Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.649
Filter
1.
Folia Biol (Praha) ; 70(1): 45-52, 2024.
Article in English | MEDLINE | ID: mdl-38830122

ABSTRACT

Effective treatment of patients with autism spectrum disorder (ASD) is still absent so far. Taurine exhibits therapeutic effects towards the autism-like behaviour in ASD model animals. Here, we determined the mechanism of taurine effect on hippocampal neurogenesis in genetically inbred BTBR T+ tf/J (BTBR) mice, a proposed model of ASD. In this ASD mouse model, we explored the effect of oral taurine supplementation on ASD-like behaviours in an open field test, elevated plus maze, marble burying test, self-grooming test, and three-chamber test. The mice were divided into four groups of normal controls (WT) and models (BTBR), who did or did not receive 6-week taurine supplementation in water (WT, WT+ Taurine, BTBR, and BTBR+Taurine). Neurogenesis-related effects were determined by Ki67 immunofluorescence staining. Western blot analysis was performed to detect the expression of phosphatase and tensin homologue deleted from chromosome 10 (PTEN)/mTOR/AKT pathway-associated proteins. Our results showed that taurine improved the autism-like behaviour, increased the proliferation of hippocampal cells, promoted PTEN expression, and reduced phosphorylation of mTOR and AKT in hippocampal tissue of the BTBR mice. In conclusion, taurine reduced the autism-like behaviour in partially inherited autism model mice, which may be associa-ted with improving the defective neural precursor cell proliferation and enhancing the PTEN-associated pathway in hippocampal tissue.


Subject(s)
Autistic Disorder , Hippocampus , Neurogenesis , PTEN Phosphohydrolase , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Taurine , Animals , Taurine/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , TOR Serine-Threonine Kinases/metabolism , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Neurogenesis/drug effects , Autistic Disorder/metabolism , Autistic Disorder/drug therapy , Male , Behavior, Animal/drug effects , Mice , Disease Models, Animal , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/drug therapy , Cell Proliferation/drug effects
2.
Cell Biol Toxicol ; 40(1): 41, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833095

ABSTRACT

Hippocampal neurons maintain the ability of proliferation throughout life to support neurogenesis. Deoxynivalenol (DON) is a mycotoxin that exhibits brain toxicity, yet whether and how DON affects hippocampal neurogenesis remains unknown. Here, we use mouse hippocampal neuron cells (HT-22) as a model to illustrate the effects of DON on neuron proliferation and to explore underlying mechanisms. DON exposure significantly inhibits the proliferation of HT-22 cells, which is associated with an up-regulation of cell cycle inhibitor p21 at both mRNA and protein levels. Global and site-specific m6A methylation levels on the 3'UTR of p21 mRNA are significantly increased in response to DON treatment, whereas inhibition of m6A hypermethylation significantly alleviates DON-induced cell cycle arrest. Further mechanistic studies indicate that the m6A readers YTHDF1 and IGF2BP1 are responsible for m6A-mediated increase in p21 mRNA stability. Meanwhile, 3'UTR of E3 ubiquitin ligase TRIM21 mRNA is also m6A hypermethylated, and another m6A reader YTHDF2 binds to the m6A sites, leading to decreased TRIM21 mRNA stability. Consequently, TRIM21 suppression impairs ubiquitin-mediated p21 protein degradation. Taken together, m6A-mediated upregulation of p21, at both post-transcriptional and post-translational levels, contributes to DON-induced inhibition of hippocampal neuron proliferation. These results may provide new insights for epigenetic therapy of neurodegenerative diseases.


