Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70.186
Filter
1.
J Tradit Chin Med ; 44(3): 437-447, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767627

ABSTRACT

OBJECTIVE: To evaluate the analgesic effects of total flavonoids of Longxuejie (Resina Dracaenae Cochinchinensis) (TFDB) and explore the possible analgesic mechanism associated with transient receptor potential vanilloid 1 (TRPV1). METHODS: Whole-cell patch clamp technique was used to observe the effects of TFDB on capsaicin-induced TRPV1 currents. Rat experiments in vivo were used to observe the analgesic effects of TFDB. Western blot and immunofluorescence experiments were used to test the change of TRPV1 expression in DRG neurons induced by TFDB. RESULTS: Results showed that TFDB inhibited capsaicin-induced TRPV1 receptor currents in acutely isolated dorsal root ganglion (DRG) neurons of rats and the half inhibitory concentration was (16.7 ± 1.6) mg/L. TFDB (2-20 mg/kg) showed analgesic activity in the phase Ⅱ of formalin test and (0.02-2 mg per paw) reduced capsaicin-induced licking times of rats. TFDB (20 mg/kg) was fully efficacious on complete Freund's adjuvant (CFA)-induced inflammatory thermal hyperalgesia and capsaicin could weaken the analgesic effects. The level of TRPV1 expressions of DRG neurons was also decreased in TFDB-treated CFA-inflammatory pain rats. CONCLUSION: All these results indicated that the analgesic effect of TFDB may contribute to their modulations on both function and expression of TRPV1 channels in DRG neurons.


Subject(s)
Analgesics , Flavonoids , Ganglia, Spinal , Rats, Sprague-Dawley , TRPV Cation Channels , Animals , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Rats , Flavonoids/pharmacology , Analgesics/pharmacology , Analgesics/chemistry , Male , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/cytology , Humans , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Neurons/drug effects , Neurons/metabolism , Pain/drug therapy , Pain/metabolism
2.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753512

ABSTRACT

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Subject(s)
Benzhydryl Compounds , Neurons , Phenols , Sex Differentiation , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Male , Mice , Sex Differentiation/drug effects , Neurons/drug effects , Neurons/metabolism , Pregnancy , Hypothalamus/metabolism , Hypothalamus/drug effects , Neurogenesis/drug effects , Arginine Vasopressin/metabolism , Vasopressins/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Mice, Inbred C57BL , Estrogens/metabolism , Estrogens/pharmacology
3.
Mol Biol Rep ; 51(1): 660, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750264

ABSTRACT

BACKGROUND: Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied. METHODS: QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg. RESULTS: In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and ß-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1ß and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels. CONCLUSION: In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.


Subject(s)
Cadmium , Inflammation , Oxidative Stress , Pyroptosis , Quetiapine Fumarate , Oxidative Stress/drug effects , Pyroptosis/drug effects , Animals , Cadmium/toxicity , Quetiapine Fumarate/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Neuroprotective Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism
4.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38700092

ABSTRACT

Pre-eclampsia (PE) is a hypertensive disorder of pregnancy which is associated with increased risk of neurodevelopmental disorders in exposed offspring. The pathophysiological mechanisms mediating this relationship are currently unknown, and one potential candidate is the anti-angiogenic factor soluble Fms-like tyrosine kinase 1 (sFlt-1), which is highly elevated in PE. While sFlt-1 can impair angiogenesis via inhibition of VEGFA signalling, it is unclear whether it can directly affect neuronal development independently of its effects on the vasculature. To test this hypothesis, the current study differentiated the human neural progenitor cell (NPC) line ReNcell® VM into a mixed culture of mature neurons and glia, and exposed them to sFlt-1 during development. Outcomes measured were neurite growth, cytotoxicity, mRNA expression of nestin, MBP, GFAP, and ßIII-tubulin, and neurosphere differentiation. sFlt-1 induced a significant reduction in neurite growth and this effect was timing- and dose-dependent up to 100 ng/ml, with no effect on cytotoxicity. sFlt-1 (100 ng/ml) also reduced ßIII-tubulin mRNA and neuronal differentiation of neurospheres. Undifferentiated NPCs and mature neurons/glia expressed VEGFA and VEGFR-2, required for endogenous autocrine and paracrine VEGFA signalling, while sFlt-1 treatment prevented the neurogenic effects of exogenous VEGFA. Overall, these data provide the first experimental evidence for a direct effect of sFlt-1 on neurite growth and neuronal differentiation in human neurons through inhibition of VEGFA signalling, clarifying our understanding of the potential role of sFlt-1 as a mechanism by which PE can affect neuronal development.


