postnatal cortex. These results expand the multifunctional role of FLRTs during nervous system development in addition to the role of FLRTs in axon guidance and the migration of excitatory cortical neurons.


Subject(s)
Cerebral Cortex/cytology , Interneurons/cytology , Membrane Glycoproteins/physiology , Nerve Tissue Proteins/physiology , Animals , Cell Adhesion , Cell Movement/physiology , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Crosses, Genetic , Female , Gene Expression Regulation, Developmental , Genes, Reporter , Male , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Netrin Receptors/physiology , Organogenesis , Protein Interaction Mapping , Receptors, Cell Surface/physiology
3.
J Oral Rehabil ; 47 Suppl 1: 91-98, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32762046

ABSTRACT

BACKGROUND: There is a balance between adipogenic differentiation and osteogenic differentiation of human adipose-derived stem cells (hASCs). It is essential to explore the mechanism of hASCs lineage commitment. In our previous study, UNC-5 netrin receptor B (UNC5B) was identified as a positive regulator for osteogenesis. OBJECTIVE: To further explore the potential roles and mechanisms of UNC5B during adipogenic differentiation and to provide a new method to regulate adipogenesis and osteogenesis of hASCs. METHODS: Lentivirus containing UNC5B shRNA was used for UNC5B knockdown. Plasmids overexpressing UNC5B gene were used for UNC5B upregulation. To investigate the role of UNC5B in adipogenesis in vitro and in vivo, Oil Red O staining, RT-qPCR and transplantation into nude mice were performed. Western blotting analyses were performed to explore the mechanisms of UNC5B in adipogenic differentiation. RESULTS: UNC5B expression in hASCs was significantly increased during adipogenic differentiation. Knockdown of UNC5B enhanced adipogenic differentiation in vitro. Both H&E staining and Oil Red O staining showed more adipose tissue-like constructs in UNC5B-knockdown cells in vivo. Upregulation of UNC5B significantly impaired adipogenic differentiation in vitro. Downregulation of UNC5B could increase phosphorylation of JNK in hASCs. JNK inhibitors reduced adipogenic differentiation of hASCs. CONCLUSION: Our findings showed that UNC5B inhibited adipogenesis of hASCs through JNK signalling. As a whole, UNC5B regulates both adipogenesis and osteogenesis of hASCs.


Subject(s)
Adipogenesis , MAP Kinase Signaling System , Animals , Cell Differentiation , Cells, Cultured , Humans , Mice , Mice, Nude , Netrin Receptors/physiology , Osteogenesis , Stem Cells
4.
Annu Rev Neurosci ; 42: 209-226, 2019 07 08.
Article in English | MEDLINE | ID: mdl-30883262

ABSTRACT

How the nervous system is wired has been a central question of neuroscience since the inception of the field, and many of the foundational discoveries and conceptual advances have been made through the study of invertebrate experimental organisms, including Caenorhabditis elegans and Drosophila melanogaster. Although many guidance molecules and receptors have been identified, recent experiments have shed light on the many modes of action for these pathways. Here, we summarize the recent progress in determining how the physical and temporal constraints of the surrounding environment provide instructive regulations in nervous system wiring. We use Netrin and its receptors as an example to analyze the complexity of how they guide neurite outgrowth. In neurite repair, conserved injury detection and response-signaling pathways regulate gene expression and cytoskeletal dynamics. We also describe recent developments in the research on molecular mechanisms of neurite regeneration in worms and flies.


