Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 572
Filter
1.
Sci Rep ; 14(1): 11307, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760423

ABSTRACT

We aimed to assess diagnostic accuracy of plasma p-tau181 and NfL separately and in combination in discriminating Subjective Cognitive Decline (SCD) and Mild Cognitive Impairment (MCI) patients carrying Alzheimer's Disease (AD) pathology from non-carriers; to propose a flowchart for the interpretation of the results of plasma p-tau181 and NfL. We included 43 SCD, 41 MCI and 21 AD-demented (AD-d) patients, who underwent plasma p-tau181 and NfL analysis. Twenty-eight SCD, 41 MCI and 21 AD-d patients underwent CSF biomarkers analysis (Aß1-42, Aß1-42/1-40, p-tau, t-tau) and were classified as carriers of AD pathology (AP+) it they were A+/T+ , or non-carriers (AP-) when they were A-, A+/T-/N-, or A+/T-/N+ according to the A/T(N) system. Plasma p-tau181 and NfL separately showed a good accuracy (AUC = 0.88), while the combined model (NfL + p-tau181) showed an excellent accuracy (AUC = 0.92) in discriminating AP+ from AP- patients. Plasma p-tau181 and NfL results were moderately concordant (Coehn's k = 0.50, p < 0.001). Based on a logistic regression model, we estimated the risk of AD pathology considering the two biomarkers: 10.91% if both p-tau181 and NfL were negative; 41.10 and 76.49% if only one biomarker was positive (respectively p-tau18 and NfL); 94.88% if both p-tau181 and NfL were positive. Considering the moderate concordance and the risk of presenting an underlying AD pathology according to the positivity of plasma p-tau181 and NfL, we proposed a flow chart to guide the combined use of plasma p-tau181 and NfL and the interpretation of biomarker results to detect AD pathology.


Subject(s)
Alzheimer Disease , Biomarkers , Cognitive Dysfunction , Neurofilament Proteins , tau Proteins , Humans , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnosis , Male , Female , Neurofilament Proteins/blood , Aged , Biomarkers/blood , Phosphorylation , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Middle Aged , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid
2.
Nat Commun ; 15(1): 4297, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769309

ABSTRACT

The multifaceted nature of multiple sclerosis requires quantitative biomarkers that can provide insights related to diverse physiological pathways. To this end, proteomic analysis of deeply-phenotyped serum samples, biological pathway modeling, and network analysis were performed to elucidate inflammatory and neurodegenerative processes, identifying sensitive biomarkers of multiple sclerosis disease activity. Here, we evaluated the concentrations of > 1400 serum proteins in 630 samples from three multiple sclerosis cohorts for association with clinical and radiographic new disease activity. Twenty proteins were associated with increased clinical and radiographic multiple sclerosis disease activity for inclusion in a custom assay panel. Serum neurofilament light chain showed the strongest univariate correlation with gadolinium lesion activity, clinical relapse status, and annualized relapse rate. Multivariate modeling outperformed univariate for all endpoints. A comprehensive biomarker panel including the twenty proteins identified in this study could serve to characterize disease activity for a patient with multiple sclerosis.


Subject(s)
Biomarkers , Multiple Sclerosis , Proteomics , Humans , Biomarkers/blood , Multiple Sclerosis/blood , Multiple Sclerosis/diagnostic imaging , Female , Male , Adult , Proteomics/methods , Middle Aged , Neurofilament Proteins/blood , Blood Proteins/analysis , Magnetic Resonance Imaging/methods , Inflammation/blood , Cohort Studies
3.
BMC Med ; 22(1): 192, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735950

ABSTRACT

BACKGROUND: Peripheral glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are sensitive markers of neuroinflammation and neuronal damage. Previous studies with highly selected participants have shown that peripheral GFAP and NfL levels are elevated in the pre-clinical phase of Alzheimer's disease (AD) and dementia. However, the predictive value of GFAP and NfL for dementia requires more evidence from population-based cohorts. METHODS: This was a prospective cohort study to evaluate UK Biobank participants enrolled from 2006 to 2010 using plasma GFAP and NfL measurements measured by Olink Target Platform and prospectively followed up for dementia diagnosis. Primary outcome was the risk of clinical diagnosed dementia. Secondary outcomes were cognition. Linear regression was used to assess the associations between peripheral GFAP and NfL with cognition. Cox proportional hazard models with cross-validations were used to estimate associations between elevated GFAP and NfL with risk of dementia. All models were adjusted for covariates. RESULTS: A subsample of 48,542 participants in the UK Biobank with peripheral GFAP and NfL measurements were evaluated. With an average follow-up of 13.18 ± 2.42 years, 1312 new all-cause dementia cases were identified. Peripheral GFAP and NfL increased up to 15 years before dementia diagnosis was made. After strictly adjusting for confounders, increment in NfL was found to be associated with decreased numeric memory and prolonged reaction time. A greater annualized rate of change in GFAP was significantly associated with faster global cognitive decline. Elevation of GFAP (hazard ratio (HR) ranges from 2.25 to 3.15) and NfL (HR ranges from 1.98 to 4.23) increased the risk for several types of dementia. GFAP and NfL significantly improved the predictive values for dementia using previous models (area under the curve (AUC) ranges from 0.80 to 0.89, C-index ranges from 0.86 to 0.91). The AD genetic risk score and number of APOE*E4 alleles strongly correlated with GFAP and NfL levels. CONCLUSIONS: These results suggest that peripheral GFAP and NfL are potential biomarkers for the early diagnosis of dementia. In addition, anti-inflammatory therapies in the initial stages of dementia may have potential benefits.


