Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Aging Dis ; 15(3): 965-976, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38722791

ABSTRACT

Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.


Subject(s)
Mesenchymal Stem Cells , Neurodegenerative Diseases , Neuroinflammatory Diseases , Animals , Humans , Astrocytes/metabolism , Inflammation/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Microglia/metabolism , Microglia/immunology , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/immunology , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/immunology
2.
Mol Ther ; 32(5): 1373-1386, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38504517

ABSTRACT

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.


Subject(s)
Alzheimer Disease , Apolipoprotein E2 , Disease Models, Animal , Genetic Therapy , Mice, Transgenic , Microglia , Plaque, Amyloid , Animals , Alzheimer Disease/therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/etiology , Mice , Genetic Therapy/methods , Humans , Apolipoprotein E2/genetics , Apolipoprotein E2/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Microglia/metabolism , Brain/metabolism , Brain/pathology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers
3.
Auton Neurosci ; 253: 103162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513382

ABSTRACT

Vagus nerve stimulation (VNS) is under clinical investigation as a therapy for heart failure with reduced ejection fraction (HFrEF). This study aimed to investigate its therapeutic effects on three main components of heart failure: cardiac function, cardiac remodeling and central neuroinflammation using a pressure overload (PO) rat model. Male Sprague-Dawley rats were divided into four groups: PO, PO + VNS, PO + VNS sham, and controls. All rats, except controls, underwent a PO surgery to constrict the thoracic aorta (~50 %) to induce HFrEF. Open loop VNS therapy was continuously administered to PO + VNS rats at 20 Hz, 1.0 mA for 60 days. Evaluation of cardiac function and structure via echocardiograms showed decreases in stroke volume and relative ejection fraction and increases in the internal diameter of the left ventricle during systole and diastole in PO rats (p < 0.05). However, these PO-induced adverse changes were alleviated with VNS therapy. Additionally, PO rats exhibited significant increases in myocyte cross sectional areas indicating hypertrophy, along with significant increases in myocardial fibrosis and apoptosis, all of which were reversed by VNS therapy (p < 0.05). Furthermore, VNS mitigated microglial activation in two central autonomic nuclei: the paraventricular nucleus of the hypothalamus and locus coeruleus. These findings demonstrate that when VNS therapy is initiated at an early stage of HFrEF progression (<10 % reduction in relative ejection fraction), the supplementation of vagal activity is effective in restoring multi organ homeostasis in a PO model.


Subject(s)
Heart Failure , Rats, Sprague-Dawley , Vagus Nerve Stimulation , Animals , Vagus Nerve Stimulation/methods , Heart Failure/therapy , Heart Failure/physiopathology , Male , Rats , Disease Models, Animal , Stroke Volume/physiology , Ventricular Remodeling/physiology , Inflammation/therapy , Inflammation/physiopathology , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/physiopathology
4.
Acupunct Med ; 42(3): 133-145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38351622

ABSTRACT

BACKGROUND: Oxidative stress and inflammatory responses play essential roles in cerebral ischemia/reperfusion (I/R) injury. Electroacupuncture (EA) is widely used as a rehabilitation method for stroke in China; however, the underlying mechanism of action remains unclear. Peroxisome proliferator-activated receptor gamma (PPAR-γ) has been reported to impact anti-inflammatory and anti-oxidative effects. OBJECTIVE: This study investigated the role of PPAR-γ in EA-mediated effects and aimed to illuminate its possible mechanisms in cerebral I/R. METHODS: In this study, male Sprague-Dawley (SD) rats with middle cerebral artery occlusion/reperfusion (MCAO/R) injury were treated with EA at LI11 and ST36 for 30 min daily after MCAO/R for seven consecutive days. The neuroprotective effects of EA were measured by neurobehavioral evaluation, triphenyltetrazolium chloride staining, hematoxylin-eosin staining and transmission electron microscopy. Oxidative stress, inflammatory factors, neural apoptosis and microglial activation were examined by enzyme-linked immunosorbent assay, immunofluorescence and reverse transcriptase polymerase chain reaction. Western blotting was used to assess PPAR-γ-mediated signaling. RESULTS: We found that EA significantly alleviated cerebral I/R-induced infarct volume, decreased neurological scores and inhibited I/R-induced oxidative stress, inflammatory responses and microglial activation. EA also increased PPAR-γ protein expression. Furthermore, the protective effects of EA were reversed by injection of the PPAR-γ antagonist T0070907. CONCLUSION: EA attenuates cerebral I/R injury by regulating oxidative stress, neuronal death and neuroinflammation via stimulation of PPAR-γ.