Subject(s)
Caenorhabditis elegans/physiology , Drosophila melanogaster/physiology , Nerve Regeneration/physiology , Neurogenesis , Neuronal Outgrowth/physiology , Animals , Axon Guidance/physiology , Caenorhabditis elegans/cytology , Caenorhabditis elegans/growth & development , Calcium Signaling , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental , Larva , MAP Kinase Signaling System/physiology , Microtubules/physiology , Netrin Receptors/physiology , Netrins/physiology , Phosphatidylserines/physiology , Time Factors , Trauma, Nervous System/physiopathology
5.
BMC Res Notes ; 11(1): 662, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30213274

ABSTRACT

OBJECTIVE: The Uncoordinated 5A (UNC5A) protein is part of a family of receptors that play roles in axonal pathfinding and cell migration. We previously showed that the Fanconi anemia C protein (FANCC) interacts with UNC5A and delays UNC5A-mediated apoptosis. FANCC is a predominantly cytoplasmic protein that has multiple functions including DNA damage signaling, oxygen radical metabolism, signal transduction, transcriptional regulation and apoptosis. Given the direct interaction between FANCC and UNC5A and that FANCC interferes with UNC5A-mediated apoptosis, we explored the possibility that FANCC might play a role in axonal-like growth processes. RESULTS: Here we show that FANCC and UNC5A are localized to regions of neurite outgrowth during neuronal cell differentiation. We also show that absence of FANCC is required for neurite outgrowth. In addition, FANCC seems required for UNC5A expression. Results from this study combined with our previous report suggest that FANCC plays a role in tissue development through the regulation of UNC5A-mediated functions.


Subject(s)
Fanconi Anemia Complementation Group C Protein/physiology , Netrin Receptors/physiology , Neuronal Outgrowth , Animals , Cell Differentiation , Fanconi Anemia , Mice , Mice, Knockout , Proteins
6.
PLoS One ; 13(3): e0194003, 2018.
Article in English | MEDLINE | ID: mdl-29518139

ABSTRACT

Netrin receptors of the DCC/NEO/UNC-40/Frazzled family have well established roles in cell migration and axon guidance but can also regulate epithelial features such as adhesion, polarity and adherens junction (AJ) stability. Previously, we have shown that overexpression of Drosophila Frazzled (Fra) in the peripodial epithelium (PE) inhibits wing disc eversion and also generates cellular protrusions typical of motile cells. Here, we tested whether the molecular pathways by which Fra inhibits eversion are distinct from those driving motility. We show that in disc proper (DP) epithelial cells Fra, in addition to inducing F-Actin rich protrusions, can affect localization of AJ components and columnar cell shape. We then show that these phenotypes have different requirements for the three conserved Fra cytoplasmic P-motifs and for downstream genes. The formation of protrusions required the P3 motif of Fra, as well as integrins (mys and mew), the Rac pathway (Rac1, wave and, arpc3) and myosin regulatory light chain (Sqh). In contrast, apico-basal cell shape change, which was accompanied by increased myosin phosphorylation, was critically dependent upon the P1 motif and was promoted by RhoGef2 but inhibited by Rac1. Fra also caused a loss of AJ proteins (DE-Cad and Arm) from basolateral regions of epithelial cells. This phenotype required all 3 P-motifs, and was dependent upon the polarity factor par6. par6 was not required for protrusions or cell shape change, but was required to block eversion suggesting that control of AJ components may underlie the ability of Fra to promote epithelial stability. The results imply that multiple molecular pathways act downstream of Fra in epithelial cells.


Subject(s)
Cadherins/metabolism , Drosophila Proteins/physiology , Drosophila melanogaster/metabolism , Epithelial Cells/cytology , Netrin Receptors/physiology , Adherens Junctions/metabolism , Amino Acid Motifs , Animals , Animals, Genetically Modified , Armadillo Domain Proteins/metabolism , Cell Cycle Proteins , Cell Movement , Cell Polarity , Cell Shape , Cell Surface Extensions/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Imaginal Discs/cytology , Integrins/physiology , Larva , Myosins/metabolism , Netrin Receptors/chemistry , Netrin Receptors/genetics , Phosphorylation , Protein Processing, Post-Translational , Recombinant Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Transgenes , rac GTP-Binding Proteins/physiology , rho GTP-Binding Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...