Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.037
Filter
1.
Nat Commun ; 15(1): 3473, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724563

ABSTRACT

Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.


Subject(s)
Cell Differentiation , Neurons , Signal Transduction , Temperature , Animals , PC12 Cells , Neurons/physiology , Neurons/cytology , Mice , Rats , Neuronal Outgrowth , Neurogenesis/physiology , Neurites/metabolism , Neurites/physiology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/physiology , Thermometry/methods , Thermogenesis/physiology
2.
Neurosci Lett ; 833: 137832, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38796094

ABSTRACT

Axonal regeneration is restricted in adults and causes irreversible motor dysfunction following spinal cord injury (SCI). In contrast, neonates have prominent regenerative potential and can restore their neural function. Although the distinct cellular responses in neonates have been studied, how they contribute to neural recovery remains unclear. To assess whether the secreted molecules in neonatal SCI can enhance neural regeneration, we re-analyzed the previously performed single-nucleus RNA-seq (snRNA-seq) and focused on Asporin and Cd109, the highly expressed genes in the injured neonatal spinal cord. In the present study, we showed that both these molecules were expressed in the injured spinal cords of adults and neonates. We treated the cortical neurons with recombinant Asporin or CD109 to observe their direct effects on neurons in vitro. We demonstrated that these molecules enhance neurite outgrowth in neurons. However, these molecules did not enhance re-growth of severed axons. Our results suggest that Asporin and CD109 influence neurites at the lesion site, rather than promoting axon regeneration, to restore neural function in neonates after SCI.


Subject(s)
Animals, Newborn , Axons , Nerve Regeneration , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Animals , Axons/metabolism , Nerve Regeneration/physiology , Nerve Regeneration/drug effects , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cells, Cultured , Neuronal Outgrowth/physiology , Spinal Cord/metabolism , Antigens, CD/metabolism , Neurons/metabolism , Rats , Neurites/metabolism , Neurites/drug effects , Female
3.
Traffic ; 25(5): e12936, 2024 May.
Article in English | MEDLINE | ID: mdl-38725127

ABSTRACT

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.


Subject(s)
ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors , Endosomes , Guanine Nucleotide Exchange Factors , Nerve Growth Factor , Neuronal Outgrowth , Receptor, trkA , Animals , Mice , Rats , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/genetics , Endosomes/metabolism , Ganglia, Spinal/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Mice, Knockout , Nerve Growth Factor/metabolism , PC12 Cells , Protein Transport , Receptor, trkA/metabolism
4.
J Nat Med ; 78(3): 599-607, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662302

ABSTRACT

In this study, the effects of 3,5,7,3',4'-pentamethoxyflavone (KP1), a major bioactive ingredient isolated from the Kaempferia parviflora rhizomes, on a neurite outgrowth in Neuro2a cells and its mechanism have been investigated. KP1 increased concentration-dependently the percentage of neurite-bearing cells. KP1 showed a remarkable capability to elicit neurite outgrowth in Neuro2a cells, as evidenced by morphological alterations and immunostaining using anti-class III ß-tubulin and anti-NeuN antibodies. KP1 also displayed a higher neurogenic activity than retinoic acid (RA), a promoter of neurite outgrowth in Neuro2a cells. KP1 treatment caused significant elevation in phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and glycogen synthase kinase-3ß (GSK-3ß). However, KP1-triggered neurite outgrowth was markedly inhibited by treatment with the ERK inhibitor U0126, whereas p38 MAPK inhibitor SB203580 and GSK-3ß inhibitor SB216763 did not influence KP1-induced neurite outgrowth. These results demonstrate that KP1 elicits neurite outgrowth and triggers cell differentiation of Neuro2a cells through ERK signal pathway.


Subject(s)
MAP Kinase Signaling System , Neuronal Outgrowth , Animals , Neuronal Outgrowth/drug effects , Mice , MAP Kinase Signaling System/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Neurites/drug effects , Cell Differentiation/drug effects , Phosphorylation/drug effects , Flavonoids/pharmacology , Flavones/pharmacology , Flavones/chemistry , Cell Line, Tumor , Glycogen Synthase Kinase 3 beta/metabolism , Cell Line
5.
Life Sci ; 345: 122606, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574884

ABSTRACT

AIMS: Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-ß (Aß) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aß-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS: The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aß precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aß production and the potential inhibition of Aß-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS: Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aß synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of ß- and γ-secretases. In Aß-overexpressing C. elegans, ergosterol decreased Aß accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE: Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aß synthesis, and enhancing longevity.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals, Genetically Modified/metabolism , Caenorhabditis elegans/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , GAP-43 Protein , Longevity , Neuroblastoma , Neuronal Outgrowth , Cell Line, Tumor
6.
Bioorg Chem ; 147: 107389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677011