Subject(s)
Brain Ischemia , Electroacupuncture , Oxidative Stress , PPAR gamma , Rats, Sprague-Dawley , Reperfusion Injury , Animals , PPAR gamma/metabolism , PPAR gamma/genetics , Male , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Reperfusion Injury/immunology , Rats , Brain Ischemia/metabolism , Brain Ischemia/therapy , Neurons/metabolism , Humans , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Cell Death , Disease Models, Animal
5.
Gene Ther ; 31(5-6): 234-241, 2024 May.
Article in English | MEDLINE | ID: mdl-38135787

ABSTRACT

EPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy. If treated early, these children's normally developed brains could be rescued from the neurodegeneration that otherwise follows, and their cross-reactive immunological material (CRIM) positive status greatly reduces transgene related toxicity. We performed a proof-of-concept CSTB gene replacement study in Cstb knockout mice by introducing full-length human CSTB driven by the CBh promoter packaged in AAV9 and administered at postnatal days 21 and 60. Mice were sacrificed at 2 or 9 months of age, respectively. We observed significant improvements in expression levels of neuroinflammatory pathway genes and cerebellar granule cell layer apoptosis, as well as amelioration of motor impairment. The data suggest that gene replacement is a promising therapeutic modality for EPM1 and could spare affected children and families the ravages of this otherwise severe neurodegenerative disease.


Subject(s)
Cystatin B , Genetic Therapy , Mice, Knockout , Neuroinflammatory Diseases , Animals , Mice , Genetic Therapy/methods , Cystatin B/genetics , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/genetics , Humans , Ataxia/genetics , Ataxia/therapy , Myoclonic Epilepsies, Progressive/genetics , Myoclonic Epilepsies, Progressive/therapy , Dependovirus/genetics , Disease Models, Animal , Genetic Vectors/genetics , Genetic Vectors/administration & dosage
7.
Nature ; 619(7970): 606-615, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438521

ABSTRACT

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Subject(s)
Cell- and Tissue-Based Therapy , Dopaminergic Neurons , Graft Survival , Neuroinflammatory Diseases , Parkinson Disease , T-Lymphocytes, Regulatory , Tyrosine 3-Monooxygenase , Humans , Dopamine/analogs & derivatives , Dopamine/metabolism , Dopaminergic Neurons/immunology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/transplantation , Mesencephalon/pathology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/prevention & control , Neuroinflammatory Diseases/therapy , Parkinson Disease/complications , Parkinson Disease/pathology , Parkinson Disease/surgery , Parkinson Disease/therapy , Tyrosine 3-Monooxygenase/deficiency , Tyrosine 3-Monooxygenase/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation , Cell- and Tissue-Based Therapy/methods , Animals , Mice , Rats , Oxidopamine/metabolism , Graft Survival/immunology , Cell Death , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Neostriatum/metabolism , Time Factors , Cell Proliferation , Treatment Outcome
8.
Zhen Ci Yan Jiu ; 48(6): 557-63, 2023 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-37385786

ABSTRACT

OBJECTIVE: To observe the effects of electroacupuncture pretreatment on postoperative cognitive dysfunction (POCD), neuronal apoptosis and neuron-inflammation in aged rats. METHODS: Thirty-six male SD rats aged 20 months were randomly divided into sham operation group, model group and electroacupuncture (EA) group, with 12 rats in each group. The POCD rats model was prepared by internal fixation of left tibial fracture. Five days before modeling, EA stimulation (2 Hz/15 Hz, 1 mA, 30 min) was applied to "Zusanli" (ST36), "Hegu" (LI4) and "Neiguan" (PC6) on the unaffected side of rats in the EA group, once a day for consecutive 5 d. The learning and memory abilities of rats were evaluated by water maze test 31-35 days after operation. The apoptosis of hippocampal neurons was observed by Tunel/NeuN double staining. The expressions of high mobility group protein B1 (HMGB1) and phosphorylated (p)-nuclear factor (NF)-κB in microglia cells in hippocampal dentate gyrus were detected by immunofluorescence staining. The expression levels of interleukin (IL)-6 and IL-1ß in the hippocampus were detected by Western blot. RESULTS: Compared with the sham operation group, the escape latency was prolonged (P<0.05); the frequency of crossing the original platform, ratio of the swimming distance and the time in the target quadrant of the Morris water maze were significantly decreased (P<0.05); the apoptosis rate of hippocampal neurons was significantly increased (P<0.05); the expressions of HMGB1 and p-NF-κB in microglia cells in the dentate gyrus and the expression levels of IL-6 and IL-1ß in hippocampus were increased (P<0.05) in the model group. Compared with the model group, the results of the above indexes were all opposite (P<0.05) in the EA group. CONCLUSION: EA preconditioning can regulate hippocampal inflammatory response, alleviate neuronal apoptosis rate and long-term cognitive dysfunction in aged rats with POCD, the mechanisms may be related to the inhibition of microglia HMGB1/NF-κB pathway in hippocampal dentate gyrus.