Subject(s)
Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21 , Hippocampus , Neurons , Trichothecenes , Up-Regulation , Animals , Trichothecenes/toxicity , Trichothecenes/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/cytology , Mice , Neurons/drug effects , Neurons/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Up-Regulation/drug effects , Cell Proliferation/drug effects , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line , 3' Untranslated Regions/genetics , Neurogenesis/drug effects , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA Stability/drug effects , Cell Cycle Checkpoints/drug effects , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Methylation/drug effects
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732109

ABSTRACT

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Subject(s)
Cell Differentiation , Melatonin , Mesenchymal Stem Cells , Melatonin/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Humans , Cell Differentiation/drug effects , Cells, Cultured , Adipose Tissue/cytology , Neurons/cytology , Neurons/metabolism , Neurons/drug effects , Culture Media, Conditioned/pharmacology , Schwann Cells/cytology , Schwann Cells/metabolism , Schwann Cells/drug effects , Neurogenesis/drug effects , Adult , Nestin/metabolism , Nestin/genetics , Glial Fibrillary Acidic Protein/metabolism , Neuroglia/drug effects , Neuroglia/cytology , Neuroglia/metabolism , Synapsins/metabolism
4.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739166

ABSTRACT

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Subject(s)
Disease Models, Animal , Down Syndrome , Neurogenesis , Animals , Down Syndrome/drug therapy , Down Syndrome/pathology , Down Syndrome/metabolism , Down Syndrome/complications , Down Syndrome/genetics , Neurogenesis/drug effects , Mice , Female , Pregnancy , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Dyrk Kinases , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Male , Cognition Disorders/drug therapy , Cognition Disorders/pathology
5.
Arq Neuropsiquiatr ; 82(5): 1-5, 2024 May.
Article in English | MEDLINE | ID: mdl-38763143

ABSTRACT

New hippocampal neurons are continuously generated in the adult human brain. Several studies have demonstrated that the proliferation of hippocampal cells is strongly influenced by a variety of stimuli, including pesticides exposure. These effects are particularly important because neurogenesis dysregulation could be associated with the decline of neuronal and cognitive functions and the possible development of neuropsychiatric disorders.


Novos neurônios hipocampais são gerados continuamente no cérebro humano adulto. Vários estudos têm demonstrado que a proliferação de células do hipocampo é influenciada por uma variedade de estímulos, incluindo a exposição a pesticidas. Estes efeitos são particularmente importantes porque a desregulação da neurogênese pode estar associada ao declínio das funções neuronais e cognitivas e ao possível desenvolvimento de doenças neuropsiquiátricas.


Subject(s)
Hippocampus , Neurogenesis , Neurons , Pesticides , Pesticides/toxicity , Humans , Hippocampus/drug effects , Hippocampus/physiology , Neurogenesis/drug effects , Neurogenesis/physiology , Neurons/drug effects , Neurons/physiology , Animals
6.
J Neuroimmune Pharmacol ; 19(1): 23, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775885

ABSTRACT

Hyperbilirubinemia is one of the most common occurrence in newborns and is toxic to the brain, resulting in neurological sequelae such as auditory impairment, with potential to evolve to chronic bilirubin encephalopathy and long-term cognitive impairment in adults. In the early postnatal period, neurogenesis is rigorous and neuroinflammation is detrimental to the brain. What are the alterations in neurogenesis and the underlying mechanisms of bilirubin encephalopathy during the early postnatal period? This study found that, there were a reduction in the number of neuronal stem/progenitor cells, an increase in microglia in the dentate gyrus (DG) and an inflammatory state in the hippocampus, characterized by increased levels of IL-6, TNF-α, and IL-1ß, as well as a decreased level of IL-10 in a rat model of bilirubin encephalopathy (BE). Furthermore, there was a significant decrease in the number of newborn neurons and the expression of neuronal differentiation-associated genes (NeuroD and Ascl1) in the BE group. Additionally, cognitive impairment was observed in this group. The administration of minocycline, an inhibitor of microglial activation, resulted in a reduction of inflammation in the hippocampus, an enhancement of neurogenesis, an increase in the expression of neuron-related genes (NeuroD and Ascl1), and an improvement in cognitive function in the BE group. These results demonstrate that microglia play a critical role in reduced neurogenesis and impaired brain function resulting from bilirubin encephalopathy model, which could inspire the development of novel pharmaceutical and therapeutic strategies.