Subject(s)
Cell Differentiation , Neural Stem Cells , Neurons , Vascular Endothelial Growth Factor Receptor-1 , Humans , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/drug effects , Neurons/metabolism , Neurons/drug effects , Neurons/cytology , Cell Differentiation/drug effects , Neurites/metabolism , Neurites/drug effects , Neurogenesis/drug effects , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Cell Line, Tumor , Signal Transduction
5.
Addict Biol ; 29(5): e13397, 2024 May.
Article in English | MEDLINE | ID: mdl-38711205

ABSTRACT

Neuronal ensembles in the medial prefrontal cortex mediate cocaine self-administration via projections to the nucleus accumbens. We have recently shown that neuronal ensembles in the prelimbic cortex form rapidly to mediate cocaine self-administration. However, the role of neuronal ensembles within the nucleus accumbens in initial cocaine-seeking behaviour remains unknown. Here, we sought to expand the current literature by testing the necessity of the cocaine self-administration ensemble in the nucleus accumbens core (NAcCore) 1 day after male and female rats acquire cocaine self-administration by using the Daun02 inactivation procedure. We found that disrupting the NAcCore ensembles after a no-cocaine reward-seeking test increased subsequent cocaine seeking, while disrupting NAcCore ensembles following a cocaine self-administration session decreased subsequent cocaine seeking. We then characterized neuronal cell type in the NAcCore using RNAscope in situ hybridization. In the no-cocaine session, we saw reduced dopamine D1 type neuronal activation, while in the cocaine self-administration session, we found preferential dopamine D1 type neuronal activity in the NAcCore.


Subject(s)
Cocaine , Drug-Seeking Behavior , Neurons , Nucleus Accumbens , Self Administration , Animals , Nucleus Accumbens/drug effects , Cocaine/pharmacology , Male , Female , Rats , Drug-Seeking Behavior/drug effects , Neurons/drug effects , Reward , Dopamine Uptake Inhibitors/pharmacology , Reinforcement, Psychology , Receptors, Dopamine D1 , Cocaine-Related Disorders/physiopathology , Rats, Sprague-Dawley , Prefrontal Cortex/drug effects
6.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727269

ABSTRACT

The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.


Subject(s)
Brain Injuries, Traumatic , Inflammation , Lysophosphatidylcholines , Mice, Inbred C57BL , Neurons , Valproic Acid , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/complications , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Mice , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Inflammation/pathology , Inflammation/drug therapy , Lysophosphatidylcholines/blood , Cell Death/drug effects , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Repressor Proteins/metabolism , Repressor Proteins/genetics
7.
Alzheimers Res Ther ; 16(1): 95, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693554