Subject(s)
Electroacupuncture , Neuroinflammatory Diseases , Postoperative Cognitive Complications , Animals , Rats , Postoperative Cognitive Complications/prevention & control , Postoperative Cognitive Complications/therapy , Neuroinflammatory Diseases/prevention & control , Neuroinflammatory Diseases/therapy , HMGB1 Protein/genetics , Gene Expression Regulation , NF-kappa B/genetics , Interleukin-6/genetics , Interleukin-1beta/genetics
9.
Neurochem Int ; 162: 105463, 2023 01.
Article in English | MEDLINE | ID: mdl-36513311

ABSTRACT

NLRP3 inflammasome activation is implicated in irradiation-induced cognitive dysfunction. Alternate-day fasting (ADF) has been demonstrated to improve neuroinflammation as a non-pharmacological intervention. However, the exact mechanism and the anti-inflammatory effect in irradiation-induced cognitive dysfunction still need further in-depth study. The present study examined the effects of eight-week ADF on the cognitive functions of mice as well as inflammasome-mediated hippocampal neuronal loss following irradiation in mouse models of irradiation-induced cognitive deficits using seven-week-old male C57BL/6J mice. The behavioral results of novel place recognition and object recognition tasks revealed that ADF ameliorated cognitive functions in irradiation-induced cognitive dysfunction mice. ADF inhibited the expression of components of the NLRP3 inflammasome (NLRP3, ASC, and Cl.caspase-1), the downstream inflammatory factor (IL-1ß and IL-18), and apoptosis-related proteins (caspase-3) via western blotting. Furthermore, an increased number of neurons and activated astrocytes were observed in the hippocampus using immunohistochemistry and Sholl analysis, which was jointly confirmed by western blotting. According to our study, this is the first time we found that ADF improved cognitive dysfunction induced by irradiation, and the anti-inflammatory effect of ADF could be due to inhibition in NLRP3-mediated hippocampal neuronal loss by suppressing astrocyte activation.


Subject(s)
Cognitive Dysfunction , Hippocampus , Intermittent Fasting , Radiation Injuries , Animals , Male , Mice , Apoptosis Regulatory Proteins/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Hippocampus/pathology , Hippocampus/radiation effects , Inflammasomes/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Radiation Injuries/etiology , Radiation Injuries/prevention & control , Neuroinflammatory Diseases/therapy , Neurons/pathology , Neurons/radiation effects , Radiotherapy/adverse effects
11.
Biomater Adv ; 139: 212971, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35882128

ABSTRACT

Spinal cord injury (SCI) is a devastating condition resulting in loss of motor function. The pathology of SCI is multifaceted and involves a cascade of events, including neuroinflammation and neuronal degeneration at the epicenter, limiting repair process. We developed a supermacroporous, mechanically elastic, electro-conductive, graphene crosslinked collagen (Gr-Col) cryogels for the regeneration of the spinal cord post-injury. The effects of graphene in controlling astrocytes reactivity and microglia polarization are evaluated in spinal cord slice organotypic culture and rat spinal cord lateral hemisection model of SCI. In our work, the application of external electric stimulus results in the enhanced expression of neuronal markers in an organotypic culture. The implantation of Gr-Col cryogels in rat thoracic T9-T11 hemisection model demonstrates an improved functional recovery within 14 days post-injury (DPI), promoted myelination, and decreases the lesion volume at the injury site. Decrease in the expression of STAT3 in the implanted Gr-Col cryogels may be responsible for the decrease in astrocytes reactivity. Microglia cells within the implanted cryogels shows higher anti-inflammatory phenotype (M2) than inflammatory (M1) phenotype. The higher expression of mature axonal markers like ß-tubulin III, GAP43, doublecortin, and neurofilament 200 in the implanted Gr-Col cryogel confirms the axonal regeneration after 28 DPI. Gr-Col cryogels also modulate the production of ECM matrix, favouring the axonal regeneration. This study shows that Gr-Col cryogels decreases neuroinflammation and accelerate axonal regeneration.