Subject(s)
Biological Specimen Banks , Biomarkers , Dementia , Glial Fibrillary Acidic Protein , Neurofilament Proteins , Humans , Neurofilament Proteins/blood , Glial Fibrillary Acidic Protein/blood , Biomarkers/blood , Female , Dementia/blood , Dementia/diagnosis , Dementia/epidemiology , Male , United Kingdom/epidemiology , Prospective Studies , Aged , Middle Aged , Longitudinal Studies , UK Biobank
4.
BMC Neurol ; 24(1): 147, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693483

ABSTRACT

BACKGROUND: Sleep disorders are a prevalent non-motor symptom of Parkinson's disease (PD), although reliable biological markers are presently lacking. OBJECTIVES: To explore the associations between sleep disorders and serum neurofilament light chain (NfL) levels in individuals with prodromal and early PD. METHODS: The study contained 1113 participants, including 585 early PD individuals, 353 prodromal PD individuals, and 175 healthy controls (HCs). The correlations between sleep disorders (including rapid eye movement sleep behavior disorder (RBD) and excessive daytime sleepiness (EDS)) and serum NfL levels were researched using multiple linear regression models and linear mixed-effects models. We further investigated the correlations between the rates of changes in daytime sleepiness and serum NfL levels using multiple linear regression models. RESULTS: In baseline analysis, early and prodromal PD individuals who manifested specific behaviors of RBD showed significantly higher levels of serum NfL. Specifically, early PD individuals who experienced nocturnal dream behaviors (ß = 0.033; P = 0.042) and movements of arms or legs during sleep (ß = 0.027; P = 0.049) showed significantly higher serum NfL levels. For prodromal PD individuals, serum NfL levels were significantly higher in individuals suffering from disturbed sleep (ß = 0.038; P = 0.026). Our longitudinal findings support these baseline associations. Serum NfL levels showed an upward trend in early PD individuals who had a higher total RBDSQ score (ß = 0.002; P = 0.011) or who were considered as probable RBD (ß = 0.012; P = 0.009) or who exhibited behaviors on several sub-items of the RBDSQ. In addition, early PD individuals who had a high total ESS score (ß = 0.001; P = 0.012) or who were regarded to have EDS (ß = 0.013; P = 0.007) or who exhibited daytime sleepiness in several conditions had a trend toward higher serum NfL levels. CONCLUSION: Sleep disorders correlate with higher serum NfL, suggesting a link to PD neuronal damage. Early identification of sleep disorders and NfL monitoring are pivotal in detecting at-risk PD patients promptly, allowing for timely intervention. Regular monitoring of NfL levels holds promise for tracking both sleep disorders and disease progression, potentially emerging as a biomarker for evaluating treatment outcomes.


Subject(s)
Biomarkers , Neurofilament Proteins , Parkinson Disease , Sleep Wake Disorders , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Parkinson Disease/complications , Male , Female , Neurofilament Proteins/blood , Middle Aged , Aged , Sleep Wake Disorders/blood , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/epidemiology , Biomarkers/blood , REM Sleep Behavior Disorder/blood , REM Sleep Behavior Disorder/diagnosis , Prodromal Symptoms
5.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791145

ABSTRACT

The diagnostic and prognostic value of plasma glial fibrillary acidic protein (pl-GFAP) in sporadic Creutzfeldt-Jakob disease (sCJD) has never been assessed in the clinical setting of rapidly progressive dementia (RPD). Using commercially available immunoassays, we assayed the plasma levels of GFAP, tau (pl-tau), and neurofilament light chain (pl-NfL) and the CSF total tau (t-tau), 14-3-3, NfL, phospho-tau181 (p-tau), and amyloid-beta isoforms 42 (Aß42) and 40 (Aß40) in sCJD (n = 132) and non-prion RPD (np-RPD) (n = 94) patients, and healthy controls (HC) (n = 54). We also measured the CSF GFAP in 67 sCJD patients. Pl-GFAP was significantly elevated in the sCJD compared to the np-RPD and HC groups and affected by the sCJD subtype. Its diagnostic accuracy (area under the curve (AUC) 0.760) in discriminating sCJD from np-RPD was higher than the plasma and CSF NfL (AUCs of 0.596 and 0.663) but inferior to the 14-3-3, t-tau, and pl-tau (AUCs of 0.875, 0.918, and 0.805). Pl-GFAP showed no association with sCJD survival after adjusting for known prognostic factors. Additionally, pl-GFAP levels were associated with 14-3-3, pl-tau, and pl-NfL but not with CSF GFAP, Aß42/Aß40, and p-tau. The diagnostic and prognostic value of pl-GFAP is inferior to established neurodegeneration biomarkers. Nonetheless, pl-GFAP noninvasively detects neuroinflammation and neurodegeneration in sCJD, warranting potential applications in disease monitoring.


