Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.290
Filter
1.
Alzheimers Res Ther ; 16(1): 119, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822365

ABSTRACT

BACKGROUND: Autopsy work reported that neuronal density in the locus coeruleus (LC) provides neural reserve against cognitive decline in dementia. Recent neuroimaging and pharmacological studies reported that left frontoparietal network functional connectivity (LFPN-FC) confers resilience against beta-amyloid (Aß)-related cognitive decline in preclinical sporadic and autosomal dominant Alzheimer's disease (AD), as well as against LC-related cognitive changes. Given that the LFPN and the LC play important roles in attention, and attention deficits have been observed early in the disease process, we examined whether LFPN-FC and LC structural health attenuate attentional decline in the context of AD pathology. METHODS: 142 participants from the Harvard Aging Brain Study who underwent resting-state functional MRI, LC structural imaging, PiB(Aß)-PET, and up to 5 years of cognitive follow-ups were included (mean age = 74.5 ± 9.9 years, 89 women). Cross-sectional robust linear regression associated LC integrity (measured as the average of five continuous voxels with the highest intensities in the structural LC images) or LFPN-FC with Digit Symbol Substitution Test (DSST) performance at baseline. Longitudinal robust mixed effect analyses examined associations between DSST decline and (i) two-way interactions of baseline LC integrity (or LFPN-FC) and PiB or (ii) the three-way interaction of baseline LC integrity, LFPN-FC, and PiB. Baseline age, sex, and years of education were included as covariates. RESULTS: At baseline, lower LFPN-FC, but not LC integrity, was related to worse DSST performance. Longitudinally, lower baseline LC integrity was associated with a faster DSST decline, especially at PiB > 10.38 CL. Lower baseline LFPN-FC was associated with a steeper decline on the DSST but independent of PiB. At elevated PiB levels (> 46 CL), higher baseline LFPN-FC was associated with an attenuated decline on the DSST, despite the presence of lower LC integrity. CONCLUSIONS: Our findings demonstrate that the LC can provide resilience against Aß-related attention decline. However, when Aß accumulates and the LC's resources may be depleted, the functioning of cortical target regions of the LC, such as the LFPN-FC, can provide additional resilience to sustain attentional performance in preclinical AD. These results provide critical insights into the neural correlates contributing to individual variability at risk versus resilience against Aß-related cognitive decline.


Subject(s)
Alzheimer Disease , Locus Coeruleus , Magnetic Resonance Imaging , Parietal Lobe , Humans , Female , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Alzheimer Disease/physiopathology , Aged , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Magnetic Resonance Imaging/methods , Parietal Lobe/diagnostic imaging , Aged, 80 and over , Attention/physiology , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Positron-Emission Tomography , Cross-Sectional Studies , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Neuropsychological Tests
2.
CNS Neurosci Ther ; 30(6): e14786, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828694

ABSTRACT

PURPOSE: To investigate dynamic functional connectivity (dFC) within the cerebellar-whole brain network and dynamic topological properties of the cerebellar network in obstructive sleep apnea (OSA) patients. METHODS: Sixty male patients and 60 male healthy controls were included. The sliding window method examined the fluctuations in cerebellum-whole brain dFC and connection strength in OSA. Furthermore, graph theory metrics evaluated the dynamic topological properties of the cerebellar network. Additionally, hidden Markov modeling validated the robustness of the dFC. The correlations between the abovementioned measures and clinical assessments were assessed. RESULTS: Two dynamic network states were characterized. State 2 exhibited a heightened frequency, longer fractional occupancy, and greater mean dwell time in OSA. The cerebellar networks and cerebrocerebellar dFC alterations were mainly located in the default mode network, frontoparietal network, somatomotor network, right cerebellar CrusI/II, and other networks. Global properties indicated aberrant cerebellar topology in OSA. Dynamic properties were correlated with clinical indicators primarily on emotion, cognition, and sleep. CONCLUSION: Abnormal dFC in male OSA may indicate an imbalance between the integration and segregation of brain networks, concurrent with global topological alterations. Abnormal default mode network interactions with high-order and low-level cognitive networks, disrupting their coordination, may impair the regulation of cognitive, emotional, and sleep functions in OSA.