Subject(s)
Hippocampus , Kernicterus , Microglia , Minocycline , Neurogenesis , Animals , Neurogenesis/drug effects , Neurogenesis/physiology , Microglia/drug effects , Microglia/metabolism , Rats , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Male , Minocycline/pharmacology , Disease Models, Animal , Rats, Sprague-Dawley , Inflammation/metabolism , Inflammation/pathology , Neuroinflammatory Diseases/drug therapy
7.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731859

ABSTRACT

Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 µM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.


Subject(s)
Folic Acid , Heterocyclic Compounds, 3-Ring , Oxazines , Piperazines , Pyridones , Zebrafish , Animals , Heterocyclic Compounds, 3-Ring/pharmacology , Folic Acid/metabolism , Oxazines/pharmacology , Pyridones/pharmacology , Piperazines/pharmacology , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Neural Tube Defects/chemically induced , Neurogenesis/drug effects , Female
8.
Neuron ; 112(9): 1373-1375, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38697018

ABSTRACT

Maternal well-being is important for the development of the fetus, with a key influence on its nervous system. In this issue of Neuron, Krontira et al.1 implicate glucocorticoids, the stress hormones, in the regulation of neural stem cell identity and proliferation, with long-lasting consequences on brain architecture and educational attainment.


Subject(s)
Glucocorticoids , Neurogenesis , Humans , Glucocorticoids/pharmacology , Neurogenesis/drug effects , Neurogenesis/physiology , Neurons/drug effects , Neurons/physiology , Cerebral Cortex/drug effects , Cerebral Cortex/cytology , Neural Stem Cells/drug effects
9.
CNS Neurosci Ther ; 30(5): e14719, 2024 May.
Article in English | MEDLINE | ID: mdl-38783536

ABSTRACT

BACKGROUND: Methamphetamine (METH) is a psychostimulant substance with highly addictive and neurotoxic effects, but no ideal treatment option exists to improve METH-induced neurocognitive deficits. Recently, mesenchymal stem cells (MSCs)-derived exosomes have raised many hopes for treating neurodegenerative sequela of brain disorders. This study aimed to determine the therapeutic potential of MSCs-derived exosomes on cognitive function and neurogenesis of METH-addicted rodents. METHODS: Male BALB/c mice were subjected to chronic METH addiction, followed by intravenous administration of bone marrow MSCs-derived exosomes. Then, the spatial memory and recognition memory of animals were assessed by the Barnes maze and the novel object recognition test (NORT). The neurogenesis-related factors, including NeuN and DCX, and the expression of Iba-1, a microglial activation marker, were assessed in the hippocampus by immunofluorescence staining. Also, the expression of inflammatory cytokines, including TNF-α and NF-κB, were evaluated by western blotting. RESULTS: The results showed that BMSCs-exosomes improved the time spent in the target quadrant and correct-to-wrong relative time in the Barnes maze. Also, NORT's discrimination index (DI) and recognition index (RI) were improved following exosome therapy. Additionally, exosome therapy significantly increased the expression of NeuN and DCX in the hippocampus while decreasing the expression of inflammatory cytokines, including TNF-α and NF-κB. Besides, BMSC-exosomes down-regulated the expression of Iba-1. CONCLUSION: Our findings indicate that BMSC-exosomes mitigated METH-caused cognitive dysfunction by improving neurogenesis and inhibiting neuroinflammation in the hippocampus.


Subject(s)
Amphetamine-Related Disorders , Doublecortin Protein , Exosomes , Hippocampus , Mesenchymal Stem Cells , Methamphetamine , Mice, Inbred BALB C , Neurogenesis , Animals , Exosomes/metabolism , Male , Neurogenesis/drug effects , Neurogenesis/physiology , Mice , Methamphetamine/toxicity , Amphetamine-Related Disorders/therapy , Amphetamine-Related Disorders/psychology , Amphetamine-Related Disorders/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Cognition/drug effects , Cognition/physiology , Maze Learning/drug effects , Maze Learning/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Nerve Tissue Proteins/metabolism , Central Nervous System Stimulants/toxicity , Spatial Memory/drug effects , Spatial Memory/physiology , Microfilament Proteins/metabolism , Mesenchymal Stem Cell Transplantation/methods , Calcium-Binding Proteins , DNA-Binding Proteins
10.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791161