ABSTRACT

BACKGROUND: Aberrant neuronal Sigma-1 receptor (Sig-1r)-mediated endoplasmic reticulum (ER)- mitochondria signaling plays a key role in the neuronal cytopathology of Alzheimer's disease (AD). The natural psychedelic N, N-dimethyltryptamine (DMT) is a Sig-1r agonist that may have the anti-AD potential through protecting neuronal ER-mitochondrial interplay. METHODS: 3×TG-AD transgenic mice were administered with chronic DMT (2 mg/kg) for 3 weeks and then performed water maze test. The Aß accumulation in the mice brain were determined. The Sig-1r level upon DMT treatment was tested. The effect of DMT on the ER-mitochondrial contacts site and multiple mitochondria-associated membrane (MAM)-associated proteins were examined. The effect of DMT on calcium transport between ER and mitochondria and the mitochondrial function were also evaluated. RESULTS: chronic DMT (2 mg/kg) markedly alleviated cognitive impairment of 3×TG-AD mice. In parallel, it largely diminished Aß accumulation in the hippocampus and prefrontal cortex. DMT restored the decreased Sig-1r levels of 3×TG-AD transgenic mice. The hallucinogen reinstated the expression of multiple MAM-associated proteins in the brain of 3×TG-AD mice. DMT also prevented physical contact and calcium dynamic between the two organelles in in vitro and in vivo pathological circumstances. DMT modulated oxidative phosphorylation (OXPHOS) and ATP synthase in the in vitro model of AD. CONCLUSION: The anti-AD effects of DMT are associated with its protection of neuronal ER-mitochondria crosstalk via the activation of Sig-1r. DMT has the potential to serve as a novel preventive and therapeutic agent against AD.


Subject(s)
Alzheimer Disease , Endoplasmic Reticulum , Hallucinogens , Mice, Transgenic , Mitochondria , N,N-Dimethyltryptamine , Receptors, sigma , Sigma-1 Receptor , Animals , Receptors, sigma/metabolism , Receptors, sigma/agonists , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Hallucinogens/pharmacology , N,N-Dimethyltryptamine/pharmacology , Neurons/drug effects , Neurons/metabolism , Male
8.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771240

ABSTRACT

In vitro and ex vivo studies have shown consistent indications of hyperexcitability in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mouse model of autism spectrum disorder. We recently introduced a method to quantify network-level functional excitation-inhibition ratio from the neuronal oscillations. Here, we used this measure to study whether the implicated synaptic excitation-inhibition disturbances translate to disturbances in network physiology in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) gene knockout model. Vigilance-state scoring was used to extract segments of inactive wakefulness as an equivalent behavioral condition to the human resting-state and, subsequently, we performed high-frequency resolution analysis of the functional excitation-inhibition biomarker, long-range temporal correlations, and spectral power. We corroborated earlier studies showing increased high-frequency power in Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mice. Long-range temporal correlations were higher in the gamma frequency ranges. Contrary to expectations, functional excitation-inhibition was lower in the knockout mice in high frequency ranges, suggesting more inhibition-dominated networks. Exposure to the Gamma-aminobutyric acid (GABA)-agonist clonazepam decreased the functional excitation-inhibition in both genotypes, confirming that increasing inhibitory tone results in a reduction of functional excitation-inhibition. In addition, clonazepam decreased electroencephalogram power and increased long-range temporal correlations in both genotypes. These findings show applicability of these new resting-state electroencephalogram biomarkers to animal for translational studies and allow investigation of the effects of lower-level disturbances in excitation-inhibition balance.


Subject(s)
Fragile X Mental Retardation Protein , Mice, Knockout , Neurons , Animals , Fragile X Mental Retardation Protein/genetics , Neurons/physiology , Neurons/drug effects , Neurons/metabolism , Mice , Male , Neural Inhibition/physiology , Neural Inhibition/drug effects , Mice, Inbred C57BL , Electroencephalography
9.
Biomolecules ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38785950