Subject(s)
Cerebellum , Nerve Net , Sleep Apnea, Obstructive , Humans , Male , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/diagnostic imaging , Cerebellum/diagnostic imaging , Cerebellum/physiopathology , Middle Aged , Adult , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Magnetic Resonance Imaging , Connectome , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging
3.
Cereb Cortex ; 34(13): 19-29, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696600

ABSTRACT

While fronto-posterior underconnectivity has often been reported in autism, it was shown that different contexts may modulate between-group differences in functional connectivity. Here, we assessed how different task paradigms modulate functional connectivity differences in a young autistic sample relative to typically developing children. Twenty-three autistic and 23 typically developing children aged 6 to 15 years underwent functional magnetic resonance imaging (fMRI) scanning while completing a reasoning task with visuospatial versus semantic content. We observed distinct connectivity patterns in autistic versus typical children as a function of task type (visuospatial vs. semantic) and problem complexity (visual matching vs. reasoning), despite similar performance. For semantic reasoning problems, there was no significant between-group differences in connectivity. However, during visuospatial reasoning problems, we observed occipital-occipital, occipital-temporal, and occipital-frontal over-connectivity in autistic children relative to typical children. Also, increasing the complexity of visuospatial problems resulted in increased functional connectivity between occipital, posterior (temporal), and anterior (frontal) brain regions in autistic participants, more so than in typical children. Our results add to several studies now demonstrating that the connectivity alterations in autistic relative to neurotypical individuals are much more complex than previously thought and depend on both task type and task complexity and their respective underlying cognitive processes.


Subject(s)
Autistic Disorder , Brain , Magnetic Resonance Imaging , Semantics , Humans , Child , Male , Adolescent , Female , Autistic Disorder/physiopathology , Autistic Disorder/diagnostic imaging , Autistic Disorder/psychology , Brain/diagnostic imaging , Brain/physiopathology , Brain Mapping , Space Perception/physiology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
4.
J Psychiatry Neurosci ; 49(3): E145-E156, 2024.
Article in English | MEDLINE | ID: mdl-38692692

ABSTRACT

BACKGROUND: Neuroimaging studies have revealed abnormal functional interaction during the processing of emotional faces in patients with major depressive disorder (MDD), thereby enhancing our comprehension of the pathophysiology of MDD. However, it is unclear whether there is abnormal directional interaction among face-processing systems in patients with MDD. METHODS: A group of patients with MDD and a healthy control group underwent a face-matching task during functional magnetic resonance imaging. Dynamic causal modelling (DCM) analysis was used to investigate effective connectivity between 7 regions in the face-processing systems. We used a Parametric Empirical Bayes model to compare effective connectivity between patients with MDD and controls. RESULTS: We included 48 patients and 44 healthy controls in our analyses. Both groups showed higher accuracy and faster reaction time in the shape-matching condition than in the face-matching condition. However, no significant behavioural or brain activation differences were found between the groups. Using DCM, we found that, compared with controls, patients with MDD showed decreased self-connection in the right dorsolateral prefrontal cortex (DLPFC), amygdala, and fusiform face area (FFA) across task conditions; increased intrinsic connectivity from the right amygdala to the bilateral DLPFC, right FFA, and left amygdala, suggesting an increased intrinsic connectivity centred in the amygdala in the right side of the face-processing systems; both increased and decreased positive intrinsic connectivity in the left side of the face-processing systems; and comparable task modulation effect on connectivity. LIMITATIONS: Our study did not include longitudinal neuroimaging data, and there was limited region of interest selection in the DCM analysis. CONCLUSION: Our findings provide evidence for a complex pattern of alterations in the face-processing systems in patients with MDD, potentially involving the right amygdala to a greater extent. The results confirm some previous findings and highlight the crucial role of the regions on both sides of face-processing systems in the pathophysiology of MDD.


