Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 21(1): 115, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698374

ABSTRACT

BACKGROUND: Macrophages play a pivotal role in the regulation of Japanese encephalitis (JE), a severe neuroinflammation in the central nervous system (CNS) following infection with JE virus (JEV). Macrophages are known for their heterogeneity, polarizing into M1 or M2 phenotypes in the context of various immunopathological diseases. A comprehensive understanding of macrophage polarization and its relevance to JE progression holds significant promise for advancing JE control and therapeutic strategies. METHODS: To elucidate the role of NADPH oxidase-derived reactive oxygen species (ROS) in JE progression, we assessed viral load, M1 macrophage accumulation, and cytokine production in WT and NADPH oxidase 2 (NOX2)-deficient mice using murine JE model. Additionally, we employed bone marrow (BM) cell-derived macrophages to delineate ROS-mediated regulation of macrophage polarization by ROS following JEV infection. RESULTS: NOX2-deficient mice exhibited increased resistance to JE progression rather than heightened susceptibility, driven by the regulation of macrophage polarization. These mice displayed reduced viral loads in peripheral lymphoid tissues and the CNS, along with diminished infiltration of inflammatory cells into the CNS, thereby resulting in attenuated neuroinflammation. Additionally, NOX2-deficient mice exhibited enhanced JEV-specific Th1 CD4 + and CD8 + T cell responses and increased accumulation of M1 macrophages producing IL-12p40 and iNOS in peripheral lymphoid and inflamed extraneural tissues. Mechanistic investigations revealed that NOX2-deficient macrophages displayed a more pronounced differentiation into M1 phenotypes in response to JEV infection, thereby leading to the suppression of viral replication. Importantly, the administration of H2O2 generated by NOX2 was shown to inhibit M1 macrophage polarization. Finally, oral administration of the ROS scavenger, butylated hydroxyanisole (BHA), bolstered resistance to JE progression and reduced viral loads in both extraneural tissues and the CNS, along with facilitated accumulation of M1 macrophages. CONCLUSION: In light of our results, it is suggested that ROS generated by NOX2 play a role in undermining the control of JEV replication within peripheral extraneural tissues, primarily by suppressing M1 macrophage polarization. Subsequently, this leads to an augmentation in the viral load invading the CNS, thereby facilitating JE progression. Hence, our findings ultimately underscore the significance of ROS-mediated macrophage polarization in the context of JE progression initiated JEV infection.


Subject(s)
Macrophages , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2 , Animals , Mice , Macrophages/metabolism , Macrophages/immunology , Macrophages/virology , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Encephalitis, Japanese/immunology , Reactive Oxygen Species/metabolism , Encephalitis Virus, Japanese , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/virology , Cell Polarity/drug effects , Cell Polarity/physiology
2.
Methods Mol Biol ; 2807: 271-283, 2024.
Article in English | MEDLINE | ID: mdl-38743235

ABSTRACT

The blood-brain barrier (BBB) is one of several barriers between the brain and the peripheral blood system to maintain homeostasis. Understanding the interactions between infectious agents such as human immunodeficiency virus type 1 (HIV-1), which are capable of traversing the BBB and causing neuroinflammation requires modeling an authentic BBB in vitro. Such an in vitro BBB model also helps develop means of targeting viruses that reside in the brain via natural immune effectors such as antibodies. The BBB consists of human brain microvascular endothelial cells (HBMECs), astrocytes, and pericytes. Here we report in vitro methods to establish a dual-cell BBB model consisting of primary HBMECs and primary astrocytes to measure the integrity of the BBB and antibody penetration of the BBB, as well as a method to establish a single cell BBB model to study the impact of HIV-1 infected medium on the integrity of such a BBB.


Subject(s)
Astrocytes , Blood-Brain Barrier , Endothelial Cells , HIV Infections , HIV-1 , Blood-Brain Barrier/virology , Blood-Brain Barrier/metabolism , Humans , Astrocytes/virology , Astrocytes/metabolism , Astrocytes/immunology , Endothelial Cells/virology , Endothelial Cells/metabolism , Endothelial Cells/immunology , HIV-1/immunology , HIV-1/physiology , HIV Infections/virology , HIV Infections/immunology , Pericytes/virology , Pericytes/metabolism , Pericytes/immunology , Neuroinflammatory Diseases/virology , Neuroinflammatory Diseases/immunology , Coculture Techniques/methods , Cells, Cultured , Brain/virology , Brain/immunology , Brain/metabolism
3.
Emerg Microbes Infect ; 13(1): 2348528, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38662785

ABSTRACT

Zika is a systemic inflammatory disease caused by infection with Zika virus (ZIKV). ZIKV infection in adults is associated with encephalitis marked by elevated expression of pro-inflammatory cytokines and chemokines, as well as increased brain infiltration of immune cells. In this study, we demonstrate that ZIKV encephalitis in a mouse infection model exhibits increased brain TSPO expression. TSPO expression on brain-resident and infiltrating immune cells in ZIKV infection correlates with disease and inflammation status in the brain. Brain TSPO expression can also be sensitively detected ex vivo and in vitro using radioactive small molecule probes that specifically bind to TSPO, such as [3H]PK11195. TSPO expression on brain-resident and infiltrating immune cells is a biomarker of ZIKV neuroinflammation, which can also be a general biomarker of acute viral neuroinflammatory disease.


