Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927597

ABSTRACT

A 23-month-old neutered male dog of unknown ancestry presented with a history of progressive neurological signs that included anxiety, cognitive impairment, tremors, seizure activity, ataxia, and pronounced visual impairment. The clinical signs were accompanied by global brain atrophy. Due to progression in the severity of disease signs, the dog was euthanized at 26 months of age. An examination of the tissues collected at necropsy revealed dramatic intracellular accumulations of autofluorescent inclusions in the brain, retina, and cardiac muscle. The inclusions were immunopositive for subunit c of mitochondrial ATP synthase, and their ultrastructural appearances were similar to those of lysosomal storage bodies that accumulate in some neuronal ceroid lipofuscinosis (NCL) diseases. The dog also exhibited widespread neuroinflammation. Based on these findings, the dog was deemed likely to have suffered from a form of NCL. A whole genome sequence analysis of the proband's DNA revealed a homozygous C to T substitution that altered the intron 3-exon 4 splice site of CLN6. Other mutations in CLN6 cause NCL diseases in humans and animals, including dogs. The CLN6 protein was undetectable with immunolabeling in the tissues of the proband. Based on the clinical history, fluorescence and electron-microscopy, immunohistochemistry, and molecular genetic findings, the disorder in this dog was classified as an NCL resulting from the absence of the CLN6 protein. Screening the dog's genome for a panel of breed-specific polymorphisms indicated that its ancestry included numerous breeds, with no single breed predominating. This suggests that the CLN6 disease variant is likely to be present in other mixed-breed dogs and at least some ancestral breeds, although it is likely to be rare since other cases have not been reported to date.


Subject(s)
Dog Diseases , Neuronal Ceroid-Lipofuscinoses , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Neuronal Ceroid-Lipofuscinoses/pathology , Animals , Dogs , Male , Dog Diseases/genetics , Dog Diseases/pathology , RNA Splice Sites/genetics , Membrane Proteins/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Brain/pathology , Brain/metabolism , Mutation
2.
Anim Genet ; 55(4): 612-620, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38866396

ABSTRACT

Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative disorders that occur in humans, dogs, and several other species. NCL is characterised clinically by progressive deterioration of cognitive and motor function, epileptic seizures, and visual impairment. Most forms present early in life and eventually lead to premature death. Typical pathological changes include neuronal accumulation of autofluorescent, periodic acid-Schiff- and Sudan black B-positive lipopigments, as well as marked loss of neurons in the central nervous system. Here, we describe a 19-month-old Schapendoes dog, where clinical signs were indicative of lysosomal storage disease, which was corroborated by pathological findings consistent with NCL. Whole genome sequencing of the affected dog and both parents, followed by variant calling and visual inspection of known NCL genes, identified a missense variant in CLN6 (c.386T>C). The variant is located in a highly conserved region of the gene and predicted to be harmful, which supports a causal relationship. The identification of this novel CLN6 variant enables pre-breeding DNA-testing to prevent future cases of NCL6 in the Schapendoes breed, and presents a potential natural model for NCL6 in humans.


Subject(s)
Dog Diseases , Mutation, Missense , Neuronal Ceroid-Lipofuscinoses , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Animals , Dogs/genetics , Dog Diseases/genetics , Membrane Proteins/genetics , Male , Female
3.
Anim Genet ; 55(4): 588-598, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38712841

