Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biochem Biophys ; 81(3): 533-542, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37470932

ABSTRACT

Mucopolysaccharidosis type II (MPS II) is a disorder caused by a deficient activity of iduronate-2-sulfatase, a lysosomal enzyme responsible for degrading glycosaminoglycans (GAGs). The abnormal storage of GAGs within lysosomes disrupts cellular homeostasis and leads to a severe symptomatology. Patients present neuropsychiatric impairment characterized by mental retardation and impaired cognition. The aim of this study was to quantify four neurodegeneration biomarkers in plasma: brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF-AA), neural cell adhesion molecule (NCAM) and cathepsin-D, as well as to identify possible correlations with urinary GAGs in seven patients undergoing treatment with ERT (Elaprase® 0.5 mg/kg of body weight). Patients with both severe and attenuated forms of MPS II showed signs of neurodegeneration in neuroimaging exams. Patients have a decrease in BDNF and PDGF-AA concentrations, and an increase in NCAM level compared to controls. No alterations in cathepsin-D concentration were seen. GAGs levels were higher in patients than in controls, but no significant correlations between GAGs and biomarkers were observed. These results evidence that patients have neurodegeneration and that monitoring these biomarkers might be useful for assessing this process. To this date, this is the first work to analyze these plasmatic markers of neurodegeneration in patients.


Subject(s)
Mucopolysaccharidosis II , Humans , Mucopolysaccharidosis II/complications , Mucopolysaccharidosis II/drug therapy , Mucopolysaccharidosis II/diagnosis , Brain-Derived Neurotrophic Factor/therapeutic use , Enzyme Replacement Therapy , Glycosaminoglycans/metabolism , Glycosaminoglycans/therapeutic use , Biomarkers , Neural Cell Adhesion Molecules/therapeutic use
2.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768928

ABSTRACT

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. The prognosis for patients with high-grade and metastatic disease is still very poor, and survivors are burdened with long-lasting side effects. Therefore, more effective and less toxic therapies are needed. Surface proteins are ideal targets for antibody-based therapies, like bispecific antibodies, antibody-drug conjugates, or chimeric antigen receptor (CAR) T-cells. Specific surface targets for RMS are scarce. Here, we performed a surfaceome profiling based on differential centrifugation enrichment of surface/membrane proteins and detection by LC-MS on six fusion-positive (FP) RMS cell lines, five fusion-negative (FN) RMS cell lines, and three RMS patient-derived xenografts (PDXs). A total of 699 proteins were detected in the three RMS groups. Ranking based on expression levels and comparison to expression in normal MRC-5 fibroblasts and myoblasts, followed by statistical analysis, highlighted known RMS targets such as FGFR4, NCAM1, and CD276/B7-H3, and revealed AGRL2, JAM3, MEGF10, GPC4, CADM2, as potential targets for immunotherapies of RMS. L1CAM expression was investigated in RMS tissues, and strong L1CAM expression was observed in more than 80% of alveolar RMS tumors, making it a practicable target for antibody-based therapies of alveolar RMS.


Subject(s)
Neural Cell Adhesion Molecule L1 , Rhabdomyosarcoma , Child , Animals , Humans , Heterografts , Rhabdomyosarcoma/metabolism , Cell Line , Transcription Factors , Disease Models, Animal , Neural Cell Adhesion Molecules/therapeutic use , Cell Line, Tumor , B7 Antigens , Cell Adhesion Molecules/therapeutic use , Receptor, Fibroblast Growth Factor, Type 4/metabolism
3.
Int J Mol Sci ; 21(23)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255323

ABSTRACT

The translation of new therapies for spinal cord injury to clinical trials can be facilitated with large animal models close in morpho-physiological scale to humans. Here, we report functional restoration and morphological reorganization after spinal contusion in pigs, following a combined treatment of locomotor training facilitated with epidural electrical stimulation (EES) and cell-mediated triple gene therapy with umbilical cord blood mononuclear cells overexpressing recombinant vascular endothelial growth factor, glial-derived neurotrophic factor, and neural cell adhesion molecule. Preliminary results obtained on a small sample of pigs 2 months after spinal contusion revealed the difference in post-traumatic spinal cord outcomes in control and treated animals. In treated pigs, motor performance was enabled by EES and the corresponding morpho-functional changes in hind limb skeletal muscles were accompanied by the reorganization of the glial cell, the reaction of stress cell, and synaptic proteins. Our data demonstrate effects of combined EES-facilitated motor training and cell-mediated triple gene therapy after spinal contusion in large animals, informing a background for further animal studies and clinical translation.