Subject(s)
Biomarkers , Brain , Neuroinflammatory Diseases , Receptors, GABA , Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/virology , Zika Virus Infection/immunology , Zika Virus Infection/metabolism , Mice , Receptors, GABA/metabolism , Receptors, GABA/genetics , Zika Virus/immunology , Brain/virology , Brain/metabolism , Brain/pathology , Neuroinflammatory Diseases/virology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Disease Models, Animal , Humans , Mice, Inbred C57BL , Female , Cytokines/metabolism
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167097, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38408544

ABSTRACT

Zika virus (ZIKV) infection was first associated with Central Nervous System (CNS) infections in Brazil in 2015, correlated with an increased number of newborns with microcephaly, which ended up characterizing the Congenital Zika Syndrome (CZS). Here, we investigated the impact of ZIKV infection on the functionality of iPSC-derived astrocytes. Besides, we extrapolated our findings to a Brazilian cohort of 136 CZS children and validated our results using a mouse model. Interestingly, ZIKV infection in neuroprogenitor cells compromises cell migration and causes apoptosis but does not interfere in astrocyte generation. Moreover, infected astrocytes lost their ability to uptake glutamate while expressing more glutamate transporters and secreted higher levels of IL-6. Besides, infected astrocytes secreted factors that impaired neuronal synaptogenesis. Since these biological endophenotypes were already related to Autism Spectrum Disorder (ASD), we extrapolated these results to a cohort of children, now 6-7 years old, and found seven children with ASD diagnosis (5.14 %). Additionally, mice infected by ZIKV revealed autistic-like behaviors, with a significant increase of IL-6 mRNA levels in the brain. Considering these evidence, we inferred that ZIKV infection during pregnancy might lead to synaptogenesis impairment and neuroinflammation, which could increase the risk for ASD.


Subject(s)
Astrocytes , Autism Spectrum Disorder , Neuroinflammatory Diseases , Synapses , Zika Virus Infection , Zika Virus , Zika Virus Infection/pathology , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Zika Virus Infection/complications , Autism Spectrum Disorder/virology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/pathology , Humans , Animals , Mice , Zika Virus/physiology , Female , Child , Synapses/metabolism , Synapses/pathology , Neuroinflammatory Diseases/virology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/etiology , Astrocytes/virology , Astrocytes/metabolism , Astrocytes/pathology , Male , Interleukin-6/metabolism , Interleukin-6/genetics , Pregnancy , Risk Factors , Induced Pluripotent Stem Cells/virology , Induced Pluripotent Stem Cells/metabolism , Brazil/epidemiology , Disease Models, Animal , Neurogenesis
6.
J Neurovirol ; 30(1): 1-21, 2024 02.
Article in English | MEDLINE | ID: mdl-38280928

ABSTRACT

Opioid overdose deaths have dramatically increased by 781% from 1999 to 2021. In the setting of HIV, opioid drug abuse exacerbates neurotoxic effects of HIV in the brain, as opioids enhance viral replication, promote neuronal dysfunction and injury, and dysregulate an already compromised inflammatory response. Despite the rise in fentanyl abuse and the close association between opioid abuse and HIV infection, the interactive comorbidity between fentanyl abuse and HIV has yet to be examined in vivo. The HIV-1 Tat-transgenic mouse model was used to understand the interactive effects between fentanyl and HIV. Tat is an essential protein produced during HIV that drives the transcription of new virions and exerts neurotoxic effects within the brain. The Tat-transgenic mouse model uses a glial fibrillary acidic protein (GFAP)-driven tetracycline promoter which limits Tat production to the brain and this model is well used for examining mechanisms related to neuroHIV. After 7 days of fentanyl exposure, brains were harvested. Tight junction proteins, the vascular cell adhesion molecule, and platelet-derived growth factor receptor-ß were measured to examine the integrity of the blood brain barrier. The immune response was assessed using a mouse-specific multiplex chemokine assay. For the first time in vivo, we demonstrate that fentanyl by itself can severely disrupt the blood-brain barrier and dysregulate the immune response. In addition, we reveal associations between inflammatory markers and tight junction proteins at the blood-brain barrier.