ABSTRACT

Limited substrate availability because of the blood-brain barrier (BBB) has made the brain develop specific molecular mechanisms to survive, using lactate synthesized by astrocytes as a source of energy in neurons. To understand if lactate improves cellular viability and susceptibility to glutamate toxicity, primary cortical cells were incubated in glucose- or lactate-containing media and toxic concentrations of glutamate for 24 h. Cell death was determined by immunostaining and lactate dehydrogenase (LDH) release. Mitochondrial membrane potential and nitric oxide (NO) levels were measured using Tetramethylrhodamine, methyl ester (TMRM) and 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate (DAF-FM) live staining, respectively. LDH activity was quantified in single cells in the presence of lactate (LDH substrate) and oxamate (LDH inhibitor). Nuclei of cells were stained with DAPI and neurons with MAP2. Based on the distance between neurons and glial cells, they were classified as linked (<10 µm) and non-linked (>10 µm) neurons. Lactate increased cell death rate and the mean value of endogenous NO levels compared to glucose incubations. Mitochondrial membrane potential was lower in the cells cultured with lactate, but this effect was reversed when glutamate was added to the lactate medium. LDH activity was higher in linked neurons compared to non-linked neurons, supporting the hypothesis of the existence of the lactate shuttle between astrocytes and at least a portion of neurons. In conclusion, glucose or lactate can equally preserve primary cortical neurons, but those neurons having a low level of LDH activity and incubated with lactate cannot cover high energetic demand solely with lactate and become more susceptible to glutamate toxicity.


Subject(s)
Glucose , Glutamic Acid , L-Lactate Dehydrogenase , Lactic Acid , Membrane Potential, Mitochondrial , Neurons , Animals , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Membrane Potential, Mitochondrial/drug effects , Neurons/metabolism , Neurons/drug effects , L-Lactate Dehydrogenase/metabolism , Cells, Cultured , Lactic Acid/metabolism , Glucose/metabolism , Energy Metabolism/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/cytology , Nitric Oxide/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Cell Survival/drug effects , Rats , Cell Death/drug effects
10.
Biomolecules ; 14(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38785971

ABSTRACT

Cannabidiol (CBD) appears to possess some neuroprotective properties, but experimental data are still inconsistent. Therefore, this in vitro study aimed to compare the effects of CBD in a wide range of concentrations on oxidative stress and excitotoxic-related cell damage. Results showed that low concentrations of CBD ameliorated the H2O2-evoked cell damage of primary cortical neuronal cell culture. However, higher concentrations of CBD alone (5-25 µM) decreased the viability of cortical neurons in a concentration-dependent manner and aggravated the toxic effects of hydrogen peroxide (H2O2). Neuroprotection mediated by CBD in primary neurons against H2O2 was not associated with a direct influence on ROS production nor inhibition of caspase-3, but we found protective effects of CBD at the level of mitochondrial membrane potential and DNA fragmentation. However, CBD had no protective effect on the glutamate-induced cell damage of cortical neurons, and in higher concentrations, it enhanced the toxic effects of this cell-damaging factor. Likewise, CBD, depending on its concentration, at least did not affect or even enhance cortical cellular damage exposed to oxygen-glucose deprivation (OGD). Finally, we showed that CBD in submicromolar or low micromolar concentrations significantly protected human neuronal-like SH-SY5Y cells against H2O2- and 6-hydroxydopamine (6-OHDA)-induced cell damage. Our data indicate that CBD has a dual effect on oxidative stress-induced neuronal death-in low concentrations, it is neuroprotective, but in higher ones, it may display neurotoxic activity. On the other hand, in excitotoxic-related models, CBD was ineffective or enhanced cell damage. Our data support the notion that the neuroprotective effects of CBD strongly depend on its concentration and experimental model of neuronal death.


Subject(s)
Cannabidiol , Hydrogen Peroxide , Neurons , Neuroprotective Agents , Oxidative Stress , Cannabidiol/pharmacology , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity , Neuroprotective Agents/pharmacology , Humans , Animals , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Rats , Cell Line, Tumor , Cells, Cultured , Glutamic Acid/toxicity
11.
Biomolecules ; 14(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786005

ABSTRACT

Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.