ABSTRACT

Adult neurogenesis in the dentate gyrus (DG) is impaired during Alzheimer's disease (AD) progression. Curcumin has been reported to reduce cell apoptosis and stimulate neurogenesis. This study aimed to investigate the influence of curcumin on adult neurogenesis in AD mice and its potential mechanism. Two-month-old male C57BL/6J mice were injected with soluble ß-amyloid (Aß1-42) using lateral ventricle stereolocalization to establish AD models. An immunofluorescence assay, including bromodeoxyuridine (BrdU), doublecortin (DCX), and neuron-specific nuclear antigen (NeuN), was used to detect hippocampal neurogenesis. Western blot and an enzyme-linked immunosorbent assay (ELISA) were used to test the expression of related proteins and the secretion of brain-derived neurotrophic factor (BDNF). A Morris water maze was used to detect the cognitive function of the mice. Our results showed that curcumin administration (100 mg/kg) rescued the impaired neurogenesis of Aß1-42 mice, shown as enhanced BrdU+/DCX+ and BrdU+/NeuN+ cells in DG. In addition, curcumin regulated the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) -mediated glycogen synthase kinase-3ß (GSK3ß) /Wingless/Integrated (Wnt)/ß-catenin pathway and cyclic adenosine monophosphate response element-binding protein (CREB)/BDNF in Aß1-42 mice. Inhibiting Wnt/ß-catenin and depriving BDNF could reverse both the upregulated neurogenesis and cognitive function of curcumin-treated Aß1-42 mice. In conclusion, our study indicates that curcumin, through targeting PI3K/Akt, regulates GSK3ß/Wnt/ß-catenin and CREB/BDNF pathways, improving the adult neurogenesis of AD mice.


Subject(s)
Alzheimer Disease , Brain-Derived Neurotrophic Factor , Curcumin , Disease Models, Animal , Doublecortin Protein , Mice, Inbred C57BL , Neurogenesis , Wnt Signaling Pathway , beta Catenin , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Neurogenesis/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Curcumin/pharmacology , Mice , Male , Wnt Signaling Pathway/drug effects , Doublecortin Protein/metabolism , beta Catenin/metabolism , Amyloid beta-Peptides/metabolism , Up-Regulation/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Proto-Oncogene Proteins c-akt/metabolism
11.
J Ethnopharmacol ; 331: 118332, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735421

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Citri Reticulata Pericarpium Viride (also known Qing-Pi or QP) is a plant in the Rutaceae family, QP is a traditional Qi-regulating medicine in Chinese medicine that is compatible with other Chinese medicine components and has extensive clinical practice in treating anxiety and depression. Reports on the pharmacological effects of QP have demonstrated its neuroprotective effects and antioxidant capacities. Numerous pharmacological benefits of QP are attributed to its antioxidant abilities. Anxiety disorders are a broadly defined category of mental illnesses. Oxidative stress and an imbalance in the antioxidant defense system are typical pathological features of these disorders. AIM OF THE STUDY: The aim of this study was to evaluate the effects of QP essential oil on anxiety using animal models and investigate the underlying neurobiological mechanisms. MATERIALS AND METHODS: This study aimed to develop an animal model of anxiety using chronic restraint stress and investigate the effects of inhalation of Citri Reticulata Pericarpium Viride essential oil on anxiety-like behavior, olfactory function, and olfactory bulb neurogenesis in mice with anxiety. RESULTS: The results showed that long-term chronic restraint stimulation caused a decrease in olfactory function, significant anxiety-like behavior, and a notable reduction in the number of neurons in the olfactory bulb. However, inhalation of Citri Reticulata Pericarpium Viride essential oil reversed these effects, improving the olfactory function, neuro-stimulating effect, alleviating anxiety-like behavior, and regulating theta (4-12Hz) oscillation in the hippocampus DG area. These effects were associated with changes in the expression levels of glutamate receptor NMDAR and NeuN in olfactory bulb. CONCLUSIONS: The study revealed that mice with anxiety induced by chronic restraint stress exhibited significant olfactory dysfunction, providing strong evidence for the causal relationship between anxiety disorders and olfactory dysfunction. Moreover, QP essential oil has the potential to be developed as a therapeutic drug for anxiety disorders, in addition to its role as a complementary anxiolytic.