Subject(s)
Amygdala , Depressive Disorder, Major , Facial Recognition , Magnetic Resonance Imaging , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Male , Female , Adult , Facial Recognition/physiology , Amygdala/diagnostic imaging , Amygdala/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Bayes Theorem , Young Adult , Brain Mapping , Facial Expression , Middle Aged , Reaction Time/physiology
5.
Addict Biol ; 29(5): e13399, 2024 May.
Article in English | MEDLINE | ID: mdl-38711213

ABSTRACT

Excessive use of the internet, which is a typical scenario of self-control failure, could lead to potential consequences such as anxiety, depression, and diminished academic performance. However, the underlying neuropsychological mechanisms remain poorly understood. This study aims to investigate the structural basis of self-control and internet addiction. In a cohort of 96 internet gamers, we examined the relationships among grey matter volume and white matter integrity within the frontostriatal circuits and internet addiction severity, as well as self-control measures. The results showed a significant and negative correlation between dACC grey matter volume and internet addiction severity (p < 0.001), but not with self-control. Subsequent tractography from the dACC to the bilateral ventral striatum (VS) was conducted. The fractional anisotropy (FA) and radial diffusivity of dACC-right VS pathway was negatively (p = 0.011) and positively (p = 0.020) correlated with internet addiction severity, respectively, and the FA was also positively correlated with self-control (p = 0.036). These associations were not observed for the dACC-left VS pathway. Further mediation analysis demonstrated a significant complete mediation effect of self-control on the relationship between FA of the dACC-right VS pathway and internet addiction severity. Our findings suggest that the dACC-right VS pathway is a critical neural substrate for both internet addiction and self-control. Deficits in this pathway may lead to impaired self-regulation over internet usage, exacerbating the severity of internet addiction.


Subject(s)
Diffusion Tensor Imaging , Gray Matter , Internet Addiction Disorder , Self-Control , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Male , Internet Addiction Disorder/diagnostic imaging , Internet Addiction Disorder/physiopathology , Female , Diffusion Tensor Imaging/methods , Adult , Young Adult , Gray Matter/diagnostic imaging , Gray Matter/pathology , Ventral Striatum/diagnostic imaging , Ventral Striatum/physiopathology , Ventral Striatum/pathology , Severity of Illness Index , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Corpus Striatum/diagnostic imaging , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Internet , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Frontal Lobe/physiopathology
6.
Neural Plast ; 2024: 8862647, 2024.
Article in English | MEDLINE | ID: mdl-38715980

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that is characterized by inattention, hyperactivity, and impulsivity. The neural mechanisms underlying ADHD remain inadequately understood, and current approaches do not well link neural networks and attention networks within brain networks. Our objective is to investigate the neural mechanisms related to attention and explore neuroimaging biological tags that can be generalized within the attention networks. In this paper, we utilized resting-state functional magnetic resonance imaging data to examine the differential functional connectivity network between ADHD and typically developing individuals. We employed a graph convolutional neural network model to identify individuals with ADHD. After classification, we visualized brain regions with significant contributions to the classification results. Our results suggest that the frontal, temporal, parietal, and cerebellar regions are likely the primary areas of dysfunction in individuals with ADHD. We also explored the relationship between regions of interest and attention networks, as well as the connection between crucial nodes and the distribution of positively and negatively correlated connections. This analysis allowed us to pinpoint the most discriminative brain regions, including the right orbitofrontal gyrus, the left rectus gyrus and bilateral insula, the right inferior temporal gyrus and bilateral transverse temporal gyrus in the temporal region, and the lingual gyrus of the occipital lobe, multiple regions of the basal ganglia and the upper cerebellum. These regions are primarily involved in the attention executive control network and the attention orientation network. Dysfunction in the functional connectivity of these regions may contribute to the underlying causes of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Brain , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Brain/physiopathology , Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Adult , Brain Mapping/methods , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Young Adult , Adolescent , Child , Attention/physiology
7.
Cereb Cortex ; 34(13): 30-39, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696599

ABSTRACT

The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Visual Cortex , Humans , Amygdala/diagnostic imaging , Amygdala/physiopathology , Male , Female , Infant , Visual Cortex/diagnostic imaging , Visual Cortex/physiopathology , Visual Cortex/growth & development , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Autistic Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Genetic Predisposition to Disease/genetics
8.
Addict Biol ; 29(5): e13400, 2024 May.
Article in English | MEDLINE | ID: mdl-38706091