ABSTRACT

The leaves of Odontonema strictum, a tropical plant used for its antihypertensive properties, are rich in nutrients and biologically active phytochemicals, such as ß-sitosterol, stigmasterol, umuravumbolide, deacetylumuravumbolide, dideacetylboronolide, deacetylboronolide, verbascoside, and isoverbascoside. In addition, its roots are rich in ß-sitosterol, stigmasterol, and the iridoid glycoside ß-O-methyl-unedoside. Ingestion of the roots was reported to have a sedative effect in a dog was previously reported on a dog eating the roots of this plant. In the present study, we report for the first time the cell proliferation- and neurite outgrowth-promoting effects in PC12 neuronal cells of the isolated organic compounds and crude extracts from O. strictum. Pituitary adenylate cyclase-activating peptide (PACAP) and quercetin were used as positive controls. At the concentration of 0.2 µg/mL, ß-sitosterol was more potent than quercetin and displayed the same activity (>45 µm/cell) as PACAP (100 nM). At a low concentration (0.04 µg/mL), verbascoside and isoverbascoside showed the strongest neurite outgrowth-promoting effect (neurite length of 30 to 35 µm/cell). Our results indicate that phytomedicines made from O. strictum may be useful in preventing neurodegenerative diseases.


Subject(s)
Biological Products , Cell Proliferation , Neuronal Outgrowth , Animals , PC12 Cells , Neuronal Outgrowth/drug effects , Rats , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Structure-Activity Relationship , Neurons/drug effects , Neurons/cytology , Plant Leaves/chemistry
7.
Exp Neurol ; 377: 114781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636773

ABSTRACT

Chronic hypoxia in utero causes intrauterine growth restriction (IUGR) of the fetus. IUGR infants are known to be at higher risk for neurodevelopmental disorders, but the mechanism is unclear. In this study, we analyzed the structure of the cerebral cortex using IUGR model rats generated through a reduced uterine perfusion pressure operation. IUGR rats exhibited thinner cerebral white matter and enlarged lateral ventricles compared with control rats. Expression of neuron cell markers, Satb2, microtubule-associated protein (MAP)-2, α-tubulin, and nestin was reduced in IUGR rats, indicating that neurons were diminished at various developmental stages in IUGR rats, from neural stem cells to mature neurons. However, there was no increase in apoptosis in IUGR rats. Cells positive for Ki67, a marker of cell proliferation, were reduced in neurons and all glial cells of IUGR rats. In primary neuron cultures, axonal elongation was impaired under hypoxic culture conditions mimicking the intrauterine environment of IUGR infants. Thus, in IUGR rats, chronic hypoxia in utero suppresses the proliferation of neurons and glial cells as well as axonal elongation, resulting in cortical thinning and enlarged lateral ventricles. Thrombopoietin (TPO), a platelet growth factor, inhibited the decrease in neuron number and promoted axon elongation in primary neurons under hypoxic conditions. Intraperitoneal administration of TPO to IUGR rats resulted in increases in the number of NeuN-positive cells and the area coverage of Satb2. In conclusion, suppression of neuronal proliferation and axonal outgrowth in IUGR rats resulted in cortical thinning and enlargement of lateral ventricles. TPO administration might be a novel therapeutic strategy for treating brain dysmaturation in IUGR infants.


Subject(s)
Cell Proliferation , Fetal Growth Retardation , Neuronal Outgrowth , Neurons , Neuroprotective Agents , Rats, Sprague-Dawley , Thrombopoietin , Animals , Fetal Growth Retardation/pathology , Rats , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Female , Cell Proliferation/drug effects , Pregnancy , Neuronal Outgrowth/drug effects , Neuroprotective Agents/pharmacology , Cells, Cultured , Animals, Newborn , Cerebral Cortex/pathology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism
8.
Arch Toxicol ; 98(6): 1859-1875, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555327