Subject(s)
Anti-Anxiety Agents , Anxiety , Oils, Volatile , Olfactory Bulb , Receptors, N-Methyl-D-Aspartate , Animals , Oils, Volatile/pharmacology , Oils, Volatile/isolation & purification , Male , Anxiety/drug therapy , Mice , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anti-Anxiety Agents/isolation & purification , Receptors, N-Methyl-D-Aspartate/metabolism , Behavior, Animal/drug effects , Glutamic Acid/metabolism , Neurogenesis/drug effects , Disease Models, Animal , Stress, Psychological/drug therapy
12.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753512

ABSTRACT

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Subject(s)
Benzhydryl Compounds , Neurons , Phenols , Sex Differentiation , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Male , Mice , Sex Differentiation/drug effects , Neurons/drug effects , Neurons/metabolism , Pregnancy , Hypothalamus/metabolism , Hypothalamus/drug effects , Neurogenesis/drug effects , Arginine Vasopressin/metabolism , Vasopressins/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Mice, Inbred C57BL , Estrogens/metabolism , Estrogens/pharmacology
13.
Exp Neurol ; 377: 114809, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714285

ABSTRACT

Neurogenesis as a potential strategy to improve the consequences of intracerebral hemorrhage (ICH). The current study investigates the effects of withaferin A (WFA) in combination with leptin (LEP) on ICH and neurogenesis mechanisms. LEP levels were dramatically reduced on days 7 and 14 following ICH insults in mice, but continuous WFA therapy significantly improved the potency of intrinsic LEP on day 14 after ICH. Furthermore, WFA combined with LEP enhances intrinsic neurogenesis and lessen motor deficits and long-term cognitive outcomes after ICH. In parallel, leptin deficiency in ob/ob mice limits enhancement of neurogenesis following ICH in response to WFA combined with LEP treatment. Importantly, the functional recovery conferred by WFA combined with LEP after ICH was inhibited by neurogenesis suppression. Mechanistically, this study unveiled that the signal transducer and activator of transcription-3 (STAT3) / suppressor of cytokine signaling-3 (SOCS3) pathway is a critical signaling pathway through which WFA combined with LEP treatment promotes intrinsic neurogenesis after ICH. Collectively, the results of this study elucidate the neuroprotective effects of WFA and LEP in ICH, and highlight a potential approach for ICH cell therapy.


Subject(s)
Cerebral Hemorrhage , Leptin , Mice, Inbred C57BL , Neurogenesis , STAT3 Transcription Factor , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein , Withanolides , Animals , Withanolides/pharmacology , Neurogenesis/drug effects , STAT3 Transcription Factor/metabolism , Mice , Suppressor of Cytokine Signaling 3 Protein/metabolism , Leptin/pharmacology , Male , Signal Transduction/drug effects , Cerebral Hemorrhage/drug therapy , Neuroprotective Agents/pharmacology , Drug Therapy, Combination
14.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38700092