Subject(s)
Amyloid beta-Peptides , Biomarkers , Creutzfeldt-Jakob Syndrome , Dementia , Glial Fibrillary Acidic Protein , tau Proteins , Humans , Creutzfeldt-Jakob Syndrome/blood , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , Female , Male , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Aged , Middle Aged , Prognosis , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Dementia/blood , Dementia/diagnosis , Dementia/cerebrospinal fluid , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Disease Progression , 14-3-3 Proteins/cerebrospinal fluid , 14-3-3 Proteins/blood
6.
Nat Med ; 30(5): 1406-1415, 2024 May.
Article in English | MEDLINE | ID: mdl-38745011

ABSTRACT

GRN mutations cause progranulin haploinsufficiency, which eventually leads to frontotemporal dementia (FTD-GRN). PR006 is an investigational gene therapy delivering the granulin gene (GRN) using an adeno-associated virus serotype 9 (AAV9) vector. In non-clinical studies, PR006 transduced neurons derived from induced pluripotent stem cells of patients with FTD-GRN, resulted in progranulin expression and improvement of lipofuscin, lysosomal and neuroinflammation pathologies in Grn-knockout mice, and was well tolerated except for minimal, asymptomatic dorsal root ganglionopathy in non-human primates. We initiated a first-in-human phase 1/2 open-label trial. Here we report results of a pre-specified interim analysis triggered with the last treated patient of the low-dose cohort (n = 6) reaching the 12-month follow-up timepoint. We also include preliminary data from the mid-dose cohort (n = 7). Primary endpoints were safety, immunogenicity and change in progranulin levels in cerebrospinal fluid (CSF) and blood. Secondary endpoints were Clinical Dementia Rating (CDR) plus National Alzheimer's Disease Coordinating Center (NACC) Frontotemporal Lobar Degeneration (FTLD) rating scale and levels of neurofilament light chain (NfL). One-time administration of PR006 into the cisterna magna was generally safe and well tolerated. All patients developed treatment-emergent anti-AAV9 antibodies in the CSF, but none developed anti-progranulin antibodies. CSF pleocytosis was the most common PR006-related adverse event. Twelve serious adverse events occurred, mostly unrelated to PR006. Deep vein thrombosis developed in three patients. There was one death (unrelated) occurring 18 months after treatment. CSF progranulin increased after PR006 treatment in all patients; blood progranulin increased in most patients but only transiently. NfL levels transiently increased after PR006 treatment, likely reflecting dorsal root ganglia toxicity. Progression rates, based on the CDR scale, were within the broad ranges reported for patients with FTD. These data provide preliminary insights into the safety and bioactivity of PR006. Longer follow-up and additional studies are needed to confirm the safety and potential efficacy of PR006. ClinicalTrials.gov identifier: NCT04408625 .


Subject(s)
Dependovirus , Frontotemporal Dementia , Genetic Therapy , Progranulins , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/therapy , Frontotemporal Dementia/cerebrospinal fluid , Progranulins/genetics , Genetic Therapy/adverse effects , Genetic Therapy/methods , Dependovirus/genetics , Middle Aged , Female , Male , Aged , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/cerebrospinal fluid , Genetic Vectors , Animals , Treatment Outcome , Translational Research, Biomedical , Mice , Neurofilament Proteins/genetics , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/blood
7.
Alzheimers Res Ther ; 16(1): 112, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762725

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß (Aß) plaques, neurofibrillary tau tangles, and neurodegeneration in the brain parenchyma. Here, we aimed to (i) assess differences in blood and imaging biomarkers used to evaluate neurodegeneration among cognitively unimpaired APOE ε4 homozygotes, heterozygotes, and non-carriers with varying risk for sporadic AD, and (ii) to determine how different cerebral pathologies (i.e., Aß deposition, medial temporal atrophy, and cerebrovascular pathology) contribute to blood biomarker concentrations in this sample. METHODS: Sixty APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) ranging from 60 to 75 years, were recruited in collaboration with Auria biobank (Turku, Finland). Participants underwent Aß-PET ([11C]PiB), structural brain MRI including T1-weighted and T2-FLAIR sequences, and blood sampling for measuring serum neurofilament light chain (NfL), plasma total tau (t-tau), plasma N-terminal tau fragments (NTA-tau) and plasma glial fibrillary acidic protein (GFAP). [11C]PiB standardized uptake value ratio was calculated for regions typical for Aß accumulation in AD. MRI images were analysed for regional volumes, atrophy scores, and volumes of white matter hyperintensities. Differences in biomarker levels and associations between blood and imaging biomarkers were tested using uni- and multivariable linear models (unadjusted and adjusted for age and sex). RESULTS: Serum NfL concentration was increased in APOE ε4 homozygotes compared with non-carriers (mean 21.4 pg/ml (SD 9.5) vs. 15.5 pg/ml (3.8), p = 0.013), whereas other blood biomarkers did not differ between the groups (p > 0.077 for all). From imaging biomarkers, hippocampal volume was significantly decreased in APOE ε4 homozygotes compared with non-carriers (6.71 ml (0.86) vs. 7.2 ml (0.7), p = 0.029). In the whole sample, blood biomarker levels were differently predicted by the three measured cerebral pathologies; serum NfL concentration was associated with cerebrovascular pathology and medial temporal atrophy, while plasma NTA-tau associated with medial temporal atrophy. Plasma GFAP showed significant association with both medial temporal atrophy and Aß pathology. Plasma t-tau concentration did not associate with any of the measured pathologies. CONCLUSIONS: Only increased serum NfL concentrations and decreased hippocampal volume was observed in cognitively unimpaired APOEε4 homozygotes compared to non-carriers. In the whole population the concentrations of blood biomarkers were affected in distinct ways by different pathologies.