Subject(s)
Fibroblasts , Glucosides , Mitochondria , Mitochondrial Diseases , Niacinamide , Stilbenes , Unfolded Protein Response , Humans , Unfolded Protein Response/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Stilbenes/pharmacology , Glucosides/pharmacology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Niacinamide/pharmacology , Mutation , Phenotype , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Neurons/metabolism , Neurons/drug effects
12.
Cells ; 13(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786059

ABSTRACT

In recent decades, there has been a dramatic rise in the rates of children being born after in utero exposure to drugs of abuse, particularly opioids. Opioids have been shown to have detrimental effects on neurons and glia in the central nervous system (CNS), but the impact of prenatal opioid exposure (POE) on still-developing synaptic circuitry is largely unknown. Astrocytes exert a powerful influence on synaptic development, secreting factors to either promote or inhibit synapse formation and neuronal maturation in the developing CNS. Here, we investigated the effects of the partial µ-opioid receptor agonist buprenorphine on astrocyte synaptogenic signaling and morphological development in cortical cell culture. Acute buprenorphine treatment had no effect on the excitatory synapse number in astrocyte-free neuron cultures. In conditions where neurons shared culture media with astrocytes, buprenorphine attenuated the synaptogenic capabilities of astrocyte-secreted factors. Neurons cultured from drug-naïve mice showed no change in synapses when treated with factors secreted by astrocytes from POE mice. However, this same treatment was synaptogenic when applied to neurons from POE mice, indicating a complex neuroadaptive response in the event of impaired astrocyte signaling. In addition to promoting morphological and connectivity changes in neurons, POE exerted a strong influence on astrocyte development, disrupting their structural maturation and promoting the accumulation of lipid droplets (LDs), suggestive of a maladaptive stress response in the developing CNS.


Subject(s)
Analgesics, Opioid , Astrocytes , Neurons , Prenatal Exposure Delayed Effects , Signal Transduction , Synapses , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Animals , Synapses/metabolism , Synapses/drug effects , Female , Pregnancy , Mice , Analgesics, Opioid/pharmacology , Analgesics, Opioid/adverse effects , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/metabolism , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Signal Transduction/drug effects , Buprenorphine/pharmacology , Cells, Cultured , Mice, Inbred C57BL
13.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786094

ABSTRACT

Post-stroke cognitive impairment (PSCI) remains the most common consequence of ischemic stroke. In this study, we aimed to investigate the role and mechanisms of melatonin (MT) in improving cognitive dysfunction in stroke mice. We used CoCl2-induced hypoxia-injured SH-SY5Y cells as a cellular model of stroke and photothrombotic-induced ischemic stroke mice as an animal model. We found that the stroke-induced upregulation of mitophagy, apoptosis, and neuronal synaptic plasticity was impaired both in vivo and in vitro. The results of the novel object recognition test and Y-maze showed significant cognitive deficits in the stroke mice, and Nissl staining showed a loss of neurons in the stroke mice. In contrast, MT inhibited excessive mitophagy both in vivo and in vitro and decreased the levels of mitophagy proteins PINK1 and Parkin, and immunofluorescence staining showed reduced co-localization of Tom20 and LC3. A significant inhibition of mitophagy levels could be directly observed under transmission electron microscopy. Furthermore, behavioral experiments and Nissl staining showed that MT ameliorated cognitive deficits and reduced neuronal loss in mice following a stroke. Our results demonstrated that MT inhibits excessive mitophagy and improves PSCI. These findings highlight the potential of MT as a preventive drug for PSCI, offering promising therapeutic implications.