ABSTRACT

Substance use disorders are characterized by inhibition deficits related to disrupted connectivity in white matter pathways, leading via interaction to difficulties in resisting substance use. By combining neuroimaging with smartphone-based ecological momentary assessment (EMA), we questioned how biomarkers moderate inhibition deficits to predict use. Thus, we aimed to assess white matter integrity interaction with everyday inhibition deficits and related resting-state network connectivity to identify multi-dimensional predictors of substance use. Thirty-eight patients treated for alcohol, cannabis or tobacco use disorder completed 1 week of EMA to report substance use five times and complete Stroop inhibition testing twice daily. Before EMA tracking, participants underwent resting state functional MRI and diffusion tensor imaging (DTI) scanning. Regression analyses were conducted between mean Stroop performances and whole-brain fractional anisotropy (FA) in white matter. Moderation testing was conducted between mean FA within significant clusters as moderator and the link between momentary Stroop performance and use as outcome. Predictions between FA and resting-state connectivity strength in known inhibition-related networks were assessed using mixed modelling. Higher FA values in the anterior corpus callosum and bilateral anterior corona radiata predicted higher mean Stroop performance during the EMA week and stronger functional connectivity in occipital-frontal-cerebellar regions. Integrity in these regions moderated the link between inhibitory control and substance use, whereby stronger inhibition was predictive of the lowest probability of use for the highest FA values. In conclusion, compromised white matter structural integrity in anterior brain systems appears to underlie impairment in inhibitory control functional networks and compromised ability to refrain from substance use.


Subject(s)
Diffusion Tensor Imaging , Inhibition, Psychological , Magnetic Resonance Imaging , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Male , Female , Adult , Ecological Momentary Assessment , Substance-Related Disorders/physiopathology , Substance-Related Disorders/diagnostic imaging , Stroop Test , Alcoholism/physiopathology , Alcoholism/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Middle Aged , Tobacco Use Disorder/physiopathology , Tobacco Use Disorder/diagnostic imaging , Marijuana Abuse/physiopathology , Marijuana Abuse/diagnostic imaging , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Smartphone , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Anisotropy , Young Adult
9.
Neurology ; 102(10): e209429, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38710015

ABSTRACT

BACKGROUND AND OBJECTIVES: People with sickle cell disease (SCD) are at risk of cognitive dysfunction independent of stroke. Diminished functional connectivity in select large-scale networks and white matter integrity reflect the neurologic consequences of SCD. Because chronic transfusion therapy is neuroprotective in preventing stroke and strengthening executive function abilities in people with SCD, we hypothesized that red blood cell (RBC) transfusion facilitates the acute reversal of disruptions in functional connectivity while white matter integrity remains unaffected. METHODS: Children with SCD receiving chronic transfusion therapy underwent a brain MRI measuring white matter integrity with diffusion tensor imaging and resting-state functional connectivity within 3 days before and after transfusion of RBCs. Cognitive assessments with the NIH Toolbox were acquired after transfusion and then immediately before the following transfusion cycle. RESULTS: Sixteen children with a median age of 12.5 years were included. Global assessments of functional connectivity using homotopy (p = 0.234) or modularity (p = 0.796) did not differ with transfusion. Functional connectivity within the frontoparietal network significantly strengthened after transfusion (median intranetwork Z-score 0.21 [0.17-0.30] before transfusion, 0.29 [0.20-0.36] after transfusion, p < 0.001), while there was not a significant change seen within the sensory motor, visual, auditory, default mode, dorsal attention, or cingulo-opercular networks. Corresponding to the change within the frontoparietal network, there was a significant improvement in executive function abilities after transfusion (median executive function composite score 87.7 [81.3-90.7] before transfusion, 90.3 [84.3-93.7] after transfusion, p = 0.021). Participants with stronger connectivity in the frontoparietal network before transfusion had a significantly greater improvement in the executive function composite score with transfusion (r = 0.565, 95% CI 0.020-0.851, p = 0.044). While functional connectivity and executive abilities strengthened with transfusion, there was not a significant change in white matter integrity as assessed by fractional anisotropy and mean diffusivity within 16 white matter tracts or globally with tract-based spatial statistics. DISCUSSION: Strengthening of functional connectivity with concomitant improvement in executive function abilities with transfusion suggests that functional connectivity MRI could be used as a biomarker for acutely reversible neurocognitive injury as novel therapeutics are developed for people with SCD.