Subject(s)
Amyloid beta-Peptides , Apolipoprotein E4 , Atrophy , Biomarkers , Positron-Emission Tomography , tau Proteins , Humans , Female , Male , Aged , Biomarkers/blood , Atrophy/pathology , Middle Aged , Apolipoprotein E4/genetics , tau Proteins/blood , Amyloid beta-Peptides/blood , Magnetic Resonance Imaging/methods , Neurofilament Proteins/blood , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Alzheimer Disease/blood , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Heterozygote , Glial Fibrillary Acidic Protein/blood , Aniline Compounds , Thiazoles
8.
Sci Rep ; 14(1): 10111, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698025

ABSTRACT

In contrast to inherited transthyretin amyloidosis (A-ATTRv), neuropathy is not a classic leading symptom of wild type transthyretin amyloidosis (A-ATTRwt). However, neurological symptoms are increasingly relevant in A-ATTRwt as well. To better understand the role of neurological symptoms in A-ATTRwt, A-ATTRwt patients were prospectively characterized at Amyloidosis Center Charité Berlin (ACCB) between 2018 and 2023 using detailed neurological examination, quality of life questionnaires, and analysis of age- and BMI-adapted serum neurofilament light chain (NFL) levels. 16 out of 73 (21.9%) patients presented with a severe neuropathy which we defined by a Neuropathy Impairment Score (NIS) of 20 or more. In this group, quality of life was reduced, peripheral neuropathy was more severe, and spinal stenosis and joint replacements were frequent. Age- and BMI matched serum NFL levels were markedly elevated in patients with a NIS ≥ 20. We therefore conclude that highly abnormal values in neuropathy scores such as the NIS occur in A-ATTRwt, and have an important impact on quality of life. Both peripheral neuropathy and spinal canal stenosis are likely contributors. Serum NFL may serve as a biomarker for neurological affection in patients with A-ATTRwt. It will be important to consider neurological aspects of A-ATTRwt for diagnosis, clinical follow-up, and future treatment development.


Subject(s)
Amyloid Neuropathies, Familial , Neurofilament Proteins , Quality of Life , Humans , Amyloid Neuropathies, Familial/blood , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/diagnosis , Male , Neurofilament Proteins/blood , Female , Middle Aged , Aged , Biomarkers/blood , Peripheral Nervous System Diseases/blood , Peripheral Nervous System Diseases/diagnosis , Aged, 80 and over , Prospective Studies , Adult
9.
Alzheimers Res Ther ; 16(1): 110, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755703

ABSTRACT

BACKGROUND: Plasma biomarkers of Alzheimer's disease (AD) pathology, neurodegeneration, and neuroinflammation are ideally suited for secondary prevention programs in self-sufficient persons at-risk of dementia. Plasma biomarkers have been shown to be highly correlated with traditional imaging biomarkers. However, their comparative predictive value versus traditional AD biomarkers is still unclear in cognitively unimpaired (CU) subjects and with mild cognitive impairment (MCI). METHODS: Plasma (Aß42/40, p-tau181, p-tau231, NfL, and GFAP) and neuroimaging (hippocampal volume, centiloid of amyloid-PET, and tau-SUVR of tau-PET) biomarkers were assessed at baseline in 218 non-demented subjects (CU = 140; MCI = 78) from the Geneva Memory Center. Global cognition (MMSE) was evaluated at baseline and at follow-ups up to 5.7 years. We used linear mixed-effects models and Cox proportional-hazards regression to assess the association between biomarkers and cognitive decline. Lastly, sample size calculations using the linear mixed-effects models were performed on subjects positive for amyloid-PET combined with tau-PET and plasma biomarker positivity. RESULTS: Cognitive decline was significantly predicted in MCI by baseline plasma NfL (ß=-0.55), GFAP (ß=-0.36), hippocampal volume (ß = 0.44), centiloid (ß=-0.38), and tau-SUVR (ß=-0.66) (all p < 0.05). Subgroup analysis with amyloid-positive MCI participants also showed that only NfL and GFAP were the only significant predictors of cognitive decline among plasma biomarkers. Overall, NfL and tau-SUVR showed the highest prognostic values (hazard ratios of 7.3 and 5.9). Lastly, we demonstrated that adding NfL to the inclusion criteria could reduce the sample sizes of future AD clinical trials by up to one-fourth in subjects with amyloid-PET positivity or by half in subjects with amyloid-PET and tau-PET positivity. CONCLUSIONS: Plasma NfL and GFAP predict cognitive decline in a similar manner to traditional imaging techniques in amyloid-positive MCI patients. Hence, even though they are non-specific biomarkers of AD, both can be implemented in memory clinic workups as important prognostic biomarkers. Likewise, future clinical trials might employ plasma biomarkers as additional inclusion criteria to stratify patients at higher risk of cognitive decline to reduce sample sizes and enhance effectiveness.