ABSTRACT

Neuronal ceroid lipofuscinoses (NCL) are among the most prevalent neurodegenerative disorders of early life in humans. Disease-causing variants have been described for 13 different NCL genes. In this study, a refined pathological characterization of a female rabbit with progressive neurological signs reminiscent of NCL was performed. Cytoplasmic pigment present in neurons was weakly positive with Sudan black B and autofluorescent. Immunohistology revealed astrogliosis, microgliosis and axonal degeneration. During the subsequent genetic investigation, the genome of the affected rabbit was sequenced and examined for private variants in NCL candidate genes. The analysis revealed a homozygous ~10.7 kb genomic duplication on chromosome 15 comprising parts of the MFSD8 gene, NC_013683.1:g.103,727,963_103,738,667dup. The duplication harbors two internal protein coding exons and is predicted to introduce a premature stop codon into the transcript, truncating ~50% of the wild-type MFSD8 open reading frame encoding the major facilitator superfamily domain containing protein 8, XP_002717309.2:p.(Glu235Leufs*23). Biallelic loss-of-function variants in MFSD8 have been described to cause NCL7 in human patients, dogs and a single cat. The available clinical and pathological data, together with current knowledge about MFSD8 variants and their functional impact in other species, point to the MFSD8 duplication as a likely causative defect for the observed phenotype in the affected rabbit.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Animals , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Neuronal Ceroid-Lipofuscinoses/pathology , Female , Rabbits/genetics , Gene Duplication
4.
J Vet Diagn Invest ; 36(3): 438-446, 2024 May.
Article in English | MEDLINE | ID: mdl-38516801

ABSTRACT

Thirteen American Hereford cattle were reported blind with presumed onset when ~12-mo-old. All blind cattle shared a common ancestor through both the maternal and paternal pedigrees, suggesting a recessive genetic origin. Given the pedigree relationships and novel phenotype, we characterized the ophthalmo-pathologic changes associated with blindness and identified the responsible gene variant. Ophthalmologic examinations of 5 blind cattle revealed retinal degeneration. Histologically, 2 blind cattle had loss of the retinal photoreceptor layer. Whole-genome sequencing (WGS) of 7 blind cattle and 9 unaffected relatives revealed a 1-bp frameshift deletion in ceroid lipofuscinosis neuronal 3 (CLN3; chr25 g.26043843del) for which the blind cattle were homozygous and their parents heterozygous. The identified variant in exon 16 of 17 is predicted to truncate the encoded protein (p. Pro369Argfs*8) battenin, which is involved in lysosomal function necessary for photoreceptor layer maintenance. Of 462 cattle genotyped, only blind cattle were homozygous for the deletion. A query of WGS data of > 5,800 animals further revealed that the variant was only observed in related Hereford cattle. Mutations in CLN3 are associated with human juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, which results in early-onset retinal degeneration and lesions similar to those observed in our cases. Our data support the frameshift variant of CLN3 as causative of blindness in these Hereford cattle, and provide additional evidence of the role of this gene in retinal lesions, possibly as a model for human non-syndromic JNCL.


Subject(s)
Cattle Diseases , Retinal Degeneration , Animals , Cattle , Retinal Degeneration/veterinary , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Cattle Diseases/genetics , Cattle Diseases/pathology , Female , Pedigree , Male , Membrane Glycoproteins/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Molecular Chaperones/genetics , Frameshift Mutation
5.
Dev Neurobiol ; 83(5-6): 127-142, 2023.
Article in English | MEDLINE | ID: mdl-37246363

ABSTRACT

Sheep with naturally occurring CLN5 and CLN6 forms of neuronal ceroid lipofuscinoses (Batten disease) share the key clinical features of the human disease and represent an ideal model system in which the clinical efficacy of gene therapies is developed and test. However, it was first important to characterize the neuropathological changes that occur with disease progression in affected sheep. This study compared neurodegeneration, neuroinflammation, and lysosomal storage accumulation in CLN5 affected Borderdale, CLN6 affected South Hampshire, and Merino sheep brains from birth to end-stage disease at ≤24 months of age. Despite very different gene products, mutations, and subcellular localizations, the pathogenic cascade was remarkably similar for all three disease models. Glial activation was present at birth in affected sheep and preceded neuronal loss, with both spreading from the visual and parieto-occipital cortices most prominently associated with clinical symptoms to the entire cortical mantle by end-stage disease. In contrast, the subcortical regions were less involved, yet lysosomal storage followed a near-linear increase across the diseased sheep brain with age. Correlation of these neuropathological changes with published clinical data identified three potential therapeutic windows in affected sheep-presymptomatic (3 months), early symptomatic (6 months), and a later symptomatic disease stage (9 months of age)-beyond which the extensive depletion of neurons was likely to diminish any chance of therapeutic benefit. This comprehensive natural history of the neuropathological changes in ovine CLN5 and CLN6 disease will be integral in determining what impact treatment has at each of these disease stages.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Humans , Sheep , Animals , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Neuronal Ceroid-Lipofuscinoses/veterinary , Brain/pathology , Neurons/pathology , Cerebral Cortex/pathology , Mutation , Lysosomal Membrane Proteins/genetics , Membrane Proteins
6.
Dev Neurobiol ; 82(4): 326-344, 2022 05.
Article in English | MEDLINE | ID: mdl-35427439