Subject(s)
Anemia, Sickle Cell , Cognitive Dysfunction , Diffusion Tensor Imaging , Humans , Anemia, Sickle Cell/therapy , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/physiopathology , Male , Child , Female , Adolescent , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Erythrocyte Transfusion , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/physiopathology , White Matter/diagnostic imaging , White Matter/pathology , Executive Function/physiology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
10.
J Psychiatry Neurosci ; 49(3): E172-E181, 2024.
Article in English | MEDLINE | ID: mdl-38729664

ABSTRACT

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for major depressive disorder (MDD), but substantial heterogeneity in outcomes remains. We examined a potential mechanism of action of rTMS to normalize individual variability in resting-state functional connectivity (rs-fc) before and after a course of treatment. METHODS: Variability in rs-fc was examined in healthy controls (baseline) and individuals with MDD (baseline and after 4-6 weeks of rTMS). Seed-based connectivity was calculated to 4 regions associated with MDD: left dorsolateral prefrontal cortex (DLPFC), right subgenual anterior cingulate cortex (sgACC), bilateral insula, and bilateral precuneus. Individual variability was quantified for each region by calculating the mean correlational distance of connectivity maps relative to the healthy controls; a higher variability score indicated a more atypical/idiosyncratic connectivity pattern. RESULTS: We included data from 66 healthy controls and 252 individuals with MDD in our analyses. Patients with MDD did not show significant differences in baseline variability of rs-fc compared with controls. Treatment with rTMS increased rs-fc variability from the right sgACC and precuneus, but the increased variability was not associated with clinical outcomes. Interestingly, higher baseline variability of the right sgACC was significantly associated with less clinical improvement (p = 0.037, uncorrected; did not survive false discovery rate correction).Limitations: The linear model was constructed separately for each region of interest. CONCLUSION: This was, to our knowledge, the first study to examine individual variability of rs-fc related to rTMS in individuals with MDD. In contrast to our hypotheses, we found that rTMS increased the individual variability of rs-fc. Our results suggest that individual variability of the right sgACC and bilateral precuneus connectivity may be a potential mechanism of rTMS.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Transcranial Magnetic Stimulation , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Transcranial Magnetic Stimulation/methods , Female , Male , Adult , Middle Aged , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Parietal Lobe/physiopathology , Parietal Lobe/diagnostic imaging , Rest , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Connectome , Treatment Outcome , Brain/physiopathology , Brain/diagnostic imaging
11.
CNS Neurosci Ther ; 30(5): e14684, 2024 05.
Article in English | MEDLINE | ID: mdl-38739217

ABSTRACT

AIMS: Limited understanding exists regarding the neurobiological mechanisms underlying non-suicidal self-injury (NSSI) and suicide attempts (SA) in depressed adolescents. The maturation of brain network is crucial during adolescence, yet the abnormal alternations in depressed adolescents with NSSI or NSSI+SA remain poorly understood. METHODS: Resting-state functional magnetic resonance imaging data were collected from 114 depressed adolescents, classified into three groups: clinical control (non-self-harm), NSSI only, and NSSI+SA based on self-harm history. The alternations of resting-state functional connectivity (RSFC) were identified through support vector machine-based classification. RESULTS: Convergent alterations in NSSI and NSSI+SA predominantly centered on the inter-network RSFC between the Limbic network and the three core neurocognitive networks (SalVAttn, Control, and Default networks). Divergent alterations in the NSSI+SA group primarily focused on the Visual, Limbic, and Subcortical networks. Additionally, the severity of depressive symptoms only showed a significant correlation with altered RSFCs between Limbic and DorsAttn or Visual networks, strengthening the fact that increased depression severity alone does not fully explain observed FC alternations in the NSSI+SA group. CONCLUSION: Convergent alterations suggest a shared neurobiological mechanism along the self-destructiveness continuum. Divergent alterations may indicate biomarkers differentiating risk for SA, informing neurobiologically guided interventions.