Subject(s)
Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction , Positron-Emission Tomography , tau Proteins , Humans , Male , Female , Biomarkers/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnostic imaging , Aged , tau Proteins/blood , Amyloid beta-Peptides/blood , Middle Aged , Neuroimaging/methods , Neurofilament Proteins/blood , Hippocampus/diagnostic imaging , Hippocampus/pathology , Peptide Fragments/blood , Glial Fibrillary Acidic Protein/blood
10.
Alzheimers Res Ther ; 16(1): 108, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745197

ABSTRACT

BACKGROUND: Sporadic cerebral amyloid angiopathy (sCAA) is a disease characterised by the progressive deposition of the amyloid beta (Aß) in the cerebral vasculature, capable of causing a variety of symptoms, from (mild) cognitive impairment, to micro- and major haemorrhagic lesions. Modern diagnosis of sCAA relies on radiological detection of late-stage hallmarks of disease, complicating early diagnosis and potential interventions in disease progression. Our goal in this study was to identify and validate novel biomarkers for sCAA. METHODS: We performed a proximity extension assay (PEA) on cerebrospinal fluid (CSF) samples of sCAA/control participants (n = 34/51). Additionally, we attempted to validate the top candidate biomarker in CSF and serum samples (n = 38/26) in a largely overlapping validation cohort, through analysis with a targeted immunoassay. RESULTS: Thirteen proteins were differentially expressed through PEA, with top candidate NFL significantly increased in CSF of sCAA patients (p < 0.0001). Validation analyses using immunoassays revealed increased CSF and serum NFL levels in sCAA patients (both p < 0.0001) with good discrimination between sCAA and controls (AUC: 0.85; AUC: 0.79 respectively). Additionally, the CSF: serum NFL ratio was significantly elevated in sCAA (p = 0.002). DISCUSSION: Large-scale targeted proteomics screening of CSF of sCAA patients and controls identified thirteen biomarker candidates for sCAA. Orthogonal validation of NFL identified NFL in CSF and serum as biomarker, capable of differentiating between sCAA patients and controls.


Subject(s)
Biomarkers , Cerebral Amyloid Angiopathy , Neurofilament Proteins , Humans , Female , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Cerebral Amyloid Angiopathy/cerebrospinal fluid , Cerebral Amyloid Angiopathy/diagnosis , Male , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/blood , Aged , Middle Aged , Immunoassay/methods
11.
Front Immunol ; 15: 1388734, 2024.
Article in English | MEDLINE | ID: mdl-38807603

ABSTRACT

Background and purpose: Myelin oligodendrocyte glycoprotein (MOG) IgG is frequently elevated in pediatric patients with acquired demyelinating syndrome (ADS). However, no specific biomarkers exist for phenotype classification, symptom severity, prognosis, and treatment guidance of MOG-IgG-associated disease (MOGAD). This study evaluated neurofilament light chain (NfL) and endothelial growth factor receptor (EGFR) mRNA expression levels in serum and cerebrospinal fluid (CSF) as potential biomarkers for MOGAD in Chinese children. Methods: This was a cross-sectional and single-center study. We enrolled 22 consecutive pediatric patients hospitalized with MOGAD and 20 control pediatric patients hospitalized for noninflammatory neurological diseases in Hebei Children's Hospital. Serum and CSF were collected from MOGAD patients within 3 days before immunotherapy. The mRNA levels of NfL and EGFR in serum and CSF were measured by real-time polymerase chain reaction (qPCR), and the EGFR/NfL ratio mRNA was calculated. These measurement values were then compared between disease groups and among MOGAD phenotypes. In addition, the correlations between the mRNAs of three markers (NfL, EGFR, EGFR/NfL ratio), extended disability status scale (EDSS) scores, and clinical phenotypes were analyzed. Results: Serum and CSF NfL mRNA levels were significantly higher of acute-stage MOGAD patients than those of control patients (p< 0.05 and p< 0.01, respectively), while the mRNA levels of serum EGFR and EGFR/NfL ratio were significantly lower of MOGAD patients than those of controls (p < 0.05, p < 0.0001). Serum NfL mRNA was significantly correlated with mRNA of serum EGFR (r =0.480, p < 0.05). Serum and CSF NfL mRNA levels in MOGAD patients with the ADEM-like phenotype were also significantly higher than those in control patients (p < 0.01, p < 0.01) and optic neuritis (ON) phenotype (p < 0.05, p < 0.05). Both mRNAs of NfL in CSF and EGFR/NfL ratio in serum were correlated with EDSS scores (p < 0.05, r = 0.424; p < 0.05, r= -0.521). Conclusion: The mRNA levels of elevated NfL in serum and CSF as well as lower EGFR and EGFR/NfL ratio in serum could help distinguish acute-phase MOGAD. Higher mRNA levels of NfL in serum and CSF of MOGAD patients help distinguish ADEM-like phenotype. In addition, serum EGFR/NfL mRNA ratio is indicative of disease severity in pediatric patients with MOGAD. Further investigations are warranted to elucidate the pathological mechanisms underlying these associations.


Subject(s)
Biomarkers , ErbB Receptors , Myelin-Oligodendrocyte Glycoprotein , Neurofilament Proteins , Phenotype , RNA, Messenger , Severity of Illness Index , Humans , Male , Female , Biomarkers/blood , Child , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/genetics , Myelin-Oligodendrocyte Glycoprotein/immunology , RNA, Messenger/genetics , RNA, Messenger/blood , ErbB Receptors/genetics , ErbB Receptors/blood , Cross-Sectional Studies , Child, Preschool , Immunoglobulin G/blood , Immunoglobulin G/cerebrospinal fluid , Adolescent , Autoantibodies/blood , Autoantibodies/cerebrospinal fluid
12.
J Alzheimers Dis ; 99(3): 965-980, 2024.
Article in English | MEDLINE | ID: mdl-38759005