ABSTRACT

Pre-eclampsia (PE) is a hypertensive disorder of pregnancy which is associated with increased risk of neurodevelopmental disorders in exposed offspring. The pathophysiological mechanisms mediating this relationship are currently unknown, and one potential candidate is the anti-angiogenic factor soluble Fms-like tyrosine kinase 1 (sFlt-1), which is highly elevated in PE. While sFlt-1 can impair angiogenesis via inhibition of VEGFA signalling, it is unclear whether it can directly affect neuronal development independently of its effects on the vasculature. To test this hypothesis, the current study differentiated the human neural progenitor cell (NPC) line ReNcell® VM into a mixed culture of mature neurons and glia, and exposed them to sFlt-1 during development. Outcomes measured were neurite growth, cytotoxicity, mRNA expression of nestin, MBP, GFAP, and ßIII-tubulin, and neurosphere differentiation. sFlt-1 induced a significant reduction in neurite growth and this effect was timing- and dose-dependent up to 100 ng/ml, with no effect on cytotoxicity. sFlt-1 (100 ng/ml) also reduced ßIII-tubulin mRNA and neuronal differentiation of neurospheres. Undifferentiated NPCs and mature neurons/glia expressed VEGFA and VEGFR-2, required for endogenous autocrine and paracrine VEGFA signalling, while sFlt-1 treatment prevented the neurogenic effects of exogenous VEGFA. Overall, these data provide the first experimental evidence for a direct effect of sFlt-1 on neurite growth and neuronal differentiation in human neurons through inhibition of VEGFA signalling, clarifying our understanding of the potential role of sFlt-1 as a mechanism by which PE can affect neuronal development.


Subject(s)
Cell Differentiation , Neural Stem Cells , Neurons , Vascular Endothelial Growth Factor Receptor-1 , Humans , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/drug effects , Neurons/metabolism , Neurons/drug effects , Neurons/cytology , Cell Differentiation/drug effects , Neurites/metabolism , Neurites/drug effects , Neurogenesis/drug effects , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Cell Line, Tumor , Signal Transduction
15.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38729764

ABSTRACT

Intracerebral hemorrhage (ICH), the most common subtype of hemorrhagic stroke, leads to cognitive impairment and imposes significant psychological burdens on patients. Hippocampal neurogenesis has been shown to play an essential role in cognitive function. Our previous study has shown that tetrahydrofolate (THF) promotes the proliferation of neural stem cells (NSCs). However, the effect of THF on cognition after ICH and the underlying mechanisms remain unclear. Here, we demonstrated that administration of THF could restore cognition after ICH. Using Nestin-GFP mice, we further revealed that THF enhanced the proliferation of hippocampal NSCs and neurogenesis after ICH. Mechanistically, we found that THF could prevent ICH-induced elevated level of PTEN and decreased expressions of phosphorylated AKT and mTOR. Furthermore, conditional deletion of PTEN in NSCs of the hippocampus attenuated the inhibitory effect of ICH on the proliferation of NSCs and abnormal neurogenesis. Taken together, these results provide molecular insights into ICH-induced cognitive impairment and suggest translational clinical therapeutic strategy for hemorrhagic stroke.


Subject(s)
Cognitive Dysfunction , Hippocampus , Neural Stem Cells , Neurogenesis , PTEN Phosphohydrolase , Signal Transduction , Tetrahydrofolates , Animals , Neurogenesis/drug effects , Neurogenesis/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , PTEN Phosphohydrolase/metabolism , Male , Signal Transduction/drug effects , Signal Transduction/physiology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Tetrahydrofolates/pharmacology , Mice , Hemorrhagic Stroke , Mice, Inbred C57BL , Mice, Transgenic , Cell Proliferation/drug effects
16.
Cells ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667284

ABSTRACT

This study investigates the combined effects of the neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31-Pro34]NPY at a dose of 132 µg and Ketamine at 10 mg/Kg on cognitive functions and neuronal proliferation, against a backdrop where neurodegenerative diseases present an escalating challenge to global health systems. Utilizing male Sprague-Dawley rats in a physiological model, this research employed a single-dose administration of these compounds and assessed their impact 24 h after treatment on object-in-place memory tasks, alongside cellular proliferation within the dorsal hippocampus dentate gyrus. Methods such as the in situ proximity ligation assay and immunohistochemistry for proliferating a cell nuclear antigen (PCNA) and doublecortin (DCX) were utilized. The results demonstrated that co-administration significantly enhanced memory consolidation and increased neuronal proliferation, specifically neuroblasts, without affecting quiescent neural progenitors and astrocytes. These effects were mediated by the potential formation of NPY1R-TrkB heteroreceptor complexes, as suggested by receptor co-localization studies, although further investigation is required to conclusively prove this interaction. The findings also highlighted the pivotal role of brain-derived neurotrophic factor (BDNF) in mediating these effects. In conclusion, this study presents a promising avenue for enhancing cognitive functions and neuronal proliferation through the synergistic action of the NPY1R agonist and Ketamine, potentially via NPY1R-TrkB heteroreceptor complex formation, offering new insights into therapeutic strategies for neurodegenerative diseases.


