Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(1): e0210193, 2019.
Article in English | MEDLINE | ID: mdl-30629639

ABSTRACT

The human natural killer-1 (HNK-1) carbohydrate epitope, composed of a unique sulfated trisaccharide (HSO3-3GlcAß1-3Galß1-4GlcNAc-R), is highly expressed during brain development and regulates higher brain function. However, it remains unclear which glycoprotein carries the HNK-1 epitope in the embryonic brain and the functional role it plays. Here, we showed that one of the major HNK-1 carrier proteins in the embryonic brain is tenascin-C (TNC), an extracellular matrix protein that regulates neurite outgrowth by interacting with the GPI-anchored protein contactin-1 (CNTN). Because the alternatively spliced fibronectin type-III (FNIII) repeats in TNC give rise to many isoforms and affect neuronal function, we evaluated neurite outgrowth of primary hippocampal neurons on purified recombinant FNIII repeats with or without the HNK-1 epitope as a substrate. We found that the presence of the HNK-1 epitope on the C domain of TNC promoted neurite outgrowth, and that this signal was mediated by CNTN, which is an HNK-1-expressing neuronal receptor. The neurite-promoting activity of the HNK-1 epitope on TNC required neuronal HNK-1 expression, which was defective in neurons lacking the glucuronyltransferases GlcAT-P and GlcAT-S. These results suggest that the HNK-1 epitope is a key modifier of TNC and CNTN in the regulation of embryonic brain development.


Subject(s)
CD57 Antigens/immunology , Contactin 1/physiology , Hippocampus/growth & development , Neuronal Outgrowth/immunology , Tenascin/immunology , Alternative Splicing/immunology , Animals , Embryo, Mammalian , Epitopes/immunology , Fibronectin Type III Domain/genetics , Fibronectin Type III Domain/immunology , Glucuronosyltransferase/genetics , HEK293 Cells , Hippocampus/cytology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurites/physiology , Neuronal Outgrowth/genetics , Primary Cell Culture , Tenascin/genetics
2.
Article in English | MEDLINE | ID: mdl-29988402

ABSTRACT

Both pathogenic and non-pathogenic Mycobacteria can induce the differentiation of immune cells into dendritic cells (DC) or DC-like cells. In addition, pathogenic Mycobacteria is found to stimulate cell differentiation in the nerves system. Whether non-pathogenic Mycobacteria interacts with nerve cells remains unknown. In this study, we found that co-incubation with fast-growing Mycobacteria smegmatis induced neuron-like morphological changes of PC12 and C17.2 cells. Moreover, the M. smegmatis culture supernatant which was ultrafiltrated through a membrane with a 10 kDa cut-off, induced neurite outgrowth and differentiation in an autophagy-independent pathway in PC12 and C17.2 cells. Further analysis showed that IFN-γ production and activation of the PI3K-Akt signaling pathway were involved in the neural differentiation. In conclusion, our finding demonstrated that non-pathogenic M. smegmatis was able to promote neuronal differentiation by its extracellular proteins, which might provide a novel therapeutic strategy for the treatment of neurodegenerative disorders.


Subject(s)
Autophagy/immunology , Cell Differentiation/immunology , Mycobacterium smegmatis/immunology , Neuronal Outgrowth/immunology , Neurons/microbiology , Animals , Cell Line , Humans , Interferon-gamma/metabolism , Mice , Neurons/cytology , Neurons/immunology , PC12 Cells , Phosphatidylinositol 3-Kinases/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...