ABSTRACT

Background: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) show differential vulnerability to large-scale brain functional networks. Plasma neurofilament light (NfL), a promising biomarker of neurodegeneration, has been linked in AD patients to glucose metabolism changes in AD-related regions. However, it is unknown whether plasma NfL would be similarly associated with disease-specific functional connectivity changes in AD and bvFTD. Objective: Our study examined the associations between plasma NfL and functional connectivity of the default mode and salience networks in patients with AD and bvFTD. Methods: Plasma NfL and neuroimaging data from patients with bvFTD (n = 16) and AD or mild cognitive impairment (n = 38; AD + MCI) were analyzed. Seed-based functional connectivity maps of key regions within the default mode and salience networks were obtained and associated with plasma NfL in these patients. RESULTS: We demonstrated divergent associations between NfL and functional connectivity in AD + MCI and bvFTD patients. Specifically, AD + MCI patients showed lower default mode network functional connectivity with higher plasma NfL, while bvFTD patients showed lower salience network functional connectivity with higher plasma NfL. Further, lower NfL-related default mode network connectivity in AD + MCI patients was associated with lower Montreal Cognitive Assessment scores and higher Clinical Dementia Rating sum-of-boxes scores, although NfL-related salience network connectivity in bvFTD patients was not associated with Neuropsychiatric Inventory Questionnaire scores. CONCLUSIONS: Our findings indicate that plasma NfL is differentially associated with brain functional connectivity changes in AD and bvFTD.


Subject(s)
Alzheimer Disease , Biomarkers , Frontotemporal Dementia , Magnetic Resonance Imaging , Neurofilament Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Female , Frontotemporal Dementia/blood , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/diagnostic imaging , Male , Aged , Neurofilament Proteins/blood , Middle Aged , Biomarkers/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging
13.
J Alzheimers Dis ; 99(3): 883-885, 2024.
Article in English | MEDLINE | ID: mdl-38759014

ABSTRACT

With the advent of therapeutics with potential to slow Alzheimer's disease progression the necessity of understanding the diagnostic value of plasma biomarkers is critical, not only for understanding the etiology and progression of Alzheimer's disease, but also for access and response to potentially disease modifying therapeutic agents. Multiple studies are currently assessing the sensitivity and specificity of plasma biomarkers in large cohorts such as the Alzheimer's Disease Neuroimaging Initiative. This study uses machine learning to predict the progression from mild cognitive impairment using plasma biomarkers in conjunction with well-established cerebrospinal fluid and imaging biomarkers of disease progression.


Subject(s)
Alzheimer Disease , Biomarkers , Disease Progression , Machine Learning , Neurofilament Proteins , tau Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Aged , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Female , Male , Prognosis , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnosis , Cohort Studies , Aged, 80 and over
14.
Lakartidningen ; 1212024 May 31.
Article in Swedish | MEDLINE | ID: mdl-38818759

ABSTRACT

Technical developments have paved the way for the development of ultrasensitive analytical methods that allow for precise quantification of brain-specific proteins in blood samples. Plasma levels of amyloid ß, specifically the Aß42/40 ratio, are reduced in Alzheimer's disease (AD) and show concordance with brain amyloidosis assessed by PET, but the overlap with normal elderly may be too large for reliable use in clinical applications. Plasma phosphorylated tau (P-tau), especially a variant called P-tau217, is markedly increased in the early symptomatic stages of AD but remains normal in other neurodegenerative disorders. Total tau (T-tau) is measurable in blood and shows most promise as a biomarker for acute neuronal injury (e.g. acute traumatic or hypoxic brain injury), where T-tau shows a fast and dramatic increase but does not work well as an AD biomarker due to contributions to blood levels from peripheral tissues. Instead, a novel method for tau protein produced only in the CNS called brain-derived tau (BD-tau) shows promise as a biomarker for AD-type neurodegeneration. Neurofilament light (NFL) levels in blood correlate tightly with levels in CSF and reflect axonal injury irrespective of the underlying cause. Increased blood NFL concentration is found in several neurodegenerative disorders, including AD, but even more so in disorders such as motor neuron disease and frontotemporal dementia. Glial fibrillary acidic protein (GFAP) is expressed with activation of astrocytes, and is mildly increased in AD, but is also very high also in acute brain disorders. These blood tests show promise as tools to identify AD pathophysiology in the first assessment of patients with early cognitive symptoms, also in primary care, to guide clinical management and possible admission to the specialist clinic. A two-step model will result in a very high accuracy to either predict or exclude brain amyloidosis of the Alzheimer type.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Brain , Neurofilament Proteins , tau Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Biomarkers/blood , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/diagnostic imaging , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Glial Fibrillary Acidic Protein/blood
15.
Alzheimers Res Ther ; 16(1): 107, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734612