Subject(s)
Electric Stimulation Therapy , Glial Cell Line-Derived Neurotrophic Factor/genetics , Neural Cell Adhesion Molecules/genetics , Spinal Cord Injuries/therapy , Vascular Endothelial Growth Factor A/genetics , Adenoviridae/genetics , Animals , Cell- and Tissue-Based Therapy/methods , Disease Models, Animal , Epidural Space , Genetic Therapy/methods , Genetic Vectors/therapeutic use , Glial Cell Line-Derived Neurotrophic Factor/therapeutic use , Humans , Motor Activity/genetics , Motor Activity/physiology , Neural Cell Adhesion Molecules/therapeutic use , Neuroglia/transplantation , Recovery of Function/genetics , Recovery of Function/radiation effects , Spinal Cord/physiopathology , Spinal Cord/radiation effects , Spinal Cord Injuries/genetics , Spinal Cord Injuries/physiopathology , Swine/genetics , Vascular Endothelial Growth Factor A/therapeutic use
4.
Neuropsychopharmacology ; 44(2): 356-363, 2019 01.
Article in English | MEDLINE | ID: mdl-29703997

ABSTRACT

Recent evidence highlights the fibroblast growth factor (FGF) family in emotion modulation. Although ligands that activate FGF receptors have antidepressant and anxiolytic effects in animal models, FGF ligands have a broad range of actions both in the brain and the periphery. Therefore, identifying molecular partners that may function as allosteric modulators could offer new avenues for drug development. Since neural cell adhesion molecule (NCAM) activates FGF receptors, we asked whether peripherally administered NCAM peptide mimetics penetrate the brain and alter the behavior of standardized tests that have predictive validity for drug treatments of anxiety or depression. The NCAM peptide mimetic, plannexin, acutely increased and chronically decreased anxiety, but did not have antidepressant effects in rats. Another NCAM peptide mimetic, FGLL, had acute anxiogenic effects and chronic antidepressant effects in rats. A related NCAM peptide mimetic, FGLS, had antidepressant effects without modulating anxiety-like behavior, and these antidepressant effects were blocked by an AMPA receptor antagonist. Cisternal cerebrospinal fluid (CSF) levels of FGLs correlated with blood plasma levels in rats and non-human primates, and CSF-to-blood ratios of FGLS were comparable in both species. Results indicate that NCAM peptide mimetics penetrate the brain and support the suggestion that FGLS may be a candidate for further development as a novel treatment for major depressive disorder in humans.


Subject(s)
Anxiety/drug therapy , Behavior, Animal/drug effects , Depression/drug therapy , Emotions/drug effects , Neural Cell Adhesion Molecules/pharmacology , Oligopeptides/pharmacology , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Anxiety/metabolism , Brain/drug effects , Depression/metabolism , Male , Motor Activity/drug effects , Neural Cell Adhesion Molecules/metabolism , Neural Cell Adhesion Molecules/therapeutic use , Oligopeptides/metabolism , Oligopeptides/therapeutic use , Rats , Rats, Sprague-Dawley , Saimiri
5.
Neurochem Res ; 43(9): 1714-1722, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30003388

ABSTRACT

The neural cell adhesion molecule (NCAM) plays a pivotal role in the development and maintenance of the nervous system via homophilic (NCAM-NCAM) and heterophilic (NCAM-other molecules) interactions. Many synthetic peptides have been engineered to mimic these interactions and induce NCAM-downstream signaling pathways. Such NCAM mimetics have displayed neuritogenic and neuroprotective properties, as well as synaptic modulation in vitro and in vivo. Furthermore, they have been used successfully in preclinical studies to treat neurological disorders including stroke, traumatic brain injury and Alzheimer's disease. This review focuses on recent progress in the development of NCAM mimetic peptides, in particular, on establishing C3, plannexin, and FGL as therapeutic candidates for neurological disorders.