Subject(s)
Cell Proliferation , Cognition , Doublecortin Protein , Ketamine , Neurons , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled , Receptors, Neuropeptide Y , Receptors, Neuropeptide , Animals , Male , Ketamine/pharmacology , Ketamine/administration & dosage , Cognition/drug effects , Rats , Receptors, Neuropeptide Y/agonists , Receptors, Neuropeptide Y/metabolism , Neurons/drug effects , Neurons/metabolism , Cell Proliferation/drug effects , Receptor, trkB/agonists , Receptor, trkB/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Neurogenesis/drug effects
17.
Int J Biol Macromol ; 267(Pt 2): 131520, 2024 May.
Article in English | MEDLINE | ID: mdl-38615859

ABSTRACT

The adverse microenvironment, including neuroinflammation, hinders the recovery of spinal cord injury (SCI). Regulating microglial polarization to alleviate neuroinflammation at the injury site is an effective strategy for SCI recovery. MG53 protein exerts obvious repair ability on multiple tissues damage, but with short half-life. In this study, we composited an innovative MG53/GMs/HA-Dex neural scaffold using gelatin microspheres (GMs), hyaluronic acid (HA), and dextran (Dex) loaded with MG53 protein. This novel neural scaffold could respond to MMP-2/9 protein and stably release MG53 protein with good physicochemical properties and biocompatibility. In addition, it significantly improved the motor function of SCI mice, suppressed M1 polarization of microglia and neuroinflammation, and promoted neurogenesis and axon regeneration. Further mechanistic experiments demonstrated that MG53/GMs/HA-Dex hydrogel inhibited the JAK2/STAT3 signaling pathway. Thus, this MG53/GMs/HA-Dex neural scaffold promotes the functional recovery of SCI mice by alleviating neuroinflammation, which provides a new intervention strategy for the neural regeneration and functional repair of SCI.


Subject(s)
Gelatin , Hyaluronic Acid , Janus Kinase 2 , Neuroinflammatory Diseases , Recovery of Function , Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Animals , Mice , Recovery of Function/drug effects , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Neuroinflammatory Diseases/drug therapy , Gelatin/chemistry , Gelatin/pharmacology , Janus Kinase 2/metabolism , Dextrans/chemistry , Tissue Scaffolds/chemistry , Microspheres , STAT3 Transcription Factor/metabolism , Microglia/drug effects , Microglia/metabolism , Nerve Regeneration/drug effects , Matrix Metalloproteinase 9/metabolism , Disease Models, Animal , Neurogenesis/drug effects , Signal Transduction/drug effects , Matrix Metalloproteinase 2/metabolism , Hydrogels/chemistry , Hydrogels/pharmacology
18.
Expert Opin Ther Targets ; 28(4): 309-322, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626283

ABSTRACT

BACKGROUND: Major Depressive Disorder (MDD) poses a significant challenge to global health, with current treatments often limited by efficacy and onset delays. This study explores the synergistic antidepressant-like effects of an NPY1R agonist and Ketamine, targeting their neurobiological interactions within the ventral hippocampus. RESEARCH DESIGN AND METHODS: Utilizing a preclinical model, this study administered Neuropeptide Y receptor 1 (NPY1R) agonist and Ketamine, both separately and in combination, through intracerebroventricular (icv) and intranasal (i.n.) routes. The Forced Swimming Test (FST) was employed to assess antidepressant-like activity, while in situ Proximity Ligation Assay and immunohistochemistry were used to examine NPY1R/TrkB heteroreceptor complexes and BDNF expression in the ventral dentate gyrus (DG), along with neurogenesis markers. RESULTS: The combined treatment significantly reduced immobility in the FST, indicative of enhanced antidepressant-like effects, correlated with increased formation of NPY1R/TrkB complex and brain-derived neurotrophic factor (BDNF) expression in the ventral DG. These molecular alterations were associated with increased neurogenesis. CONCLUSIONS: The coadministration of an NPY1R agonist and Ketamine in a rodent model demonstrated potentiated antidepressant responses through synergistic neurobiological pathways, including TrkB signaling and hippocampal neurogenesis. This indicates a novel therapeutic strategy for MDD, warranting further clinical investigation to fully understand its implications.