ABSTRACT

BACKGROUND: The recent development of techniques to assess plasma biomarkers has changed the way the research community envisions the future of diagnosis and management of Alzheimer's disease (AD) and other neurodegenerative disorders. This work aims to provide real world evidence on the clinical impact of plasma biomarkers in an academic tertiary care center. METHODS: Anonymized clinical reports of patients diagnosed with AD or Frontotemporal Lobar Degeneration with available plasma biomarkers (Aß42, Aß42/Aß40, p-tau181, p-tau231, NfL, GFAP) were independently assessed by two neurologists who expressed diagnosis and diagnostic confidence three times: (T0) at baseline based on the information collected during the first visit, (T1) after plasma biomarkers, and (T2) after traditional biomarkers (when available). Finally, we assessed whether clinicians' interpretation of plasma biomarkers and the consequent clinical impact are consistent with the final diagnosis, determined after the conclusion of the diagnostic clinical and instrumental work-up by the actual managing physicians who had complete access to all available information. RESULTS: Clinicians assessed 122 reports, and their concordance ranged from 81 to 91% at the three time points. At T1, the presentation of plasma biomarkers resulted in a change of diagnosis in 2% (2/122, p = 1.00) of cases, and in increased diagnostic confidence in 76% (91/120, p < 0.001) of cases with confirmed diagnosis. The change in diagnosis and the increase in diagnostic confidence after plasma biomarkers were consistent with the final diagnosis in 100% (2/2) and 81% (74/91) of cases, respectively. At T2, the presentation of traditional biomarkers resulted in a further change of diagnosis in 13% (12/94, p = 0.149) of cases, and in increased diagnostic confidence in 88% (72/82, p < 0.001) of cases with confirmed diagnosis. CONCLUSIONS: In an academic tertiary care center, plasma biomarkers supported clinicians by increasing their diagnostic confidence in most cases, despite a negligible impact on diagnosis. Future prospective studies are needed to assess the full potential of plasma biomarkers on clinical grounds.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Frontotemporal Lobar Degeneration , tau Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Biomarkers/blood , Frontotemporal Lobar Degeneration/blood , Frontotemporal Lobar Degeneration/diagnosis , Amyloid beta-Peptides/blood , tau Proteins/blood , Female , Male , Aged , Peptide Fragments/blood , Middle Aged , Neurofilament Proteins/blood
16.
Cephalalgia ; 44(5): 3331024241248203, 2024 May.
Article in English | MEDLINE | ID: mdl-38690635

ABSTRACT

BACKGROUND: Idiopathic intracranial hypertension is a secondary headache disorder potentially causing visual loss. Neurofilament light chain is a candidate, prognostic biomarker, but further studies of neuronal biomarkers are needed. Our objective was to investigate neurofilament light chain in cerebrospinal fluid (cNfL) and plasma (pNfL), amyloid-beta 42 (Aß-42), total-tau and phosphorylated-tau in cerebrospinal fluid in new-onset idiopathic intracranial hypertension. METHODS: Prospective case-control study including new-onset idiopathic intracranial hypertension and age, sex and BMI matched controls. Biomarkers were compared between patients and controls and related to papilledema, visual fields and opening pressure. RESULTS: We included 37 patients and 35 controls. Patients had higher age-adjusted cNfL (1.4 vs. 0.6 pg/mL, p-adjusted < 0.001), pNfL (0.5 vs. 0.3 pg/mL, p-adjusted < 0.001) and total-tau/Aß-42 (0.12 vs. 0.11, p-adjusted = 0.039). Significant, positive linear correlations were found between cNfL, pNfL, total-tau/Aß-42 and opening pressure. Patients with severe papilledema had elevated cNfL compared to mild-moderate papilledema (median cNfL: 4.3 pg/mL (3.7) versus 1.0 pg/mL (1.4), p-adjusted = 0.009). cNFL was inversely associated with perimetric mean deviation (r = -0.47, p-adjusted < 0.001). CONCLUSIONS: cNfL, pNfL and total-tau/Aß-42 were elevated in new-onset idiopathic intracranial hypertension. cNfL was associated with severity of papilledema and visual field defects at diagnosis. This indicates early axonal damage. Neurofilament light chain is a candidate biomarker for disease severity.


Subject(s)
Biomarkers , Neurofilament Proteins , Pseudotumor Cerebri , Humans , Female , Male , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/blood , Adult , Pseudotumor Cerebri/diagnosis , Pseudotumor Cerebri/cerebrospinal fluid , Pseudotumor Cerebri/blood , Pseudotumor Cerebri/complications , Prospective Studies , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Case-Control Studies , Middle Aged , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , Peptide Fragments/blood , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , tau Proteins/blood
18.
Front Public Health ; 12: 1397845, 2024.
Article in English | MEDLINE | ID: mdl-38711771

ABSTRACT

Introduction: Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease that represents a leading cause of non-traumatic disability among young and middle-aged adults. MS is characterized by neurodegeneration caused by axonal injury. Current clinical and radiological markers often lack the sensitivity and specificity required to detect inflammatory activity and neurodegeneration, highlighting the need for better approaches. After neuronal injury, neurofilament light chains (NfL) are released into the cerebrospinal fluid, and eventually into blood. Thus, blood-based NfL could be used as a potential biomarker for inflammatory activity, neurodegeneration, and treatment response in MS. The objective of this study was to determine the value contribution of blood-based NfL as a biomarker in MS in Spain using the Multi-Criteria Decision Analysis (MCDA) methodology. Materials and methods: A literature review was performed, and the results were synthesized in the evidence matrix following the criteria included in the MCDA framework. The study was conducted by a multidisciplinary group of six experts. Participants were trained in MCDA and scored the evidence matrix. Results were analyzed and discussed in a group meeting through reflective MCDA discussion methodology. Results: MS was considered a severe condition as it is associated with significant disability. There are unmet needs in MS as a disease, but also in terms of biomarkers since no blood biomarker is available in clinical practice to determine disease activity, prognostic assessment, and response to treatment. The results of the present study suggest that quantification of blood-based NfL may represent a safe option to determine inflammation, neurodegeneration, and response to treatments in clinical practice, as well as to complement data to improve the sensitivity of the diagnosis. Participants considered that blood-based NfL could result in a lower use of expensive tests such as magnetic resonance imaging scans and could provide cost-savings by avoiding ineffective treatments. Lower indirect costs could also be expected due to a lower impact of disability consequences. Overall, blood-based NfL measurement is supported by high-quality evidence. Conclusion: Based on MCDA methodology and the experience of a multidisciplinary group of six stakeholders, blood-based NfL measurement might represent a high-value-option for the management of MS in Spain.