ABSTRACT

Golden Retriever dogs with a frameshift variant in CLN5 (c.934_935delAG) suffer from a progressive neurodegenerative disorder analogous to the CLN5 form of neuronal ceroid lipofuscinosis (NCL). Five littermate puppies homozygous for the deletion allele were identified prior to the onset of disease signs. Studies were performed to characterize the onset and progression of the disease in these dogs. Neurological signs that included restlessness, unwillingness to cooperate with the handlers, and proprioceptive deficits first became apparent at approximately 12 months of age. The neurological signs progressed over time and by 21 to 23 months of age included general proprioceptive ataxia, menace response deficits, aggressive behaviors, cerebellar ataxia, intention tremors, decreased visual tracking, seizures, cognitive decline, and impaired prehension. Due to the severity of these signs, the dogs were euthanized between 21 and 23 months of age. Magnetic resonance imaging revealed pronounced progressive global brain atrophy with a more than sevenfold increase in the volume of the ventricular system between 9.5 and 22.5 months of age. Accompanying this atrophy were pronounced accumulations of autofluorescent inclusions throughout the brain and spinal cord. Ultrastructurally, the contents of these inclusions were found to consist primarily of membrane-like aggregates. Inclusions with similar fluorescence properties were present in cardiac muscle. Similar to other forms of NCL, the affected dogs had low plasma carnitine concentrations, suggesting impaired carnitine biosynthesis. These data on disease progression will be useful in future studies using the canine model for therapeutic intervention studies.


Subject(s)
Nervous System Diseases , Neuronal Ceroid-Lipofuscinoses , Animals , Atrophy , Carnitine , Disease Progression , Dogs , Homozygote , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Neuronal Ceroid-Lipofuscinoses/veterinary
7.
Exp Eye Res ; 210: 108686, 2021 09.
Article in English | MEDLINE | ID: mdl-34216614

ABSTRACT

CLN5 neuronal ceroid lipofuscinosis is a hereditary neurodegenerative disease characterized by progressive neurological decline, vision loss and seizures. Visual impairment in children with CLN5 disease is attributed to a progressive decline in retinal function accompanied by retinal degeneration as well as impaired central nervous system function associated with global brain atrophy. We studied visual system pathology in five Golden Retriever littermates homozygous for the CLN5 disease allele previously identified in the breed. The dogs exhibited signs of pronounced visual impairment by 21-22 months of age. Electroretinogram recordings showed a progressive decline in retinal function primarily affecting cone neural pathways. Altered visual evoked potential recordings indicated that disease progression affected visual signal processing in the brain. Aside from several small retinal detachment lesions, no gross retinal abnormalities were observed with in vivo ocular imaging and histologically the retinas did not exhibit apparent abnormalities by 23 months of age. However, there was extensive accumulation of autofluorescent membrane-bound lysosomal storage bodies in almost all retinal layers, as well as in the occipital cortex, by 20 months of age. In the retina, storage was particularly pronounced in retinal ganglion cells, the retinal pigment epithelium and in photoreceptor cells just interior to the outer limiting membrane. The visual system pathology of CLN5-affected Golden Retrievers is similar to that seen early in the human disease. It was not possible to follow the dogs to an advanced stage of disease progression due to the severity of behavioral and motor disease signs by 23 months of age. The findings reported here indicate that canine CLN5 disease will be a useful model of visual system disease in CLN5 neuronal ceroid lipofuscinosis. The baseline data obtained in this investigation will be useful in future therapeutic intervention studies. The findings indicate that there is a fairly broad time frame after disease onset within which treatments could be effective in preserving vision.