Subject(s)
Blood-Brain Barrier , Fentanyl , HIV-1 , Mice, Transgenic , Neuroinflammatory Diseases , tat Gene Products, Human Immunodeficiency Virus , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/virology , Mice , Fentanyl/pharmacology , HIV-1/drug effects , HIV-1/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/virology , HIV Infections/virology , HIV Infections/genetics , HIV Infections/pathology , HIV Infections/drug therapy , Disease Models, Animal , Analgesics, Opioid/pharmacology , Analgesics, Opioid/adverse effects , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Humans , Brain/drug effects , Brain/virology , Brain/metabolism , Brain/pathology , Opioid-Related Disorders/genetics , Opioid-Related Disorders/pathology , Opioid-Related Disorders/metabolism
7.
IUBMB Life ; 76(6): 313-331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38116887

ABSTRACT

Although Multiple Sclerosis (MS) is primarily thought to be an autoimmune condition, its possible viral etiology must be taken into consideration. When mice are administered neurotropic viruses like mouse hepatitis virus MHV-A59, a murine coronavirus, or its isogenic recombinant strain RSA59, neuroinflammation along with demyelination are observed, which are some of the significant manifestations of MS. MHV-A59/RSA59 induced neuroinflammation is one of the best-studied experimental animal models to understand the viral-induced demyelination concurrent with axonal loss. In this experimental animal model, one of the major immune checkpoint regulators is the CD40-CD40L dyad, which helps in mediating both acute-innate, innate-adaptive, and chronic-adaptive immune responses. Hence, they are essential in reducing acute neuroinflammation and chronic progressive adaptive demyelination. While CD40 is expressed on antigen-presenting cells and endothelial cells, CD40L is expressed primarily on activated T cells and during severe inflammation on NK cells and mast cells. Experimental evidences revealed that genetic deficiency of both these proteins can lead to deleterious effects in an individual. On the other hand, interferon-stimulated genes (ISGs) possess potent antiviral properties and directly or indirectly alter acute neuroinflammation. In this review, we will discuss the role of an ISG, ISG54, and its tetratricopeptide repeat protein Ifit2; the genetic and experimental studies on the role of CD40 and CD40L in a virus-induced neuroinflammatory demyelination model.


Subject(s)
CD40 Antigens , CD40 Ligand , Demyelinating Diseases , Murine hepatitis virus , Neuroinflammatory Diseases , Animals , CD40 Ligand/metabolism , CD40 Ligand/genetics , CD40 Ligand/immunology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/virology , Demyelinating Diseases/virology , Demyelinating Diseases/pathology , Demyelinating Diseases/immunology , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Humans , CD40 Antigens/metabolism , CD40 Antigens/genetics , CD40 Antigens/immunology , Murine hepatitis virus/pathogenicity , Murine hepatitis virus/immunology , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , Multiple Sclerosis/pathology , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Disease Models, Animal
8.
J Virol ; 97(12): e0118323, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37991381

ABSTRACT

IMPORTANCE: Central nervous system infection by flaviviruses such as Japanese encephalitis virus, Dengue virus, and West Nile virus results in neuroinflammation and neuronal damage. However, little is known about the role of long non-coding RNAs (lncRNAs) in flavivirus-induced neuroinflammation and neuronal cell death. Here, we characterized the role of a flavivirus-induced lncRNA named JINR1 during the infection of neuronal cells. Depletion of JINR1 during virus infection reduces viral replication and cell death. An increase in GRP78 expression by JINR1 is responsible for promoting virus replication. Flavivirus infection induces the expression of a cellular protein RBM10, which interacts with JINR1. RBM10 and JINR1 promote the proinflammatory transcription factor NF-κB activity, which is detrimental to cell survival.


Subject(s)
Cell Death , Encephalitis Virus, Japanese , NF-kappa B , Neurons , RNA, Long Noncoding , RNA-Binding Proteins , Humans , Encephalitis Virus, Japanese/growth & development , Encephalitis Virus, Japanese/pathogenicity , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/virology , NF-kappa B/metabolism , RNA, Long Noncoding/genetics , RNA-Binding Proteins/metabolism , Neurons/pathology , Neurons/virology , Virus Replication
9.
J Virol ; 97(6): e0055623, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37191498