ABSTRACT

Poisoning with the organophosphorus nerve agent VX can be life-threatening due to limitations of the standard therapy with atropine and oximes. To date, the underlying pathomechanism of VX affecting the neuromuscular junction has not been fully elucidated structurally. Results of recent studies investigating the effects of VX were obtained from cells of animal origin or immortalized cell lines limiting their translation to humans. To overcome this limitation, motor neurons (MN) of this study were differentiated from in-house feeder- and integration-free-derived human-induced pluripotent stem cells (hiPSC) by application of standardized and antibiotic-free differentiation media with the aim to mimic human embryogenesis as closely as possible. For testing VX sensitivity, MN were initially exposed once to 400 µM, 600 µM, 800 µM, or 1000 µM VX and cultured for 5 days followed by analysis of changes in viability and neurite outgrowth as well as at the gene and protein level using µLC-ESI MS/HR MS, XTT, IncuCyte, qRT-PCR, and Western Blot. For the first time, VX was shown to trigger neuronal cell death and decline in neurite outgrowth in hiPSC-derived MN in a time- and concentration-dependent manner involving the activation of the intrinsic as well as the extrinsic pathway of apoptosis. Consistent with this, MN morphology and neurite network were altered time and concentration-dependently. Thus, MN represent a valuable tool for further investigation of the pathomechanism after VX exposure. These findings might set the course for the development of a promising human neuromuscular test model and patient-specific therapies in the future.


Subject(s)
Cell Differentiation , Cell Survival , Induced Pluripotent Stem Cells , Motor Neurons , Nerve Agents , Organothiophosphorus Compounds , Humans , Induced Pluripotent Stem Cells/drug effects , Motor Neurons/drug effects , Organothiophosphorus Compounds/toxicity , Nerve Agents/toxicity , Cell Differentiation/drug effects , Cell Survival/drug effects , Neuronal Outgrowth/drug effects , Chemical Warfare Agents/toxicity , Dose-Response Relationship, Drug , Cells, Cultured
9.
Bioorg Med Chem Lett ; 102: 129670, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387692

ABSTRACT

Histone deacetylase 6 (HDAC6) has drawn more and more attention for its potential application in Alzheimer's disease (AD) therapy. A series of tetrahydro-ß-carboline (THßC) hydroxamic acids with aryl linker were synthesized. In enzymatic assay, all compounds exhibited nanomolar IC50 values. The most promising compound 11d preferentially inhibited HDAC6 (IC50, 8.64 nM) with approximately 149-fold selectivity over HDAC1. Molecular simulation revealed that the hydroxamic acid of 11d could bind to the zinc ion by a bidentate chelating manner. In vitro, 11d induced neurite outgrowth of PC12 cells without producing toxic effects and showed obvious neuroprotective activity in a model of H2O2-induced oxidative stress.


Subject(s)
Carbolines , Histone Deacetylase Inhibitors , Hydrogen Peroxide , Rats , Animals , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/pharmacology , Hydrogen Peroxide/pharmacology , Hydroxamic Acids/pharmacology , Neuronal Outgrowth , Histone Deacetylase 1/metabolism , Structure-Activity Relationship
10.
Biomacromolecules ; 25(3): 1448-1467, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38412382

ABSTRACT

Despite all recent progresses in nerve tissue engineering, critical-sized nerve defects are still extremely challenging to repair. Therefore, this study targets the bridging of critical nerve defects and promoting an oriented neuronal outgrowth by engineering innovative nerve guidance conduits (NGCs) synergistically possessing exclusive topographical, chemical, and mechanical cues. To do so, a mechanically adequate mixture of polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA) was first carefully selected as base material to electrospin nanofibrous NGCs simulating the extracellular matrix. The electrospinning process was performed using a newly designed 2-pole air gap collector that leads to a one-step deposition of seamless NGCs having a bilayered architecture with an inner wall composed of highly aligned fibers and an outer wall consisting of randomly oriented fibers. This architecture is envisaged to afford guidance cues for the extension of long neurites on the underlying inner fiber alignment and to concurrently provide a sufficient nutrient supply through the pores of the outer random fibers. The surface chemistry of the NGCs was then modified making use of a hollow cathode discharge (HCD) plasma reactor purposely designed to allow an effective penetration of the reactive species into the NGCs to eventually treat their inner wall. X-ray photoelectron spectroscopy (XPS) results have indeed revealed a successful O2 plasma modification of the inner wall that exhibited a significantly increased oxygen content (24 → 28%), which led to an enhanced surface wettability. The treatment increased the surface nanoroughness of the fibers forming the NGCs as a result of an etching effect. This effect reduced the ultimate tensile strength of the NGCs while preserving their high flexibility. Finally, pheochromocytoma (PC12) cells were cultured on the NGCs to monitor their ability to extend neurites which is the base of a good nerve regeneration. In addition to remarkably improved cell adhesion and proliferation on the plasma-treated NGCs, an outstanding neural differentiation occurred. In fact, PC12 cells seeded on the treated samples extended numerous long neurites eventually establishing a neural network-like morphology with an overall neurite direction following the alignment of the underlying fibers. Overall, PCL/PLGA NGCs electrospun using the 2-pole air gap collector and O2 plasma-treated using an HCD reactor are promising candidates toward a full repair of critical nerve damage.