Subject(s)
Axons , Collagen , Cryogels , Graphite , Nerve Regeneration , Neuroinflammatory Diseases , Spinal Cord Injuries , Animals , Axons/physiology , Collagen/therapeutic use , Cryogels/therapeutic use , Graphite/therapeutic use , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/therapy , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy
12.
Mol Nutr Food Res ; 66(18): e2200164, 2022 09.
Article in English | MEDLINE | ID: mdl-35819092

ABSTRACT

SCOPE: The gut microbiota plays a prominent role in gut-brain interactions and gut dysbiosis is involved in neuroinflammation. However, specific probiotics targeting neuroinflammation need to be explored. In this study, the antineuroinflammatory effect of the potential probiotic Roseburia hominis (R. hominis) and its underlying mechanisms is investigated. METHODS AND RESULTS: First, germ-free (GF) rats are orally treated with R. hominis. Microglial activation, proinflammatory cytokines, levels of short-chain fatty acids, depressive behaviors, and visceral sensitivity are assessed. Second, GF rats are treated with propionate or butyrate, and microglial activation, proinflammatory cytokines, histone deacetylase 1 (HDAC1), and histone H3 acetyl K9 (Ac-H3K9) are analyzed. The results show that R. hominis administration inhibits microglial activation, reduces the levels of IL-1α, INF-γ, and MCP-1 in the brain, and alleviates depressive behaviors and visceral hypersensitivity in GF rats. Moreover, the serum levels of propionate and butyrate are increased significantly in the R. hominis-treated group. Propionate or butyrate treatment reduces microglial activation, the levels of proinflammatory cytokines and HDAC1, and promotes the expression of Ac-H3K9 in the brain. CONCLUSION: These findings suggest that R. hominis alleviates neuroinflammation by producing propionate and butyrate, which serve as HDAC inhibitors. This study provides a potential psychoprobiotic to reduce neuroinflammation.


Subject(s)
Brain-Gut Axis , Butyrates , Clostridiales , Fatty Acids, Volatile , Histone Deacetylase 1 , Neuroinflammatory Diseases , Probiotics , Propionates , Animals , Butyrates/blood , Butyrates/metabolism , Clostridiales/metabolism , Cytokines/metabolism , Fatty Acids, Volatile/metabolism , Germ-Free Life , Histone Deacetylase 1/metabolism , Histones/metabolism , Neuroinflammatory Diseases/therapy , Probiotics/therapeutic use , Propionates/blood , Propionates/metabolism , Rats
13.
Lab Med ; 53(4): 426-432, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35311959

ABSTRACT

OBJECTIVE: The absence of specific markers can make the diagnosis of neuroimmune disorders difficult, making other biomarkers such as thyroid peroxidase antibodies (TPO-Abs) more relevant. Laboratory tests are susceptible to interference, especially those tests performed using immunoassay techniques. The effect of treatment with human intravenous immunoglobulin (IVIG) on the results of TPO-Abs assays has not been previously characterized. MATERIALS AND METHODS: We analyzed TPO-Abs levels in 170 children monitored in the neuroimmune disease department of a tertiary hospital. We analyzed the characteristics of patients with increased TPO-Abs values and compared their progress with and without treatment. RESULTS: We found that 97% of patients with elevated TPO-Abs had received IVIG. After withdrawal from IVIG, a mean TPO-Abs decrease of 62.5% at 1 month was observed. The IVIG drug preparation was found to contain 1176 U/mL of TPO-Abs. An interferogram confirmed interference. CONCLUSION: It is advisable to measure levels of TPO-Abs before starting immunotherapy and remain vigilant regarding possible interference in the event of unsubstantiated elevations of this analyte.