ABSTRACT

During the 2015-2016 Zika virus (ZIKV) epidemic, ZIKV-associated neurological diseases were reported in adults, including microcephaly, Guillain-Barre syndrome, myelitis, meningoencephalitis, and fatal encephalitis. However, the mechanisms underlying the neuropathogenesis of ZIKV infection are not yet fully understood. In this study, we used an adult ZIKV infection mouse model (Ifnar1-/-) to investigate the mechanisms underlying neuroinflammation and neuropathogenesis. ZIKV infection induced the expression of proinflammatory cytokines, including interleukin-1ß (IL-1ß), IL-6, gamma interferon, and tumor necrosis factor alpha, in the brains of Ifnar1-/- mice. RNA-seq analysis of the infected mouse brain also revealed that genes involved in innate immune responses and cytokine-mediated signaling pathways were significantly upregulated at 6 days postinfection. Furthermore, ZIKV infection induced macrophage infiltration and activation and augmented IL-1ß expression, whereas microgliosis was not observed in the brain. Using human monocyte THP-1 cells, we confirmed that ZIKV infection promotes inflammatory cell death and increases IL-1ß secretion. In addition, expression of the complement component C3, which is associated with neurodegenerative diseases and known to be upregulated by proinflammatory cytokines, was induced by ZIKV infection through the IL-1ß-mediated pathway. An increase in C5a produced by complement activation in the brains of ZIKV-infected mice was also verified. Taken together, our results suggest that ZIKV infection in the brain of this animal model augments IL-1ß expression in infiltrating macrophages and elicits IL-1ß-mediated inflammation, which can lead to the destructive consequences of neuroinflammation. IMPORTANCE Zika virus (ZIKV) associated neurological impairments are an important global health problem. Our results suggest that ZIKV infection in the mouse brain can induce IL-1ß-mediated inflammation and complement activation, thereby contributing to the development of neurological disorders. Thus, our findings reveal a mechanism by which ZIKV induces neuroinflammation in the mouse brain. Although we used adult type I interferon receptor IFNAR knockout (Ifnar1-/-) mice owing to the limited mouse models of ZIKV pathogenesis, our conclusions contributed to the understanding ZIKV-associated neurological diseases to develop treatment strategies for patients with ZIKV infection based on these findings.


Subject(s)
Brain , Interleukin-1beta , Macrophages , Zika Virus Infection , Animals , Humans , Mice , Brain/immunology , Cytokines/immunology , Inflammation/immunology , Interleukin-1beta/immunology , Macrophages/immunology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/virology , Zika Virus , Zika Virus Infection/immunology , Transcriptome/immunology , Disease Models, Animal , Neurons/immunology , Neurons/virology
10.
J Neuroinflammation ; 19(1): 293, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482436

ABSTRACT

BACKGROUND: HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is an incapacitating neuroinflammatory disorder for which no disease-modifying therapy is available, but corticosteroids provide some clinical benefit. Although HAM/TSP pathogenesis is not fully elucidated, older age, female sex and higher proviral load are established risk factors. We investigated systemic cytokines and a novel chronic inflammatory marker, GlycA, as possible biomarkers of immunopathogenesis and therapeutic response in HAM/TSP, and examined their interaction with established risk factors. PATIENTS AND METHODS: We recruited 110 People living with HTLV-1 (PLHTLV-1, 67 asymptomatic individuals and 43 HAM/TSP patients) with a total of 946 person-years of clinical follow-up. Plasma cytokine levels (IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, TNF) and GlycA were quantified by Cytometric Bead Array and 1NMR, respectively. Cytokine signaling and prednisolone response were validated in an independent cohort by nCounter digital transcriptomics. We used multivariable regression, machine learning algorithms and Bayesian network learning for biomarker identification. RESULTS: We found that systemic IL-6 was positively correlated with both age (r = 0.50, p < 0.001) and GlycA (r = 0.45, p = 0.00049) in asymptomatics, revealing an 'inflammaging" signature which was absent in HAM/TSP. GlycA levels were higher in women (p = 0.0069), but cytokine levels did not differ between the sexes. IFN-γ (p = 0.007) and IL-17A (p = 0.0001) levels were increased in untreated HAM/TSP Multivariable logistic regression identified IL-17A and proviral load as independent determinants of clinical status, resulting in modest accuracy of predicting HAM/TSP status (64.1%), while a machine learning-derived decision tree classified HAM/TSP patients with 90.7% accuracy. Pre-treatment GlycA and TNF levels significantly predicted clinical worsening (measured by Osame Motor Disability Scale), independent of proviral load. In addition, a poor prednisolone response was significantly correlated with higher post-treatment IFN-γ levels. Likewise, a transcriptomic IFN signaling score, significantly correlated with previously proposed HAM/TSP biomarkers (CASP5/CXCL10/FCGR1A/STAT1), was efficiently blunted by in vitro prednisolone treatment of PBMC from PLHTLV-1 and incident HAM/TSP. CONCLUSIONS: An age-related increase in systemic IL-6/GlycA levels reveals inflammaging in PLHTLV-1, in the absence of neurological disease. IFN-γ and IL-17A are biomarkers of untreated HAM/TSP, while pre-treatment GlycA and TNF predict therapeutic response to prednisolone pulse therapy, paving the way for a precision medicine approach in HAM/TSP.