Subject(s)
Disease Models, Animal , Dog Diseases/pathology , Evoked Potentials, Visual/physiology , Lysosomal Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Retinal Degeneration/veterinary , Alleles , Animals , Autophagy , Dog Diseases/genetics , Dogs , Electroretinography/veterinary , Female , Homozygote , Male , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Phagocytosis , Retina/physiopathology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Vision, Ocular
8.
N Z Vet J ; 69(5): 255-266, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33969809

ABSTRACT

Over the last 50 years, there have been major advances in knowledge and technology regarding genetic diseases, and the subsequent ability to control them in a cost-effective manner. This review traces these advances through research into genetic diseases of animals at Massey University (Palmerston North, NZ), and briefly discusses the disorders investigated during that time, with additional detail for disorders of major importance such as bovine α-mannosidosis, ovine ceroid-lipofuscinosis, canine mucopolysaccharidosis IIIA and feline hyperchylomicronaemia. The overall research has made a significant contribution to veterinary medicine, has provided new biological knowledge and advanced our understanding of similar disorders in human patients, including testing various specific therapies prior to human clinical trials.


Subject(s)
Cat Diseases , Cattle Diseases , Dog Diseases , Neuronal Ceroid-Lipofuscinoses , Sheep Diseases , Animals , Cats , Cattle , Dogs , Humans , Neuronal Ceroid-Lipofuscinoses/veterinary , Sheep , Universities
9.
G3 (Bethesda) ; 10(8): 2741-2751, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32518081

ABSTRACT

A neutered male domestic medium-haired cat presented at a veterinary neurology clinic at 20 months of age due to progressive neurological signs that included visual impairment, focal myoclonus, and frequent severe generalized seizures that were refractory to treatment with phenobarbital. Magnetic resonance imaging revealed diffuse global brain atrophy. Due to the severity and frequency of its seizures, the cat was euthanized at 22 months of age. Microscopic examination of the cerebellum, cerebral cortex and brainstem revealed pronounced intracellular accumulations of autofluorescent storage material and inflammation in all 3 brain regions. Ultrastructural examination of the storage material indicated that it consisted almost completely of tightly-packed membrane-like material. The clinical signs and neuropathology strongly suggested that the cat suffered from a form of neuronal ceroid lipofuscinosis (NCL). Whole exome sequence analysis was performed on genomic DNA from the affected cat. Comparison of the sequence data to whole exome sequence data from 39 unaffected cats and whole genome sequence data from an additional 195 unaffected cats revealed a homozygous variant in CLN6 that was unique to the affected cat. This variant was predicted to cause a stop gain in the transcript due to a guanine to adenine transition (ENSFCAT00000025909:c.668G > A; XM_003987007.5:c.668G > A) and was the sole loss of function variant detected. CLN6 variants in other species, including humans, dogs, and sheep, are associated with the CLN6 form of NCL. Based on the affected cat's clinical signs, neuropathology and molecular genetic analysis, we conclude that the cat's disorder resulted from the loss of function of CLN6. This study is only the second to identify the molecular genetic basis of a feline NCL. Other cats exhibiting similar signs can now be screened for the CLN6 variant. This could lead to establishment of a feline model of CLN6 disease that could be used in therapeutic intervention studies.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Animals , Base Sequence , Cats , Codon, Nonsense , Dogs , Homozygote , Male , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Sheep
10.
J Vet Intern Med ; 34(1): 289-293, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31860737

ABSTRACT

A 2-year-old male domestic shorthair cat was presented for a progressive history of abnormal posture, behavior, and mentation. Menace response was absent bilaterally, and generalized tremors were identified on neurological examination. A neuroanatomical diagnosis of diffuse brain dysfunction was made. A neurodegenerative disorder was suspected. Magnetic resonance imaging findings further supported the clinical suspicion. Whole-genome sequencing of the affected cat with filtering of variants against a database of unaffected cats was performed. Candidate variants were confirmed by Sanger sequencing followed by genotyping of a control population. Two homozygous private (unique to individual or families and therefore absent from the breed-matched controlled population) protein-changing variants in the major facilitator superfamily domain 8 (MFSD8) gene, a known candidate gene for neuronal ceroid lipofuscinosis type 7 (CLN7), were identified. The affected cat was homozygous for the alternative allele at both variants. This is the first report of a pathogenic alteration of the MFSD8 gene in a cat strongly suspected to have CLN7.