Subject(s)
Neurites , Tissue Scaffolds , Rats , Animals , Tissue Scaffolds/chemistry , Neurites/physiology , Tissue Engineering/methods , Nerve Regeneration , Neuronal Outgrowth
11.
mBio ; 15(2): e0330823, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38275838

ABSTRACT

The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.


Subject(s)
Communicable Diseases , Extracellular Vesicles , Herpes Simplex , Herpesvirus 1, Human , Humans , Herpesvirus 1, Human/physiology , Galectin 1/metabolism , Extracellular Vesicles/metabolism , Neuronal Outgrowth , Glycoproteins/metabolism
12.
Brain Res Bull ; 207: 110876, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215950

ABSTRACT

Numb is an evolutionarily conserved protein that regulates the differentiation of neuronal progenitor cells through unknown mechanisms. Numb has four alternative splice variants with different lengths of phosphotyrosine-binding (PTB) and proline-rich regions (PRR) domains. In this study, we demonstrated that Numb expression was increased in the primary cultures of rat cortical and hippocampal neurons over time in vitro, and Numb antisense inhibited neurite outgrowth. We verified that cells overexpressing short PTB (SPTB) or long PTB (LPTB) domains exhibited differentiation or proliferation, respectively. SPTB-mediated differentiation was related to the PRR domains, as cells expressing SPTB/LPRR had longer dendrites and more branched dendrites than cells expressing SPTB/SPRR. The differentiation of both cell types was completely blocked by the Ca2+ chelator. Western blot analysis revealed the increased total protein expression of voltage-gated calcium channel (VGCC) subunit α1C and α1D in cells expressing SPTB and LPTB Numb. The increased expression of the VGCC ß3 subunit was only observed in cells expressing SPTB Numb. Immunocytochemistry further showed that SPTB-mediated cell differentiation was associated with increased membrane expression of VGCC subunits α1C, α1D and ß3, which corresponded to the higher Ca2+ current (ICa) densities. Furthermore, we found that VGCC of cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms exhibit steady-state inactivation (SSI) in both differentiated and undifferentiated phenotypes. A similar SSI of VGCC was observed in the differentiated cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms, whereas a left shift SSI of VGCC in cells expressing SPTB/LPRR was detected in the undifferentiated cells. Collectively, these data indicate that SPTB domain is essential for neurite outgrowth involving in membrane expression of VGCC subunits, and LPRR plays a role in neuronal branching and the regulation of VGCC inactivation kinetics.


Subject(s)
Membrane Proteins , Neurons , Rats , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neurons/metabolism , Calcium Channels/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/pharmacology , Neuronal Outgrowth , Calcium/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
13.
Neuroscience ; 537: 165-173, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38070592

ABSTRACT

Thioredoxin system plays an important role in maintaining the cellular redox balance. Recent evidence suggests that thioredoxin (Trx) system may promote cell survival and neuroprotection. In this study, we explored the role of thioredoxin system in neuronal differentiation using a primary mouse cortical neuronal cell culture. First, Trx and Trx reductase (TrxR) protein levels were analyzed in cultured neurons from 1 to 32 days in vitro (DIV). The result showed that Trx and TrxR protein levels time-dependently increased in the neuron cell culture from 1 to 18 DIV. To establish the role of Trx in neuronal differentiation, Trx gene expression was knockdown in cultured neurons using Trx sgRNA CRISPR/Cas9 technology. Treatment with CRISPR/Cas9/Trx sgRNA decreased Trx protein levels and caused a reduction in dendritic outgrowth and branching of cultured neurons. Then, primary cortical neurons were treated with the Trx inhibitor PX12 to block Trx reducing activity. Treatment with PX12 also reduced dendritic outgrowth and branching. Furthermore, PX12 treatment reduced the ratio of phosphorylated cyclic AMP response element-binding protein (CREB)/total CREB protein levels. To investigate whether CREB phosphorylation is redox regulated, SH-SY5Y cells were treated with H2O2, which reduced phosphorylated CREB protein levels and increased CREB thiol oxidation. However, treatment with CB3, a Trx-mimetic tripeptide, rescued H2O2-decreased CREB phosphorylation. Our results suggest that Trx regulates neuronal differentiation and maturation of primary mouse cortical neurons by targeting CREB neurotrophic pathway. Trx may regulate CREB activation by maintaining the cellular redox balance.