Subject(s)
HTLV-I Infections , Motor Disorders , Neuroinflammatory Diseases , Female , Humans , Bayes Theorem , Cytokines , Human T-lymphotropic virus 1 , Interleukin-17 , Interleukin-6 , Leukocytes, Mononuclear , Motor Disorders/virology , Neuroinflammatory Diseases/virology , HTLV-I Infections/complications
11.
Cells ; 11(20)2022 10 17.
Article in English | MEDLINE | ID: mdl-36291123

ABSTRACT

HIV-1 mediated neurotoxicity is thought to be associated with HIV-1 viral proteins activating astrocytes and microglia by inducing inflammatory cytokines leading to the development of HIV-associated neurocognitive disorder (HAND). In the current study, we observe how HIV-1 Nef upregulates the levels of IL-6, IP-10, and TNF-α around 6.0fold in normal human astrocytes (NHAs) compared to cell and empty vector controls. Moderate downregulation in the expression profile of inflammatory cytokines was observed due to RNA interference. Furthermore, we determine the impact of inflammatory cytokines in the upregulation of kynurenine pathway metabolites, such as indoleamine 2,3-dioxygenase (IDO), and 3-hydroxyanthranilic acid oxygenase (HAAO) in NHA, and found the same to be 3.0- and 3.2-fold, respectively. Additionally, the variation in the level of nitric oxide before and after RNA interference was significant. The upregulated cytokines and pathway-specific metabolites could be linked with the neurotoxic potential of HIV-1 Nef. Thus, the downregulation in cytokines and kynurenine metabolites observed after siRNA-Nef interference indicates the possibility of combining the RNA interference approach with current antiretroviral therapy to prevent neurotoxicity development.


Subject(s)
Astrocytes , HIV Infections , HIV-1 , Neuroinflammatory Diseases , nef Gene Products, Human Immunodeficiency Virus , Humans , 3-Hydroxyanthranilate 3,4-Dioxygenase/genetics , 3-Hydroxyanthranilate 3,4-Dioxygenase/metabolism , Astrocytes/metabolism , Astrocytes/virology , Chemokine CXCL10/metabolism , Cytokines/metabolism , HIV Infections/genetics , HIV Infections/virology , HIV-1/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interleukin-6/metabolism , Kynurenine/metabolism , Nitric Oxide/metabolism , RNA, Small Interfering/metabolism , Transcriptome , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/virology , Gene Expression Profiling , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism
12.
J Virol ; 96(17): e0108122, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35975996

ABSTRACT

Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons. The latency associated transcript (LAT) is the only viral gene abundantly expressed during latency. Wild-type (WT) HSV-1 reactivates more efficiently than LAT mutants because LAT promotes establishment and maintenance of latency. While sensory neurons in trigeminal ganglia (TG) are important sites for latency, brainstem is also a site for latency and reactivation from latency. The principal sensory nucleus of the spinal trigeminal tract (Pr5) likely harbors latent HSV-1 because it receives afferent inputs from TG. The locus coeruleus (LC), an adjacent brainstem region, sends axonal projections to cortical structures and is indirectly linked to Pr5. Senescent cells accumulate in the nervous system during aging and accelerate neurodegenerative processes. Generally senescent cells undergo irreversible cell cycle arrest and produce inflammatory cytokines and chemokines. Based on these observations, we hypothesized HSV-1 influences senescence and inflammation in Pr5 and LC of latently infected mice. This hypothesis was tested using a mouse model of infection. Strikingly, female but not age-matched male mice latently infected with a LAT null mutant (dLAT2903) exhibited significantly higher levels of senescence markers and inflammation in LC, including cell cycle inhibitor p16, NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), IL-1α, and IL-ß. Conversely, Pr5 in female but not male mice latently infected with WT HSV-1 or dLAT2903 exhibited enhanced expression of important inflammatory markers. The predilection of HSV-1 to induce senescence and inflammation in key brainstem regions of female mice infers that enhanced neurodegeneration occurs. IMPORTANCE HSV-1 (herpes simplex virus 1), an important human pathogen, establishes lifelong latency in neurons in trigeminal ganglia and the central nervous system. In contrast to productive infection, the only viral transcript abundantly expressed in latently infected neurons is the latency associated transcript (LAT). The brainstem, including principal sensory nucleus of the spinal trigeminal tract (Pr5) and locus coeruleus (LC), may expedite HSV-1 spread from trigeminal ganglia to the brain. Enhanced senescence and expression of key inflammatory markers were detected in LC of female mice latently infected with a LAT null mutant (dLAT2903) relative to age-matched male or female mice latently infected with wild-type HSV-1. Conversely, wild-type HSV-1 and dLAT2903 induced higher levels of senescence and inflammatory markers in Pr5 of latently infected female mice. In summary, enhanced inflammation and senescence in LC and Pr5 of female mice latently infected with HSV-1 are predicted to accelerate neurodegeneration.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Neuroinflammatory Diseases , Animals , Brain Stem/virology , Cellular Senescence , Female , Herpes Simplex/pathology , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/physiology , Inflammation , Male , Mice , Mice, Inbred NOD , Neuroinflammatory Diseases/virology , Trigeminal Ganglion/virology , Virus Latency
13.
J Virol ; 96(17): e0006522, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35993737