Subject(s)
Cat Diseases/genetics , Frameshift Mutation , Membrane Transport Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Animals , Cat Diseases/pathology , Cats , Male , Mutation, Missense , Neuronal Ceroid-Lipofuscinoses/genetics
11.
Mol Genet Metab ; 127(1): 107-115, 2019 05.
Article in English | MEDLINE | ID: mdl-31101435

ABSTRACT

The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by progressive declines in neurological functions following normal development. The NCLs are distinguished from similar disorders by the accumulation of autofluorescent lysosomal storage bodies in neurons and many other cell types, and are classified as lysosomal storage diseases. At least 13 genes contain pathogenic sequence variants that underlie different forms of NCL. Naturally occurring canine NCLs can serve as models to develop better understanding of the disease pathologies and for preclinical evaluation of therapeutic interventions for these disorders. To date 14 sequence variants in 8 canine orthologs of human NCL genes have been found to cause progressive neurological disorders similar to human NCLs in 12 different dog breeds. A mixed breed dog with parents of uncertain breed background developed progressive neurological signs consistent with NCL starting at approximately 11 to 12 months of age, and when evaluated with magnetic resonance imaging at 21 months of age exhibited diffuse brain atrophy. Due to the severity of neurological decline the dog was euthanized at 23 months of age. Cerebellar and cerebral cortical neurons contained massive accumulations of autofluorescent storage bodies the contents of which had the appearance of tightly packed membranes. A whole genome sequence, generated with DNA from the affected dog contained a homozygous C-to-T transition at position 30,574,637 on chromosome 22 which is reflected in the mature CLN5 transcript (CLN5: c.619C > T) and converts a glutamine codon to a termination codon (p.Gln207Ter). The identical nonsense mutation has been previously associated with NCL in Border Collies, Australian Cattle Dogs, and a German Shepherd-Australian Cattle Dog mix. The current whole genome sequence and a previously generated whole genome sequence for an Australian Cattle Dog with NCL share a rare homozygous haplotype that extends for 87 kb surrounding 22: 30, 574, 637 and includes 21 polymorphic sites. When genotyped at 7 of these polymorphic sites, DNA samples from the German Shepherd-Australian Cattle Dog mix and from 5 Border Collies with NCL that were homozygous for the CLN5: c.619 T allele also shared this homozygous haplotype, suggesting that the NCL in all of these dogs stems from the same founding mutation event that may have predated the establishment of the modern dog breeds. If so, the CLN5 nonsence allele is probably segregating in other, as yet unidentified, breeds. Thus, dogs exhibiting similar NCL-like signs should be screened for this CLN5 nonsense allele regardless of breed.


Subject(s)
Codon, Nonsense , Dog Diseases/genetics , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Animals , Australia , Breeding , Cerebellum/pathology , Dogs/genetics , Homozygote , Magnetic Resonance Imaging , Neuronal Ceroid-Lipofuscinoses/diagnostic imaging , Neuronal Ceroid-Lipofuscinoses/genetics , Pedigree , Whole Genome Sequencing
12.
Mol Genet Metab ; 127(1): 95-106, 2019 05.
Article in English | MEDLINE | ID: mdl-30956123