Subject(s)
Brain , Magnetic Resonance Imaging , Self-Injurious Behavior , Suicide, Attempted , Humans , Self-Injurious Behavior/psychology , Adolescent , Male , Female , Suicide, Attempted/psychology , Brain/diagnostic imaging , Brain/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Depression/psychology , Depression/physiopathology , Depression/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Child
12.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38798004

ABSTRACT

Pain experience increases individuals' perception and contagion of others' pain, but whether pain experience affects individuals' affiliative or antagonistic responses to others' pain is largely unknown. Additionally, the neural mechanisms underlying how pain experience modulates individuals' responses to others' pain remain unclear. In this study, we explored the effects of pain experience on individuals' responses to others' pain and the underlying neural mechanisms. By comparing locomotion, social, exploration, stereotyped, and anxiety-like behaviors of mice without any pain experience (naïve observers) and mice with a similar pain experience (experienced observers) when they observed the pain-free demonstrator with intraperitoneal injection of normal saline and the painful demonstrator with intraperitoneal injection of acetic acid, we found that pain experience of the observers led to decreased social avoidance to the painful demonstrator. Through whole-brain c-Fos quantification, we discovered that pain experience altered neuronal activity and enhanced functional connectivity in the mouse brain. The analysis of complex network and graph theory exhibited that functional connectivity networks and activated hub regions were altered by pain experience. Together, these findings reveal that neuronal activity and functional connectivity networks are involved in the modulation of individuals' responses to others' pain by pain experience.


Subject(s)
Brain , Mice, Inbred C57BL , Pain , Proto-Oncogene Proteins c-fos , Animals , Mice , Proto-Oncogene Proteins c-fos/metabolism , Male , Pain/psychology , Pain/physiopathology , Social Behavior , Avoidance Learning/physiology , Neural Pathways/physiopathology , Neural Pathways/physiology
13.
Brain Lang ; 253: 105417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703523

ABSTRACT

We tested the hypothesis, generated from the Gradient Order Directions Into Velocities of Articulators (GODIVA) model, that adults who stutter (AWS) may comprise subtypes based on differing connectivity within the cortico-basal ganglia planning or motor loop. Resting state functional connectivity from 91 AWS and 79 controls was measured for all GODIVA model connections. Based on a principal components analysis, two connections accounted for most of the connectivity variability in AWS: left thalamus - left posterior inferior frontal sulcus (planning loop component) and left supplementary motor area - left ventral premotor cortex (motor loop component). A k-means clustering algorithm using the two connections revealed three clusters of AWS. Cluster 1 was significantly different from controls in both connections; Cluster 2 was significantly different in only the planning loop; and Cluster 3 was significantly different in only the motor loop. These findings suggest the presence of planning and motor subtypes of stuttering.


Subject(s)
Stuttering , Humans , Stuttering/physiopathology , Stuttering/diagnostic imaging , Male , Adult , Female , Magnetic Resonance Imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Young Adult , Brain/physiopathology , Brain/diagnostic imaging , Middle Aged , Brain Mapping , Rest/physiology
14.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38741270

ABSTRACT

This study extends the application of the frequency-domain new causality method to functional magnetic resonance imaging analysis. Strong causality, weak causality, balanced causality, cyclic causality, and transitivity causality were constructed to simulate varying degrees of causal associations among multivariate functional-magnetic-resonance-imaging blood-oxygen-level-dependent signals. Data from 1,252 groups of individuals with different degrees of cognitive impairment were collected. The frequency-domain new causality method was employed to construct directed efficient connectivity networks of the brain, analyze the statistical characteristics of topological variations in brain regions related to cognitive impairment, and utilize these characteristics as features for training a deep learning model. The results demonstrated that the frequency-domain new causality method accurately detected causal associations among simulated signals of different degrees. The deep learning tests also confirmed the superior performance of new causality, surpassing the other three methods in terms of accuracy, precision, and recall rates. Furthermore, consistent significant differences were observed in the brain efficiency networks, where several subregions defined by the multimodal parcellation method of Human Connectome Project simultaneously appeared in the topological statistical results of different patient groups. This suggests a significant association between these fine-grained cortical subregions, driven by multimodal data segmentation, and human cognitive function, making them potential biomarkers for further analysis of Alzheimer's disease.