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a recently emerging bat-borne coronavirus responsible for high mortality rates in piglets. In vitro studies have indicated that SADS-CoV has a wide tissue tropism in different hosts, including humans. However, whether this virus potentially threatens other animals remains unclear. Here, we report the experimental infection of wild-type BALB/c and C57BL/6J suckling mice with SADS-CoV. We found that mice less than 7 days old are susceptible to the virus, which caused notable multitissue infections and damage. The mortality rate was the highest in 2-day-old mice and decreased in older mice. Moreover, a preliminary neuroinflammatory response was observed in 7-day-old SADS-CoV-infected mice. Thus, our results indicate that SADS-CoV has potential pathogenicity in young hosts. IMPORTANCE SADS-CoV, which likely has originated from bat coronaviruses, is highly pathogenic to piglets and poses a threat to the swine industry. Little is known about its potential to disseminate to other animals. No efficient treatment is available, and the quarantine strategy is the only preventive measure. In this study, we demonstrated that SADS-CoV can efficiently replicate in suckling mice younger than 7 days. In contrast to infected piglets, in which intestinal tropism is shown, SADS-CoV caused infection and damage in all murine tissues evaluated in this study. In addition, neuroinflammatory responses were detected in some of the infected mice. Our work provides a preliminary cost-effective model for the screening of antiviral drugs against SADS-CoV infection.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Diarrhea , Mice , Swine Diseases , Alphacoronavirus/pathogenicity , Animals , Chiroptera/virology , Coronavirus Infections/complications , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Diarrhea/complications , Diarrhea/veterinary , Diarrhea/virology , Humans , Mice/virology , Mice, Inbred BALB C , Mice, Inbred C57BL , Neuroinflammatory Diseases/complications , Neuroinflammatory Diseases/veterinary , Neuroinflammatory Diseases/virology , Swine/virology , Swine Diseases/virology
14.
Acta Neurol Belg ; 122(4): 865-869, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35690992

ABSTRACT

The related neurologic complications of SARS-CoV-2 infection in COVID-19 patients and survivors comprise symptoms including depression, anxiety, muscle pain, dizziness, headaches, fatigue, and anosmia/hyposmia that may continue for months. Recent studies have been demonstrated that chemokines have brain-specific attraction and effects such as chemotaxis, cell adhesion, modulation of neuroendocrine functions, and neuroinflammation. CCL11 is a member of the eotaxin family that is chemotactic agents for eosinophils and participate in innate immunity. Eotaxins may exert physiological and pathological functions in the central nerve system, and CCL11 may induce neuronal cytotoxicity effects by inducing the production of reactive oxygen species (ROS) in microglia cells. Plasma levels of CCL11 elevated in neuroinflammation and neurodegenerative disorders. COVID-19 patients display elevations in CCL11 levels. As CCL11 plays roles in physiosomatic and neuroinflammation, analyzing the level of this chemokine in COVID-19 patients during hospitalization and to predicting post-COVID-19-related neurologic complications may be worthwhile. Moreover, using chemokine modulators may be helpful in lessening the neurologic complications in such patients.


Subject(s)
COVID-19 , Chemokine CCL11 , Neuroinflammatory Diseases , COVID-19/complications , COVID-19/metabolism , Chemokine CCL11/metabolism , Humans , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/virology , SARS-CoV-2
15.
Cells ; 11(8)2022 04 11.
Article in English | MEDLINE | ID: mdl-35455977

ABSTRACT

The novel coronavirus (2019-nCoVCOVID-19) belongs to the Beta coronavirus family, which contains MERS-CoV (Middle East respiratory syndrome coronavirus) and SARS-CoV (severe acute respiratory syndrome coronavirus). SARS-CoV-2 activates the innate immune system, thereby activating the inflammatory mechanism, causing the release of inflammatory cytokines. Moreover, it has been suggested that COVID-19 may penetrate the central nervous system, and release inflammatory cytokines in the brains, inducing neuroinflammation and neurodegeneration. Several links connect COVID-19 with Alzheimer's disease (AD), such as elevated oxidative stress, uncontrolled release of the inflammatory cytokines, and mitochondrial apoptosis. There are severe concerns that excessive immune cell activation in COVID-19 may aggravate the neurodegeneration and amyloid-beta pathology of AD. Here, we have collected the evidence, showing the links between the two diseases. The focus has been made to collect the information on the activation of the inflammation, its contributors, and shared therapeutic targets. Furthermore, we have given future perspectives, research gaps, and overlapping pathological bases of the two diseases. Lastly, we have given the short touch to the drugs that have equally shown rescuing effects against both diseases. Although there is limited information available regarding the exact links between COVID-19 and neuroinflammation, we have insight into the pathological contributors of the diseases. Based on the shared pathological features and therapeutic targets, we hypothesize that the activation of the immune system may induce neurological disorders by triggering oxidative stress and neuroinflammation.