Subject(s)
Autoantibodies , Immunoglobulins, Intravenous , Iodide Peroxidase , Neuroinflammatory Diseases , Autoantibodies/blood , Biomarkers/blood , Child , Humans , Immunoglobulins, Intravenous/therapeutic use , Iodide Peroxidase/immunology , Neuroinflammatory Diseases/diagnosis , Neuroinflammatory Diseases/therapy
14.
Brain Res Bull ; 180: 46-58, 2022 03.
Article in English | MEDLINE | ID: mdl-34979238

ABSTRACT

Progressive hippocampal neuronal losses, neuroinflammation, declined neurogenesis and impaired hippocampal functions are pathological features of Alzheimer's disease and temporal lobe epilepsy (TLE). Halting neuroinflammation and progressive neurodegeneration in the hippocampus is a major challenge in treating such disease conditions which, if unsuccessful would lead to learning/memory dysfunction and co-morbidities like anxiety/depression. Mesenchymal stem cells (MSCs) therapy provides hope for treating neurodegenerative diseases by either replacing lost neurons by transplantation of MSCs which might differentiate into appropriate neuronal phenotypes or by stimulating the resident neural stem cells for proliferation/differentiation. In this current study, we demonstrate that the intrahippocampal transplantation of ectoderm originated dental pulp stem cells (DPSCs) or intrahippocampal injection of DPSCs condition medium (DPSCs-CM) in a mouse model of hippocampal neurodegeneration could efficiently prevent neurodegeneration, neuroinflammation, enhance hippocampal neurogenesis and spatial learning and memory functions much superior to commonly used bone marrow mesenchymal stem cells (BM-MSCs) or its secretome. Probing the possible mechanisms of neuroprotection revealed that DPSCs/DPSCs-CM treatment upregulated an array of hosts' endogenous neural survival factors expression, reduced pro-apoptotic caspase activity and upregulated the anti-apoptotic factors BCL-2 and phosphorylated PI3K prominently than BM-MSCs/BM-MSCs-CM, suggesting that among MSCs, neural crest originated DPSCs might be a better adult stem cell candidate for treating neurodegenerative diseases.


Subject(s)
Cognitive Dysfunction/therapy , Hippocampus/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Neurodegenerative Diseases/therapy , Neurogenesis/physiology , Neuroinflammatory Diseases/therapy , Neuroprotection/physiology , Animals , Apoptosis/physiology , Cognitive Dysfunction/etiology , Culture Media, Conditioned , Dental Pulp/physiology , Disease Models, Animal , Humans , Mice , Neurodegenerative Diseases/complications , Neuroinflammatory Diseases/etiology , Secretome/physiology
15.
Mol Neurobiol ; 59(1): 420-428, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34708330

ABSTRACT

Photobiomodulation is a non-pharmacological tool widely used to reduce inflammation in many tissues. However, little is known about its effects on the inflammatory response in the aged brain. We conducted the study to examine anti-inflammatory effects of photobiomodulation in aging brains. We used aged rats (20 months old) with control (handled, laser off) or transcranial laser (660 nm wavelength, 100 mW power) treatments for 10 consecutive days and evaluated the level of inflammatory cytokines and chemokines, and the expression and activation of intracellular signaling proteins in the cerebral cortex and the hippocampus. Inflammatory analysis showed that aged rats submitted to transcranial laser treatment had increased levels of IL-1alpha and decreased levels of IL-5 in the cerebral cortex. In the hippocampus, the laser treatment increased the levels of IL-1alpha and decreased levels of IL-5, IL-18, and fractalkine. Regarding the intracellular signaling proteins, a reduction in the ERK and p38 expression and an increase in the STAT3 and ERK activation were observed in the cerebral cortex of aged rats from the laser group. In addition, the laser treatment increased the hippocampal expression of p70S6K, STAT3, and p38 of aged rats. Taken together, our data indicate that transcranial photobiomodulation can improve the inflammatory response and the activation of intracellular signaling proteins linked to vascular function and cell survival in the aged brain.