Subject(s)
Biomarkers , Decision Support Techniques , Multiple Sclerosis , Neurofilament Proteins , Humans , Multiple Sclerosis/blood , Multiple Sclerosis/diagnosis , Multiple Sclerosis/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Spain , Adult , Female , Middle Aged , Male
19.
Alzheimers Dement ; 20(5): 3485-3494, 2024 May.
Article in English | MEDLINE | ID: mdl-38597292

ABSTRACT

INTRODUCTION: Recent evidence suggests that exposure to the stress of racism may increase the risk of dementia for Black Americans. METHODS: The present study used 17 years of data from a sample of 255 Black Americans to investigate the extent to which exposure to racial discrimination predicts subsequent changes in serum Alzheimer's Disease Research Center (ADRC) biomarkers: serum phosphorylated tau181(p-tau181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP). We hypothesized that racial discrimination assessed during middle age would predict increases in these serum biomarkers as the participants aged into their 60s. RESULTS: Our findings indicate that exposure to various forms of racial discrimination during a person's 40s and early 50s predicts an 11-year increase in both serum p-tau181 and NfL. Racial discrimination was not associated with subsequent levels of GFAP. DISCUSSION: These findings suggest that racial discrimination in midlife may contribute to increased AD pathology and neurodegeneration later in life. HIGHLIGHTS: A 17-year longitudinal study of Black Americans. Assessments of change in serum p-tau181, neurofilament light, and glial fibrillary acidic protein. Exposure to racial discrimination during middle age predicted increases in p-tau181 and neurofilament light. Education was positively related to both p-tau181 and exposure to racial discrimination.


Subject(s)
Aging , Biomarkers , Black or African American , Neurofilament Proteins , Racism , tau Proteins , Humans , tau Proteins/blood , Neurofilament Proteins/blood , Male , Female , Middle Aged , Biomarkers/blood , Phosphorylation , Longitudinal Studies , Aging/blood , Glial Fibrillary Acidic Protein/blood , Aged
20.
J Neuroinflammation ; 21(1): 109, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678300

ABSTRACT

BACKGROUND: Identifying individuals with intracranial injuries following mild traumatic brain injury (mTBI), i.e. complicated mTBI cases, is important for follow-up and prognostication. The main aims of our study were (1) to assess the temporal evolution of blood biomarkers of CNS injury and inflammation in individuals with complicated mTBI determined on computer tomography (CT) and magnetic resonance imaging (MRI); (2) to assess the corresponding discriminability of both single- and multi-biomarker panels, from acute to chronic phases after injury. METHODS: Patients with mTBI (n = 207), defined as Glasgow Coma Scale score between 13 and 15, loss of consciousness < 30 min and post-traumatic amnesia < 24 h, were included. Complicated mTBI - i.e., presence of any traumatic intracranial injury on neuroimaging - was present in 8% (n = 16) on CT (CT+) and 12% (n = 25) on MRI (MRI+). Blood biomarkers were sampled at four timepoints following injury: admission (within 72 h), 2 weeks (± 3 days), 3 months (± 2 weeks) and 12 months (± 1 month). CNS biomarkers included were glial fibrillary acidic protein (GFAP), neurofilament light (NFL) and tau, along with 12 inflammation markers. RESULTS: The most discriminative single biomarkers of traumatic intracranial injury were GFAP at admission (CT+: AUC = 0.78; MRI+: AUC = 0.82), and NFL at 2 weeks (CT+: AUC = 0.81; MRI+: AUC = 0.89) and 3 months (MRI+: AUC = 0.86). MIP-1ß and IP-10 concentrations were significantly lower across follow-up period in individuals who were CT+ and MRI+. Eotaxin and IL-9 were significantly lower in individuals who were MRI+ only. FGF-basic concentrations increased over time in MRI- individuals and were significantly higher than MRI+ individuals at 3 and 12 months. Multi-biomarker panels improved discriminability over single biomarkers at all timepoints (AUCs > 0.85 for admission and 2-week models classifying CT+ and AUC ≈ 0.90 for admission, 2-week and 3-month models classifying MRI+). CONCLUSIONS: The CNS biomarkers GFAP and NFL were useful single diagnostic biomarkers of complicated mTBI, especially in acute and subacute phases after mTBI. Several inflammation markers were suppressed in patients with complicated versus uncomplicated mTBI and remained so even after 12 months. Multi-biomarker panels improved diagnostic accuracy at all timepoints, though at acute and 2-week timepoints, the single biomarkers GFAP and NFL, respectively, displayed similar accuracy compared to multi-biomarker panels.


Subject(s)
Biomarkers , Brain Concussion , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Humans , Male , Biomarkers/blood , Female , Magnetic Resonance Imaging/methods , Adult , Middle Aged , Brain Concussion/diagnostic imaging , Brain Concussion/blood , Brain Concussion/complications , Young Adult , Neurofilament Proteins/blood , Glial Fibrillary Acidic Protein/blood , Aged , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...