Subject(s)
COVID-19 , Neuroinflammatory Diseases , Alzheimer Disease/virology , Antioxidants/metabolism , COVID-19/complications , COVID-19/physiopathology , Cytokines , Humans , Neuroinflammatory Diseases/virology , Oxidative Stress , SARS-CoV-2
16.
Viruses ; 14(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35458486

ABSTRACT

Among emerging arthropod-borne viruses (arbovirus), West Nile virus (WNV) is a flavivirus that can be associated with severe neuroinvasive infections in humans. In 2018, the European WNV epidemic resulted in over 2000 cases, representing the most important arboviral epidemic in the European continent. Characterization of inflammation and neuronal biomarkers released during WNV infection, especially in the context of neuronal impairments, could provide insight into the development of predictive tools that could be beneficial for patient outcomes. We first analyzed the inflammatory signature in the serum of WNV-infected mice and found increased concentrations of several inflammatory cytokines. We next analyzed serum and cerebrospinal-fluid (CSF) samples from a cohort of patients infected by WNV between 2018 and 2019 in Hungary to quantify a large panel of inflammatory cytokines and neurological factors. We found higher levels of inflammatory cytokines (e.g., IL4, IL6, and IL10) and neuronal factors (e.g., BDNF, GFAP, MIF, TDP-43) in the sera of WNV-infected patients with neuroinvasive disease. Furthermore, the serum inflammatory profile of these patients persisted for several weeks after initial infection, potentially leading to long-term sequelae and having a deleterious effect on brain neurovasculature. This work suggests that early signs of increased serum concentrations of inflammatory cytokines and neuronal factors could be a signature underlying the development of severe neurological impairments. Biomarkers could play an important role in patient monitoring to improve care and prevent undesirable outcomes.


Subject(s)
West Nile Fever , West Nile virus , Animals , Biomarkers , Cytokines , Humans , Mice , Neuroinflammatory Diseases/virology , West Nile virus/physiology
17.
Article in English | MEDLINE | ID: mdl-35140142

ABSTRACT

BACKGROUND AND OBJECTIVES: The presence of HIV in the CNS has been related to chronic immune activation and cognitive dysfunction. The aim of this work was to investigate (1) the presence of neuroinflammation in aviremic people with HIV (PWH) on therapy and in nontreated aviremic PWH (elite controllers [ECs]) using a translocator protein 18 kDa radioligand; (2) the relationship between neuroinflammation and cognitive function in aviremic PWH; and (3) the relationship between [11C]-PBR28 signal and quantitative MRI (qMRI) measures of brain tissue integrity such as T1 and T2 relaxation times (rts). METHODS: [11C]-PBR28 (standard uptake value ratio, SUVR) images were generated in 36 participants (14 PWH, 6 ECs, and 16 healthy controls) using a statistically defined pseudoreference region. Group comparisons of [11C]-PBR28 SUVR were performed using region of interest-based and voxelwise analyses. The relationship between inflammation, qMRI measures, and cognitive function was studied. RESULTS: In region of interest analyses, ECs exhibited significantly lower [11C]-PBR28 signal in the thalamus, putamen, superior temporal gyrus, prefrontal cortex, and cerebellum compared with the PWH. In voxelwise analyses, differences were observed in the thalamus, precuneus cortex, inferior temporal gyrus, occipital cortex, cerebellum, and white matter (WM). [11C]-PBR28 signal in the WM and superior temporal gyrus was related to processing speed and selective attention in PWH. In a subset of PWH (n = 12), [11C]-PBR28 signal in the thalamus and WM regions was related to a decrease in T2 rt and to an increase in T1 rt suggesting a colocalization of increased glial metabolism, decrease in microstructural integrity, and iron accumulation. DISCUSSION: This study casts a new light onto the role of neuroinflammation and related microstructural alterations of HIV infection in the CNS and shows that ECs suppress neuroinflammation more effectively than PWH on therapy.


Subject(s)
Anti-Retroviral Agents/pharmacology , Brain Diseases , Cognitive Dysfunction , HIV Infections , HIV Non-Progressors , Neuroimaging , Neuroinflammatory Diseases , Aged , Brain Diseases/diagnostic imaging , Brain Diseases/drug therapy , Brain Diseases/pathology , Brain Diseases/virology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/physiopathology , Female , HIV Infections/diagnostic imaging , HIV Infections/drug therapy , HIV Infections/pathology , HIV Infections/virology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multimodal Imaging , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/virology , Positron-Emission Tomography
18.
J Med Virol ; 94(2): 480-490, 2022 02.
Article in English | MEDLINE | ID: mdl-31017674

ABSTRACT

Chandipura virus (CHPV) is a neurotropic virus, known to cause encephalitis in humans. The microRNAs (miRNA/miR) play an important role in the pathogenesis of viral infection. The present study is focused on the role of miRNAs during CHPV (strain 1653514) infection in human microglial cells. The deep sequencing of CHPV-infected human microglial cells identified a total of 12 differentially expressed miRNA (DEMs). To elucidate the role of DEMs, the target gene prediction, Gene Ontology term (GO Term), pathway enrichment analysis, and miRNA-messenger RNA (mRNA) interaction network analysis was performed. The GO terms and pathway enrichment analysis provided 146 enriched genes; which were involved in interferon response, cytokine and chemokine signaling. Further, the WGCNA (weighted gene coexpression network analysis) of the enriched genes were discretely categorized into three modules (blue, brown, and turquoise). The hub genes in the blue module may correlate to CHPV induced neuroinflammation. Altogether, the miRNA-mRNA interaction network and WGCNA study revealed the following pairs, hsa-miR-542-3p and FAF1, hsa-miR-92a-1-5p and MYD88, and hsa-miR-3187-3p and TNFRSF21, which may contribute to neuroinflammation during CHPV infection in human microglial cells.