Subject(s)
Aging/metabolism , Cell Survival/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Low-Level Light Therapy , Neuroinflammatory Diseases/therapy , Animals , Brain/metabolism , Cytokines/metabolism , Male , Neuroinflammatory Diseases/metabolism , Rats , Rats, Wistar
16.
Oxid Med Cell Longev ; 2021: 4280951, 2021.
Article in English | MEDLINE | ID: mdl-34790287

ABSTRACT

Decompressive craniectomy is an effective strategy to reduce intracranial hypertension after traumatic brain injury (TBI), but it is related to many postoperative complications, such as delayed intracranial hematoma and diffuse brain swelling. Our previous studies have demonstrated that controlled decompression (CDC) surgery attenuates brain injury and reduces the rate of complications after TBI. Here, we investigated the potential molecular mechanisms of CDC in experimental models. The in vitro experiments were performed in a traumatic neuronal injury (TNI) model following compression treatment in primary cultured cortical neurons. We found that compression aggravates TNI-induced neuronal injury, which was significantly attenuated by CDC for 2 h or 3 h. The results of immunocytochemistry showed that CDC reduced neuronal necroptosis and activation of RIP3 induced by TNI and compression, with no effect on RIP1 activity. These protective effects were associated with decreased levels of inflammatory cytokines and preserved intracellular Ca2+ homeostasis. In addition, the expression of the two-pore domain K+ channel TREK-1 and its activity was increased by compression and prolonged by CDC. Treatment with the TREK-1 blockers, spadin or SID1900, could partially prevent the effects of CDC on intracellular Ca2+ metabolism, necroptosis, and neuronal injury following TNI and compression. Using a traumatic intracranial hypertension model in rats, we found that CDC for 20 min or 30 min was effective in alleviating brain edema and locomotor impairment in vivo. CDC significantly inhibited neuronal necroptosis and neuroinflammation and increased TREK-1 activation, and the CDC-induced protection in vivo was attenuated by spadin and SID1900. In summary, CDC is effective in alleviating compressive neuronal injury both in vitro and in vivo, which is associated with the TREK-1-mediated attenuation of intracellular Ca2+ overload, neuronal necroptosis, and neuroinflammation.


Subject(s)
Brain Edema/therapy , Brain Injuries, Traumatic/complications , Cerebral Hemorrhage/therapy , Decompression/methods , Necroptosis , Neuroinflammatory Diseases/therapy , Potassium Channels, Tandem Pore Domain/metabolism , Animals , Brain Edema/etiology , Brain Edema/metabolism , Brain Edema/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neurons/metabolism , Neurons/pathology , Rats , Rats, Sprague-Dawley
17.
J Neuropathol Exp Neurol ; 80(9): 844-855, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34343334

ABSTRACT

Gastrointestinal dysfunction is the main nonmotor characteristic of Parkinson disease (PD), manipulation of gastrointestinal function by altering gut-brain axis is a potentially novel entry point for the treatment of PD. Acupuncture has been reported to confer beneficial effects in the gastrointestinal diseases. Therefore, this study aimed to explore the effects and mechanism of acupuncture on the pathophysiology and gastrointestinal function of PD. A PD mouse model was established by rotenone, and electroacupuncture was used to regulate the gastrointestinal function. Rotenone was found to induce the types of brain pathologies and gastrointestinal dysfunction that are similar to those observed with PD. Electroacupuncture significantly increased the spontaneous activity of mice with PD and increased the expression of tyrosine hydroxylase, while reducing the expression of Iba-1 in substantia nigra (SN), suggesting that motor dysfunction and neurological damage was alleviated. In addition, electroacupuncture significantly reduced the deposition of α-synuclein in both colon and SN, reduced intestinal inflammation, and exerted protective effects on enteric nervous system and intestinal barrier. In conclusion, electroacupuncture confers beneficial effects on the gastrointestinal system of mice with PD and can alleviate neuroinflammation and neuropathic injury by inhibiting intestinal inflammation, promoting intestinal barrier repair and reducing α-synuclein deposition in the colon.


Subject(s)
Electroacupuncture , Motor Activity/physiology , Neuroinflammatory Diseases/therapy , Parkinson Disease/therapy , Animals , Colon/metabolism , Disease Models, Animal , Electroacupuncture/methods , Enteric Nervous System/metabolism , Mice , Neuroinflammatory Diseases/physiopathology , Parkinson Disease/physiopathology , Tyrosine 3-Monooxygenase/metabolism
18.
Oxid Med Cell Longev ; 2021: 6640206, 2021.
Article in English | MEDLINE | ID: mdl-34336109