Subject(s)
Neuroblastoma , RNA, Guide, CRISPR-Cas Systems , Mice , Humans , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Hydrogen Peroxide/metabolism , Neuroblastoma/metabolism , Thioredoxins/metabolism , Neurons/metabolism , Oxidation-Reduction , Neuronal Outgrowth
14.
Adv Healthc Mater ; 13(3): e2301894, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922888

ABSTRACT

Neuronal disorders are characterized by the loss of functional neurons and disrupted neuroanatomical connectivity, severely impacting the quality of life of patients. This study investigates a novel electroconductive nanocomposite consisting of glycine-derived carbon nanodots (GlyCNDs) incorporated into a collagen matrix and validates its beneficial physicochemical and electro-active cueing to relevant cells. To this end, this work employs mouse induced pluripotent stem cell (iPSC)-derived neural progenitor (NP) spheroids. The findings reveal that the nanocomposite markedly augmented neuronal differentiation in NP spheroids and stimulate neuritogenesis. In addition, this work demonstrates that the biomaterial-driven enhancements of the cellular response ultimately contribute to the development of highly integrated and functional neural networks. Lastly, acute dizocilpine (MK-801) treatment provides new evidence for a direct interaction between collagen-bound GlyCNDs and postsynaptic N-methyl-D-aspartate (NMDA) receptors, thereby suggesting a potential mechanism underlying the observed cellular events. In summary, the findings establish a foundation for the development of a new nanocomposite resulting from the integration of carbon nanomaterials within a clinically approved hydrogel, toward an effective biomaterial-based strategy for addressing neuronal disorders by restoring damaged/lost neurons and supporting the reestablishment of neuroanatomical connectivity.


Subject(s)
Nanocomposites , Quality of Life , Animals , Mice , Biocompatible Materials , Cell Differentiation , Collagen , Neuronal Outgrowth
15.
J Biomater Sci Polym Ed ; 35(2): 164-189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37847579

ABSTRACT

Type I collagen is a predominant fibrous protein that makes up the extracellular matrix. Collagen enhances cell attachment and is commonly used in three-dimensional culture systems, to mimic the native extracellular environment, for primary sensory neurons such as dorsal root ganglia (DRG). However, the effects of collagen concentration on adult rat DRG neurite growth have not been assessed in a physiologically relevant, three-dimensional culture. This study focuses on the effects of type I collagen used in a methacrylated hyaluronic acid (MAHA)-laminin-collagen gel (triple gel) on primary adult rat DRG explants in vitro. DRGs were cultured in triple gels, and the neurite lengths and number of support cells were quantified. Increased collagen concentration significantly reduced neurite length but did not affect support cell counts. Mechanical properties, fiber diameter, diffusivity, and mesh size of the triple gels with varying collagen concentration were characterized to further understand the effects of type I collagen on hydrogel property that may affect adult rat DRG explants. Gel stiffness significantly increased as collagen concentration increased and is correlated to DRG neurite length. Collagen concentration also significantly impacted fiber diameter but there was no correlation with DRG neurite length. Increasing collagen concentration had no significant effect on mesh size and diffusivity of the hydrogel. These data suggest that increasing type I collagen minimizes adult rat DRG explant growth in vitro while raising gel stiffness. This knowledge can help develop more robust 3D culture platforms to study sensory neuron growth and design biomaterials for nerve regeneration applications.


Subject(s)
Collagen Type I , Hydrogels , Rats , Animals , Hydrogels/pharmacology , Ganglia, Spinal , Neurites/physiology , Collagen/pharmacology , Neuronal Outgrowth , Cells, Cultured
16.
Sci Rep ; 13(1): 21799, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38066058

ABSTRACT

Carbon nanotubes (CNTs) have the potential to promote peripheral nerve regeneration, although with limited capacity and foreign body reaction. This study investigated whether CNTs hydrophilized by oxidation can improve peripheral nerve regeneration and reduce foreign body reactions and inflammation. Three different artificial nerve conduit models were created using CNTs treated with ozone (O group), strong acid (SA group), and untreated (P group). They were implanted into a rat sciatic nerve defect model and evaluated after 8 and 16 weeks. At 16 weeks, the SA group showed significant recovery in functional and electrophysiological evaluations compared with the others. At 8 weeks, histological examination revealed a significant increase in the density of regenerated neurofilament and decreased foreign body giant cells in the SA group compared with the others. Oxidation-treated CNTs improved biocompatibility, induced nerve regeneration, and inhibited foreign-body reactions.