ABSTRACT

The neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage disorders characterized by progressive neurodegeneration and declines in neurological functions. Pathogenic sequence variants in at least 13 genes underlie different forms of NCL, almost all of which are recessively inherited. To date 13 sequence variants in 8 canine orthologs of human NCL genes have been found to occur in 11 dog breeds in which they result in progressive neurological disorders similar to human NCLs. Canine NCLs can serve as models for preclinical evaluation of therapeutic interventions for these disorders. In most NCLs, the onset of neurological signs occurs in childhood, but some forms have adult onsets. Among these is CLN12 disease, also known as Kufor-Rakeb syndrome, PARK9, and spastic paraplegia78. These disorders result from variants in ATP13A2 which encodes a putative transmembrane ion transporter important for lysosomal function. Three Australian Cattle Dogs (a female and two of her offspring) were identified with a progressive neurological disorder with an onset of clinical signs at approximately 6 years of age. The affected dogs exhibited clinical courses and histopathology characteristic of the NCLs. Whole genome sequence analysis of one of these dogs revealed a homozygous c.1118C > T variant in ATP13A2 that predicts a nonconservative p.(Thr373Ile) amino acid substitution. All 3 affected dogs were homozygous for this variant, which was heterozygous in 42 of 394 unaffected Australian Cattle Dogs, the remainder of which were homozygous for the c.1118C allele. The high frequency of the mutant allele in this breed suggests that further screening for this variant should identify additional homozygous dogs and indicates that it would be advisable to perform such screening prior to breeding Australian Cattle Dogs.


Subject(s)
Dog Diseases/genetics , Mutation, Missense , Neuronal Ceroid-Lipofuscinoses/veterinary , Proton-Translocating ATPases/genetics , Alleles , Animals , Australia , Breeding , Dogs/genetics , Female , Homozygote , Late Onset Disorders/genetics , Lysosomes/pathology , Male , Neuronal Ceroid-Lipofuscinoses/genetics , Whole Genome Sequencing
14.
Anim Genet ; 49(1): 52-58, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29446145

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) are heterogenic inherited lysosomal storage diseases that have been described in a number of species including humans, sheep, cattle, cats and a number of different dog breeds, including Salukis. Here we present a novel genetic variant associated with the disease in this particular breed of dog. In a clinical case, a Saluki developed progressive neurological signs, including disorientation, anxiety, difficulties in eating, seizures and loss of vision, and for welfare reasons, was euthanized at 22 months of age. Microscopy showed aggregation of autofluorescent storage material in the neurons of several brain regions and also in the retina. The aggregates showed positive staining with Sudan black B and periodic acid Schiff, all features consistent with NCL. Whole genome sequencing of the case and both its parents, followed by variant calling in candidate genes, identified a new variant in the CLN8 gene: a single bp insertion (c.349dupT) in exon 2, introducing an immediate stop codon (p.Glu117*). The case was homozygous for the insertion, and both parents were heterozygous. A retrospective study of a Saluki from Australia diagnosed with NCL identified this case as being homozygous for the same mutation. This is the fourth variant identified in CLN8 that causes NCL in dogs.


Subject(s)
Dog Diseases/genetics , Dog Diseases/pathology , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Animals , DNA Mutational Analysis , Dog Diseases/diagnosis , Dogs , Female , Neuronal Ceroid-Lipofuscinoses/diagnosis , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Pedigree
15.
Neurobiol Dis ; 108: 277-287, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28860089

ABSTRACT

The neuronal ceroid lipofuscinoses (NCLs) are devastating inherited progressive neurodegenerative diseases, with most forms having a childhood onset of clinical signs. The NCLs are characterized by progressive cognitive and motor decline, vision loss, seizures, respiratory and swallowing impairment, and ultimately premature death. Different forms of NCL result from mutations in at least 13 genes. The clinical signs of some forms overlap significantly, so genetic testing is the only way to definitively determine which form an individual patient suffers from. At present, an effective treatment is available for only one form of NCL. Evidence of NCL has been documented in over 20 canine breeds and in mixed-breed dogs. To date, 12 mutations in 8 different genes orthologous to the human NCL genes have been found to underlie NCL in a variety of dog breeds. A Dachshund model with a null mutation in one of these genes is being utilized to investigate potential therapeutic interventions, including enzyme replacement and gene therapies. Demonstration of the efficacy of enzyme replacement therapy in this model led to successful completion of human clinical trials of this treatment. Further research into the other canine NCLs, with in-depth characterization and understanding of the disease processes, will likely lead to the development of successful therapeutic interventions for additional forms of NCL, for both human patients and animals with these disorders.