ABSTRACT

Neurodevelopmental disorders are a category of diseases that is not yet fully understood. Due to their common traits and pathways, often it is difficult to differentiate between them based on their symptoms only. A series of hypotheses are trying to define their etiology, such as neuroinflammation, neurodegeneration, and immunology, but none have managed to explain their multifactorial manifestation. One feature that may link all theories is that of oxidative stress, with a redox imbalance as well as several other markers of oxidative damage (on lipids, proteins, and nucleic acids) being observed in both postmortem samples of the brain of patients with schizophrenia and autism spectrum disorders. However, the implication of oxidative stress in pathology is still distrustfully looked upon. For this purpose, in the current paper, we were interested in reviewing the implications of oxidative stress in these disorders as well as the impact of N-acetylcysteine on the oxidative status with a focus on the glutathione level and N-methyl-D-aspartate receptor. We were also interested in finding papers targeting the use of antioxidant properties of different plant extracts.


Subject(s)
Neuroinflammatory Diseases/therapy , Oxidative Stress/immunology , Animals , Humans
19.
Viruses ; 13(7)2021 06 26.
Article in English | MEDLINE | ID: mdl-34206839

ABSTRACT

The persistence of human immunodeficiency virus-1 (HIV)-associated neurocognitive disorders (HAND) in the era of effective antiretroviral therapy suggests that modern HIV neuropathogenesis is driven, at least in part, by mechanisms distinct from the viral life cycle. Identifying more subtle mechanisms is complicated by frequent comorbidities in HIV+ populations. One of the common confounds is substance abuse, with cannabis being the most frequently used psychoactive substance among people living with HIV. The psychoactive effects of cannabis use can themselves mimic, and perhaps magnify, the cognitive deficits observed in HAND; however, the neuromodulatory and anti-inflammatory properties of cannabinoids may counter HIV-induced excitotoxicity and neuroinflammation. Here, we review our understanding of the cross talk between HIV and cannabinoids in the central nervous system by exploring both clinical observations and evidence from preclinical in vivo and in vitro models. Additionally, we comment on recent advances in human, multi-cell in vitro systems that allow for more translatable, mechanistic studies of the relationship between cannabinoid pharmacology and this uniquely human virus.


Subject(s)
Anti-HIV Agents/therapeutic use , Cannabinoids/therapeutic use , HIV Infections/complications , HIV Infections/therapy , HIV-1/drug effects , Neuroinflammatory Diseases/therapy , Animals , Anti-HIV Agents/pharmacology , Cannabinoids/pharmacology , Cannabinoids/standards , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , In Vitro Techniques , Mice , Psychotropic Drugs/pharmacology , Psychotropic Drugs/standards , Psychotropic Drugs/therapeutic use
20.
Immunol Lett ; 238: 1-20, 2021 10.
Article in English | MEDLINE | ID: mdl-34293378

ABSTRACT

Known as one of the most sophisticated systems of the human body, the nervous system consists of neural cells and controls all parts of the body. It is closely related to the immune system. The effects of inflammation and immune reactions have been observed in the pathogenesis of some neurological disorders. Defined as the gene expression regulators, miRNAs participate in cellular processes. miR-146a is a mediator in the neuroimmune system, leaving substantial effects on the homeostasis of immune and brain cells, neuronal identities acquisition, and immune responses regulation in the nervous system. Its positive efficiency has been proven in modulating inflammatory reactions, hemorrhagic complications, and pain. Moreover, the miR-146a targets play a key role in the pathogenesis of these illnesses. Based on the performance of its targets, miR-146a can have various effects on the disease progress. The abnormal expression/function of miR-146a has been reported in neuroinflammatory disorders. There is research evidence that this molecule qualifies as a desirable biomarker for some disorders and can even be a therapeutic target. This study aims to provide a meticulous review regarding the roles of miR-146a in the pathogenesis and progression of several neuroinflammatory disorders such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, temporal lobe epilepsy, ischemic stroke, etc. The study also considers its eligibility for use as an ideal biomarker and therapeutic target in these diseases. The awareness of these mechanisms can facilitate the disease management/treatment, lead to patients' amelioration, improve the quality of life, and mitigate the risk of death.


Subject(s)
Biomarkers , Gene Expression Regulation , MicroRNAs/genetics , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , RNA Interference , Animals , Diagnosis, Differential , Disease Management , Disease Susceptibility , Humans , Neuroimmunomodulation/genetics , Neuroimmunomodulation/immunology , Neuroinflammatory Diseases/diagnosis , Neuroinflammatory Diseases/therapy , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...