Subject(s)
Gene Regulatory Networks/genetics , MicroRNAs/genetics , Microglia/metabolism , Vesiculovirus/physiology , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Humans , MicroRNAs/metabolism , Myeloid Differentiation Factor 88/genetics , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/virology , Receptors, Tumor Necrosis Factor/genetics , Rhabdoviridae Infections/genetics , Rhabdoviridae Infections/virology
19.
Mol Neurobiol ; 59(1): 445-458, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34709564

ABSTRACT

In addition to respiratory complications produced by SARS-CoV-2, accumulating evidence suggests that some neurological symptoms are associated with the disease caused by this coronavirus. In this study, we investigated the effects of the SARS-CoV-2 spike protein S1 stimulation on neuroinflammation in BV-2 microglia. Analyses of culture supernatants revealed an increase in the production of TNF-α, IL-6, IL-1ß and iNOS/NO. S1 also increased protein levels of phospho-p65 and phospho-IκBα, as well as enhanced DNA binding and transcriptional activity of NF-κB. These effects of the protein were blocked in the presence of BAY11-7082 (1 µM). Exposure of S1 to BV-2 microglia also increased the protein levels of NLRP3 inflammasome and enhanced caspase-1 activity. Increased protein levels of p38 MAPK was observed in BV-2 microglia stimulated with the spike protein S1 (100 ng/ml), an action that was reduced in the presence of SKF 86,002 (1 µM). Results of immunofluorescence microscopy showed an increase in TLR4 protein expression in S1-stimulated BV-2 microglia. Furthermore, pharmacological inhibition with TAK 242 (1 µM) and transfection with TLR4 small interfering RNA resulted in significant reduction in TNF-α and IL-6 production in S1-stimulated BV-2 microglia. These results have provided the first evidence demonstrating S1-induced neuroinflammation in BV-2 microglia. We propose that induction of neuroinflammation by this protein in the microglia is mediated through activation of NF-κB and p38 MAPK, possibly as a result of TLR4 activation. These results contribute to our understanding of some of the mechanisms involved in CNS pathologies of SARS-CoV-2.


Subject(s)
Microglia/metabolism , Neuroinflammatory Diseases/virology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Caspase 1/metabolism , Cell Line , Furans/pharmacology , Indenes/pharmacology , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-6/metabolism , Mice , Microglia/pathology , NF-kappa B/metabolism , Neuroinflammatory Diseases/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitriles/pharmacology , RNA, Small Interfering , Recombinant Proteins/metabolism , Sulfonamides/pharmacology , Sulfones/pharmacology , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Virology ; 566: 122-135, 2022 01.
Article in English | MEDLINE | ID: mdl-34906793

ABSTRACT

Mouse hepatitis virus (MHV; m-ß-CoV) serves as a useful model for studying the cellular factors involved in neuroinflammation. To understand the role of matrix metalloproteinases (MMPs) in neuroinflammation, brain tissues from m-ß-CoV-infected mice were harvested at different days post-infection (d.p.i) and investigated for Mmp expression by RT-qPCR. Mmp-2, -3, -8, -12 showed significant mRNA upregulation peaking with viral replication between 5 and 6 d.p.i. Elevated levels of MMP regulator TIMP-1 are suggestive of a TIMP-1 mediated host antiviral response. Biological network assessment suggested a direct involvement of MMP-3, -8, -14 in facilitating peripheral leukocyte infiltrations. Flow cytometry confirmed the increased presence of NK cells, CD4+ and CD8+ T cells, neutrophils, and MHCII expressing cells in the m-ß-CoV infected mice brain. Our study revealed that m-ß-CoV upregulated Park7, RelA, Nrf2, and Hmox1 transcripts involved in ROS production and antioxidant pathways, describing the possible nexus between oxidative pathways, MMPs, and TIMP in m-ß-CoV-induced neuroinflammation.


Subject(s)
Brain/metabolism , Coronavirus Infections/metabolism , Leukocytes/metabolism , Matrix Metalloproteinases/metabolism , Murine hepatitis virus/metabolism , Neuroinflammatory Diseases/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Animals , Brain/virology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Murine hepatitis virus/immunology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/virology , Oxidation-Reduction , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...