Subject(s)
Dog Diseases/therapy , Neuronal Ceroid-Lipofuscinoses/veterinary , Animals , Disease Models, Animal , Dog Diseases/diagnosis , Dog Diseases/genetics , Dog Diseases/pathology , Dogs , Humans , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Neuronal Ceroid-Lipofuscinoses/therapy
16.
J Vet Intern Med ; 31(1): 149-157, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28008682

ABSTRACT

A 10-month-old spayed female Cane Corso dog was evaluated after a 2-month history of progressive blindness, ataxia, and lethargy. Neurologic examination abnormalities indicated a multifocal lesion with primarily cerebral and cerebellar signs. Clinical worsening resulted in humane euthanasia. On necropsy, there was marked astrogliosis throughout white matter tracts of the cerebrum, most prominently in the corpus callosum. In the cerebral cortex and midbrain, most neurons contained large amounts of autofluorescent storage material in the perinuclear area of the cells. Cerebellar storage material was present in the Purkinje cells, granular cell layer, and perinuclear regions of neurons in the deep nuclei. Neuronal ceroid lipofuscinosis (NCL) was diagnosed. Whole genome sequencing identified a PPT1c.124 + 1G>A splice donor mutation. This nonreference assembly allele was homozygous in the affected dog, has not previously been reported in dbSNP, and was absent from the whole genome sequences of 45 control dogs and 31 unaffected Cane Corsos. Our findings indicate a novel mutation causing the CLN1 form of NCL in a previously unreported dog breed. A canine model for CLN1 disease could provide an opportunity for therapeutic advancement, benefiting both humans and dogs with this disorder.


Subject(s)
Dog Diseases/diagnosis , Neuronal Ceroid-Lipofuscinoses/veterinary , Animals , Dog Diseases/genetics , Dogs , Female , Frameshift Mutation/genetics , Magnetic Resonance Imaging/veterinary , Neuronal Ceroid-Lipofuscinoses/diagnosis , Neuronal Ceroid-Lipofuscinoses/diagnostic imaging , Neuronal Ceroid-Lipofuscinoses/genetics
17.
Mol Genet Metab ; 120(3): 269-277, 2017 03.
Article in English | MEDLINE | ID: mdl-28024876

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) are inherited lysosomal storage diseases that have been described in a variety of dog breeds, where they are caused by different mutations in different genes. However, the causative gene defect in the breed Alpenländische Dachsbracke remained unknown so far. Here we present two confirmed cases of NCL in Alpenländische Dachsbracke dogs from different litters of the same sire with a different dam harboring the same underlying novel mutation in the CLN8 gene. Case 1, a 2-year-old male Alpenländische Dachsbracke was presented with neurological signs including disorientation, character changes including anxiety states and aggressiveness, sudden blindness and reduction of food intake. Magnetic resonance imaging (MRI) scans showed cerebral atrophy with dilation of all cerebral ventricles, thinning of the intermediate mass of the thalamus and widening of the cerebral sulci. Postmortem examination of the central nervous system (CNS) showed neuronal loss in the cerebral cortex, cerebellum and spinal cord with massive intracellular deposits of ceroid pigment. Additional ceroid-lipofuscin deposits were observed in the enteric nervous system and in macrophages within spleen, lymph nodes and lung. Ultrastructural analyses confirmed NCL with the presence of osmiophilic membrane bounded lamellar-like structures. Case 2, a 1,5-year old female Alpenländische Dachsbracke was presented with progressive generalized forebrain disease including mental changes such as fearful reactions to various kinds of external stimuli and disorientation. The dog also displayed seizures, absence of menace reactions and negative cotton-ball test with normal pupillary light reactions. The clinical and post mortem examination yielded similar results in the brain as in Case 1. Whole genome sequencing of Case 1 and PCR results of both cases revealed a homozygous deletion encompassing the entire CLN8 gene as the most likely causative mutation for the NCL form observed in both cases. The deletion follows recessive inheritance since the dam and a healthy male littermate of Case 1 were tested as heterozygous carriers. This is the first detailed description of CLN8 gene associated NCL in Alpenländische Dachsbracke dogs and thus provides a novel canine CLN8 model for this lysosomal storage disease. The presence of ceroid lipofuscin in extracerebral tissues may help to confirm the diagnosis of NCL in vivo, especially in new dog breeds where the underlying mutation is not known.