Subject(s)
Nanotubes, Carbon , Rats , Animals , Sciatic Nerve/physiology , Nerve Regeneration/physiology , Prostheses and Implants , Neuronal Outgrowth
17.
Sci Transl Med ; 15(725): eadg7020, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38055799

ABSTRACT

Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Low Back Pain , Nucleus Pulposus , Humans , Rats , Animals , Intervertebral Disc Degeneration/complications , Intervertebral Disc Degeneration/therapy , Low Back Pain/complications , Neuronal Outgrowth
18.
Int J Mol Sci ; 24(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38139155

ABSTRACT

The vesicle-associated membrane protein 7 (VAMP7) is a SNARE protein of the longin family involved in a wide range of subcellular trafficking events, including neurite sprouting and elongation. The expression of the human gene SYBL1, encoding VAMP7, is finely regulated by alternative splicing. Among the minor isoforms identified so far, VAMP7j is the one most expressed and modulated in the human brain. Therefore, we focused on gaining functional evidence on VAMP7j, which lacks a functional SNARE motif but retains both the longin and transmembrane domains. In human SH-SY5Y cells, we found VAMP7j to modulate neuritogenesis by mediating transport of L1CAM toward the plasma membrane, in a fashion regulated by phosphorylation of the longin domain. VAMP7-mediated regulation of L1CAM trafficking seems at least to differentiate humans from rats, with VAMP7j CNS expression being restricted to primates, including humans. Since L1CAM is a central player in neuritogenesis and axon guidance, these findings suggest the species-specific splicing of SYBL1 is among the fine tuners of human neurodevelopmental complexity.


Subject(s)
Neural Cell Adhesion Molecule L1 , Neuroblastoma , Animals , Humans , Rats , Cell Membrane/metabolism , Neural Cell Adhesion Molecule L1/genetics , Neural Cell Adhesion Molecule L1/metabolism , Neuroblastoma/metabolism , Neuronal Outgrowth , R-SNARE Proteins/genetics , R-SNARE Proteins/metabolism , SNARE Proteins/metabolism
19.
Mol Brain ; 16(1): 79, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980537

ABSTRACT

Protein kinases are responsible for protein phosphorylation and are involved in important intracellular signal transduction pathways in various cells, including neurons; however, a considerable number of poorly characterized kinases may be involved in neuronal development. Here, we considered mitogen-activated protein kinase kinase kinase kinases (MAP4Ks), related to as candidate regulators of neurite outgrowth and synaptogenesis, by examining the effects of a selective MAP4K inhibitor PF06260933. PF06260933 treatments of the cultured neurons reduced neurite lengths, not the number of synapses, and phosphorylation of GAP43 and JNK, relative to the control. These results suggest that MAP4Ks are physiologically involved in normal neuronal development and that the resultant impaired neurite outgrowth by diminished MAP4Ks' activity, is related to psychiatric disorders.


Subject(s)
Neurites , Neurons , Humans , Neurons/metabolism , Neurites/metabolism , Signal Transduction , Phosphorylation , Neuronal Outgrowth
20.
Chem Biodivers ; 20(12): e202301294, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37953436

ABSTRACT

Artepillin C is the most studied compound in Brazilian Green Propolis and, along with its acetylated derivative, displays neurotrophic activity on PC12 cells. Specific inhibitors of the trkA receptor (K252a), PI3K/Akt (LY294002), and MAPK/ERK (U0126) signaling pathways were used to investigate the neurotrophic mechanism. The expression of proteins involved in axonal and synaptic plasticity (GAP-43 and Synapsin I) was assessed by western blotting. Additionally, physicochemical properties, pharmacokinetics, and drug-likeness were evaluated by the SwissADME web tool. Both compounds induced neurite outgrowth by activating the NGF-signaling pathways but through different neuronal proteins. Furthermore, in silico analyses showed interesting physicochemical and pharmacokinetic properties of these compounds. Therefore, these compounds could play an important role in axonal and synaptic plasticity and should be further investigated.


Subject(s)
Propolis , Rats , Animals , PC12 Cells , Propolis/pharmacology , Propolis/metabolism , Neurites/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Brazil , Signal Transduction , Neuronal Outgrowth
SELECTION OF CITATIONS
SEARCH DETAIL
...