Subject(s)
Brain , Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Male , Female , Connectome/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognition/physiology , Aged , Middle Aged , Deep Learning , Nerve Net/diagnostic imaging , Nerve Net/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/physiopathology , Adult
15.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38741271

ABSTRACT

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Subject(s)
Brain Stem Infarctions , Cerebellum , Magnetic Resonance Imaging , Neural Pathways , Pons , Humans , Male , Female , Middle Aged , Cerebellum/physiopathology , Cerebellum/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Pons/diagnostic imaging , Pons/physiopathology , Brain Stem Infarctions/physiopathology , Brain Stem Infarctions/diagnostic imaging , Aged , Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging
16.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651310

ABSTRACT

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Subject(s)
Basal Ganglia , Dystonia , Motor Cortex , Neural Pathways , Parkinsonian Disorders , Rats, Long-Evans , Animals , Motor Cortex/physiopathology , Motor Cortex/pathology , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/pathology , Rats , Neural Pathways/physiopathology , Dystonia/physiopathology , Dystonia/pathology , Dystonia/etiology , Basal Ganglia/pathology , Male , Globus Pallidus/pathology , Disease Models, Animal
17.
Commun Biol ; 7(1): 485, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649483

ABSTRACT

Converging evidence implicates disrupted brain connectivity in autism spectrum disorder (ASD); however, the mechanisms linking altered connectivity early in development to the emergence of ASD symptomatology remain poorly understood. Here we examined whether atypicalities in the Salience Network - an early-emerging neural network involved in orienting attention to the most salient aspects of one's internal and external environment - may predict the development of ASD symptoms such as reduced social attention and atypical sensory processing. Six-week-old infants at high likelihood of developing ASD based on family history exhibited stronger Salience Network connectivity with sensorimotor regions; infants at typical likelihood of developing ASD demonstrated stronger Salience Network connectivity with prefrontal regions involved in social attention. Infants with higher connectivity with sensorimotor regions had lower connectivity with prefrontal regions, suggesting a direct tradeoff between attention to basic sensory versus socially-relevant information. Early alterations in Salience Network connectivity predicted subsequent ASD symptomatology, providing a plausible mechanistic account for the unfolding of atypical developmental trajectories associated with vulnerability to ASD.


Subject(s)
Autism Spectrum Disorder , Humans , Infant , Male , Female , Autism Spectrum Disorder/physiopathology , Magnetic Resonance Imaging , Nerve Net/physiopathology , Attention/physiology , Brain/physiopathology , Brain/growth & development , Neural Pathways/physiopathology
18.
Brain Behav ; 14(5): e3490, 2024 May.
Article in English | MEDLINE | ID: mdl-38680077

ABSTRACT

Word finding difficulty is a frequent complaint in older age and disease states, but treatment options are lacking for such verbal retrieval deficits. Better understanding of the neurophysiological and neuroanatomical basis of verbal retrieval function may inform effective interventions. In this article, we review the current evidence of a neural retrieval circuit central to verbal production, including words and semantic memory, that involves the pre-supplementary motor area (pre-SMA), striatum (particularly caudate nucleus), and thalamus. We aim to offer a modified neural circuit framework expanded upon a memory retrieval model proposed in 2013 by Hart et al., as evidence from electrophysiological, functional brain imaging, and noninvasive electrical brain stimulation studies have provided additional pieces of information that converge on a shared neural circuit for retrieval of memory and words. We propose that both the left inferior frontal gyrus and fronto-polar regions should be included in the expanded circuit. All these regions have their respective functional roles during verbal retrieval, such as selection and inhibition during search, initiation and termination of search, maintenance of co-activation across cortical regions, as well as final activation of the retrieved information. We will also highlight the structural connectivity from and to the pre-SMA (e.g., frontal aslant tract and fronto-striatal tract) that facilitates communication between the regions within this circuit. Finally, we will discuss how this circuit and its correlated activity may be affected by disease states and how this circuit may serve as a novel target engagement for neuromodulatory treatment of verbal retrieval deficits.