Subject(s)
Dog Diseases/diagnostic imaging , Dog Diseases/genetics , Gene Deletion , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Animals , Autopsy , Dog Diseases/pathology , Dogs , Female , Genetic Predisposition to Disease , Genome-Wide Association Study/veterinary , Magnetic Resonance Imaging , Male , Neuronal Ceroid-Lipofuscinoses/diagnostic imaging , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Sequence Analysis, DNA/methods
18.
Tierarztl Prax Ausg K Kleintiere Heimtiere ; 44(6): 431-437, 2016 Dec 05.
Article in English, German | MEDLINE | ID: mdl-27778018

ABSTRACT

A female, 5-year-old American Staffordshire Terrier with severe progressive neurological deficits, particularly in terms of ataxia and keeping balance, was examined pathomorphologically and a genetic analysis was performed. In neurons of various localizations of the central nervous system an accumulation of a finely granular pale eosinophilic or light brown material was found. In addition, the cerebellum revealed marked degeneration and loss of Purkinje and inner granule cells. The accumulated PAS-positive, argyrophilic, autofluorescent material showed ultrastructurally a lamellar appearance suggestive of lipofuscin. Genetic analysis revealed the presence of a sequence variant in the ARSG gene encoding the lysosomal enzyme arylsulfatase G. This case report describes an adult-onset of a neuronal ceroid lipofuscinosis that shows similarities with a human disorder termed Kufs disease.


Subject(s)
Dog Diseases/diagnosis , Neuronal Ceroid-Lipofuscinoses/veterinary , Animals , Cerebellum/pathology , Dog Diseases/genetics , Dog Diseases/pathology , Dogs , Female , Humans , Neuronal Ceroid-Lipofuscinoses/diagnosis , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology
19.
J Vet Intern Med ; 30(4): 1149-58, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27203721

ABSTRACT

BACKGROUND: Neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease, has been diagnosed in young adult Australian Cattle Dogs. OBJECTIVE: Characterize the Australian Cattle Dog form of NCL and determine its molecular genetic cause. ANIMALS: Tissues from 4 Australian Cattle Dogs with NCL-like signs and buccal swabs from both parents of a fifth affected breed member. Archived DNA samples from 712 individual dogs were genotyped. METHODS: Tissues were examined by fluorescence, electron, and immunohistochemical microscopy. A whole-genome sequence was generated for 1 affected dog. A TaqMan allelic discrimination assay was used for genotyping. RESULTS: The accumulation of autofluorescent cytoplasmic storage material with characteristic ultrastructure in tissues from the 4 affected dogs supported a diagnosis of NCL. The whole-genome sequence contained a homozygous nonsense mutation: CLN5:c.619C>T. All 4 DNA samples from clinically affected dogs tested homozygous for the variant allele. Both parents of the fifth affected dog were heterozygotes. Archived DNA samples from 346 Australian Cattle Dogs, 188 Border Collies, and 177 dogs of other breeds were homozygous for the reference allele. One archived Australian Cattle Dog sample was from a heterozygote. CONCLUSIONS AND CLINICAL IMPORTANCE: The homozygous CLN5 nonsense is almost certainly causal because the same mutation previously had been reported to cause a similar form of NCL in Border Collies. Identification of the molecular genetic cause of Australian Cattle Dog NCL will allow the use of DNA tests to confirm the diagnosis of NCL in this breed.


Subject(s)
Dog Diseases/genetics , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Animals , Codon, Nonsense , Dogs , Female , Genetic Predisposition to Disease , Male , Neuronal Ceroid-Lipofuscinoses/genetics , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...