Subject(s)
Biomimetic Materials/metabolism , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Neural Cell Adhesion Molecules/metabolism , Peptide Fragments/metabolism , Amino Acid Sequence , Animals , Binding Sites/physiology , Biomimetic Materials/therapeutic use , Humans , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/therapeutic use , Oligopeptides/metabolism , Oligopeptides/therapeutic use , Peptide Fragments/genetics , Peptide Fragments/therapeutic use
6.
Neurobiol Aging ; 31(1): 118-28, 2010 Jan.
Article in English | MEDLINE | ID: mdl-18468731

ABSTRACT

Age-related cognitive deficits in hippocampus are correlated with neuroinflammatory changes, typified by increased pro-inflammatory cytokine production and microglial activation. We provide evidence that the neural cell adhesion molecule (NCAM)-derived mimetic peptide, FG loop (FGL), acts as a novel anti-inflammatory agent. Administration of FGL to aged rats attenuated the increased expression of markers of activated microglia, the increase in pro-inflammatory interleukin-1beta (IL-1beta) and the impairment in long-term potentiation (LTP). We report that the age-related increase in microglial activation was accompanied by decreased expression of neuronal CD200, and suggest that the proclivity of FGL to suppress microglial activation is due to its stimulatory effect on neuronal CD200. We demonstrate that FGL enhanced interleukin-4 (IL-4) release from glial cells and IL-4 in turn enhanced neuronal CD200 in vitro. We provide evidence that the increase in CD200 is reliant on IL-4-induced extracellular signal-regulated kinase (ERK) signal transduction. These findings provide the first evidence of a role for FGL as an anti-inflammatory agent and identify a mechanism by which FGL controls microglial activation.


Subject(s)
Encephalitis/drug therapy , Memory Disorders/drug therapy , Neural Cell Adhesion Molecules/pharmacology , Animals , Antigens, CD/drug effects , Antigens, CD/metabolism , Encephalitis/metabolism , Encephalitis/physiopathology , Gliosis/drug therapy , Gliosis/metabolism , Gliosis/physiopathology , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Interleukin-4/metabolism , Long-Term Potentiation/physiology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male , Memory Disorders/metabolism , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microglia/metabolism , Neural Cell Adhesion Molecules/therapeutic use , Rats , Rats, Wistar
7.
Eur J Neurosci ; 28(8): 1618-28, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18973581

ABSTRACT

The neural cell adhesion molecule (NCAM) plays a pivotal role in brain plasticity. Brain plasticity itself has a crucial role in the development of depression. The aim of this study was to analyze whether NCAM-deficient (NCAM(-/-)) mice exhibit depression-like behaviour and whether a peptide termed FGL, derived from the NCAM binding site for the fibroblast growth factor (FGF) receptor, is able to reverse the depression-like signs in NCAM(-/-) mice. Our study showed that NCAM(-/-) mice demonstrated increased freezing time in the tail-suspension test and reduced preference for sucrose consumption in the sucrose preference test, reduced adult neurogenesis in the dentate gyrus and reduced levels of the phosphorylated cAMP response element-binding protein (pCREB) in the hippocampus. FGL administered acutely or repeatedly reduced depression-like behaviour in NCAM(-/-) mice without having an effect on their wild-type littermates. Repeated administration of FGL enhanced survival of the newly born neurons in NCAM(-/-) mice and increased the levels of pCREB in both NCAM(+/+) and NCAM(-/-) mice. In conclusion, our data demonstrate that NCAM deficiency in mice results in a depression-like phenotype which can be reversed by the acute or repeated administration of FGL. The results also suggest a role of the deficit in NCAM signalling through the FGF receptor in depression.


Subject(s)
Depressive Disorder/drug therapy , Depressive Disorder/genetics , Neural Cell Adhesion Molecules/agonists , Neural Cell Adhesion Molecules/genetics , Receptors, Fibroblast Growth Factor/agonists , Animals , Atrophy/drug therapy , Atrophy/physiopathology , Atrophy/prevention & control , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Cell Survival/drug effects , Cell Survival/genetics , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Depressive Disorder/physiopathology , Disease Models, Animal , Fibroblast Growth Factors/agonists , Fibroblast Growth Factors/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Mice , Mice, Knockout , Neural Cell Adhesion Molecules/pharmacology , Neural Cell Adhesion Molecules/therapeutic use , Neurogenesis/drug effects , Neurogenesis/genetics , Neurons/drug effects , Neurons/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Treatment Outcome , Up-Regulation/drug effects , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...