Subject(s)
Mental Recall , Semantics , Humans , Mental Recall/physiology , Brain/physiology , Brain/physiopathology , Brain/diagnostic imaging , Neural Pathways/physiology , Neural Pathways/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Nerve Net/physiopathology , Memory Disorders/physiopathology , Memory Disorders/therapy , Thalamus/physiology , Thalamus/diagnostic imaging , Thalamus/physiopathology
19.
Biol Cybern ; 118(1-2): 127-143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644417

ABSTRACT

The cognitive impairment will gradually appear over time in Parkinson's patients, which is closely related to the basal ganglia-cortex network. This network contains two parallel circuits mediated by putamen and caudate nucleus, respectively. Based on the biophysical mean-field model, we construct a dynamic computational model of the parallel circuit in the basal ganglia-cortex network associated with Parkinson's disease dementia. The simulated results show that the decrease of power ratio in the prefrontal cortex is mainly caused by dopamine depletion in the caudate nucleus and is less related to that in the putamen, which indicates Parkinson's disease dementia may be caused by a lesion of the caudate nucleus rather than putamen. Furthermore, the underlying dynamic mechanism behind the decrease of power ratio is investigated by bifurcation analysis, which demonstrates that the decrease of power ratio is due to the change of brain discharge pattern from the limit cycle mode to the point attractor mode. More importantly, the spatiotemporal course of dopamine depletion in Parkinson's disease patients is well simulated, which states that with the loss of dopaminergic neurons projecting to the striatum, motor dysfunction of Parkinson's disease is first observed, whereas cognitive impairment occurs after a period of onset of motor dysfunction. These results are helpful to understand the pathogenesis of cognitive impairment and provide insights into the treatment of Parkinson's disease dementia.


Subject(s)
Basal Ganglia , Dementia , Models, Neurological , Parkinson Disease , Humans , Parkinson Disease/physiopathology , Parkinson Disease/complications , Parkinson Disease/pathology , Basal Ganglia/physiopathology , Dementia/physiopathology , Dementia/pathology , Computer Simulation , Neural Pathways/physiopathology , Cerebral Cortex/physiopathology , Dopamine/metabolism
20.
Addict Behav ; 155: 108027, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38581751

ABSTRACT

Cue reactivity is relevant across addictive disorders as a process relevant to maintenance, relapse, and craving. Understanding the neurobiological foundations of cue reactivity across substance and behavioral addictions has important implications for intervention development. The present study used intrinsic connectivity distribution methods to examine functional connectivity during a cue-exposure fMRI task involving gambling, cocaine and sad videos in 22 subjects with gambling disorder, 24 with cocaine use disorder, and 40 healthy comparison subjects. Intrinsic connectivity distribution implicated the posterior cingulate cortex (PCC) at a stringent whole-brain threshold. Post-hoc analyses investigating the nature of the findings indicated that individuals with gambling disorder and cocaine use disorder exhibited decreased connectivity in the posterior cingulate during gambling and cocaine cues, respectively, as compared to other cues and compared to other groups. Brain-related cue reactivity in substance and behavioral addictions involve PCC connectivity in a content-to-disorder specific fashion. The findings suggesting that PCC-related circuitry underlies cue reactivity across substance and behavioral addictions suggests a potential biomarker for targeting in intervention development.


Subject(s)
Cocaine-Related Disorders , Cues , Gambling , Gyrus Cinguli , Magnetic Resonance Imaging , Humans , Cocaine-Related Disorders/physiopathology , Cocaine-Related Disorders/psychology , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Male , Gambling/physiopathology , Gambling/psychology , Adult , Female , Case-Control Studies , Middle Aged , Young Adult , Craving/physiology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...