Subject(s)
Antidepressive Agents , Brain-Derived Neurotrophic Factor , Depressive Disorder, Major , Drug Synergism , Hippocampus , Ketamine , Neurogenesis , Receptor, trkB , Receptors, Neuropeptide Y , Signal Transduction , Animals , Neurogenesis/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Male , Brain-Derived Neurotrophic Factor/metabolism , Signal Transduction/drug effects , Receptors, Neuropeptide Y/agonists , Receptors, Neuropeptide Y/metabolism , Depressive Disorder, Major/drug therapy , Ketamine/pharmacology , Ketamine/administration & dosage , Hippocampus/metabolism , Hippocampus/drug effects , Receptor, trkB/agonists , Receptor, trkB/metabolism , Disease Models, Animal , Rats , Mice , Rats, Sprague-Dawley , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Swimming
19.
Chemosphere ; 358: 142124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677614

ABSTRACT

Metformin, the most commonly prescribed drug for the treatment of diabetes, is increasingly used during pregnancy to address various disorders such as diabetes, obesity, preeclampsia, and metabolic diseases. However, its impact on neocortex development remains unclear. Here, we investigated the direct effects of metformin on neocortex development, focusing on ERK and p35/CDK5 regulation. Using a pregnant rat model, we found that metformin treatment during pregnancy induces small for gestational age (SGA) and reduces relative cortical thickness in embryos and neonates. Additionally, we discovered that metformin inhibits neural progenitor cell proliferation in the sub-ventricular zone (SVZ)/ventricular zone (VZ) of the developing neocortex, a process possibly mediated by ERK inactivation. Furthermore, metformin induces neuronal apoptosis in the SVZ/VZ area of the developing neocortex. Moreover, metformin retards neuronal migration, cortical lamination, and differentiation, potentially through p35/CDK5 inhibition in the developing neocortex. Remarkably, compensating for p35 through in utero electroporation partially rescues metformin-impaired neuronal migration and development. In summary, our study reveals that metformin disrupts neocortex development by inhibiting neuronal progenitor proliferation, neuronal migration, cortical layering, and cortical neuron maturation, likely via ERK and p35/CDK5 inhibition. Consequently, our findings advocate for caution in metformin usage during pregnancy, given its potential adverse effects on fetal brain development.


Subject(s)
Cell Proliferation , Cyclin-Dependent Kinase 5 , Metformin , Neocortex , Metformin/pharmacology , Animals , Female , Pregnancy , Neocortex/drug effects , Cyclin-Dependent Kinase 5/metabolism , Rats , Cell Proliferation/drug effects , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , MAP Kinase Signaling System/drug effects , Neurons/drug effects , Rats, Sprague-Dawley , Cell Differentiation/drug effects , Neurogenesis/drug effects , Cell Movement/drug effects , Apoptosis/drug effects , Signal Transduction/drug effects
20.
Pharmacol Ther ; 258: 108641, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583670

ABSTRACT

Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.


Subject(s)
Dementia , Depressive Disorder, Major , Neurodegenerative Diseases , Neurogenesis , Psilocybin , Humans , Dementia/prevention & control , Dementia/drug therapy , Animals , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/prevention & control , Depressive Disorder, Major/drug therapy , Neurogenesis/drug effects , Psilocybin/therapeutic use , Psilocybin/pharmacology , Hippocampus/drug effects , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Microglia/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...