Subject(s)
Cognitive Dysfunction , Melatonin , Mitophagy , Stroke , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Mitophagy/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/pathology , Cognitive Dysfunction/etiology , Mice , Stroke/complications , Stroke/drug therapy , Stroke/pathology , Male , Humans , Disease Models, Animal , Mice, Inbred C57BL , Apoptosis/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuronal Plasticity/drug effects , Cell Line, Tumor , Protein Kinases , Ubiquitin-Protein Ligases
14.
Neuropharmacology ; 253: 109982, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38701943

ABSTRACT

Perioperative neurocognitive disorders (PND) are cognitive dysfunctions that usually occur in elderly patients after anesthesia and surgery. Microglial overactivation is a key underlying mechanism. Interleukin-33 (IL-33) is a member of the IL-1 family that orchestrates microglial function. In the present study, we explored how IL-33, which regulates microglia, contributes to cognitive improvement in a male mouse model of PND. An exploratory laparotomy was performed to establish a PND model. The expression levels of IL-33 and its receptor ST2 were evaluated using Western blot. IL-33/ST2 secretion, microglial density, morphology, phagocytosis of synapse, and proliferation, and dystrophic microglia were assessed using immunofluorescence. Synaptic plasticity was measured using Golgi staining and long-term potentiation. The Morris water maze and open field test were used to evaluate cognitive function and anxiety. Hippocampal expression of IL-33 and ST2 were elevated on postoperative day 3. We confirmed that IL-33 was secreted by astrocytes and neurons, whereas ST2 mainly colocalized with microglia. IL-33 treatment induced microgliosis after anesthesia and surgery. These microglia had larger soma sizes and shorter and fragmented branches. Compared to the Surgery group, IL-33 treatment reduced the synaptic phagocytosis of microglia and increased microglial proliferation and dystrophic microglia. IL-33 treatment also reversed the impaired synaptic plasticity and cognitive function caused by anesthesia and surgery. In conclusion, these results indicate that IL-33 plays a key role in regulating microglial state and synaptic phagocytosis in a PND mouse model. IL-33 treatment has a therapeutic potential for improving cognitive dysfunction in PND.


Subject(s)
Interleukin-33 , Mice, Inbred C57BL , Microglia , Animals , Microglia/drug effects , Microglia/metabolism , Interleukin-33/metabolism , Male , Mice , Neuronal Plasticity/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Maze Learning/drug effects , Maze Learning/physiology , Postoperative Cognitive Complications/metabolism , Phagocytosis/drug effects , Astrocytes/metabolism , Astrocytes/drug effects , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/drug therapy , Disease Models, Animal , Neurons/drug effects , Neurons/metabolism
15.
Mol Med ; 30(1): 65, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773376

ABSTRACT

OBJECTIVE: Catalpol (CAT) has various pharmacological activities and plays a protective role in cerebral ischemia. It has been reported that CAT played a protective role in cerebral ischemia by upregulaing NRF1 expression. Bioinformatics analysis reveals that NRF1 can be used as a transcription factor to bind to the histone acetyltransferase KAT2A. However, the role of KAT2A in cerebral ischemia remains to be studied. Therefore, we aimed to investigate the role of CAT in cerebral ischemia and its related mechanism. METHODS: In vitro, a cell model of oxygen and glucose deprivation/reperfusion (OGD/R) was constructed, followed by evaluation of neuronal injury and the expression of METTL3, Beclin-1, NRF1, and KAT2A. In vivo, a MCAO rat model was prepared by means of focal cerebral ischemia, followed by assessment of neurological deficit and brain injury in MCAO rats. Neuronal autophagy was evaluated by observation of autophagosomes in neurons or brain tissues by TEM and detection of the expression of LC3 and p62. RESULTS: In vivo, CAT reduced the neurological function deficit and infarct volume, inhibited neuronal apoptosis in the cerebral cortex, and significantly improved neuronal injury and excessive autophagy in MCAO rats. In vitro, CAT restored OGD/R-inhibited cell viability, inhibited cell apoptosis, LDH release, and neuronal autophagy. Mechanistically, CAT upregulated NRF1, NRF1 activated METTL3 via KAT2A transcription, and METTL3 inhibited Beclin-1 via m6A modification. CONCLUSION: CAT activated the NRF1/KAT2A/METTL3 axis and downregulated Beclin-1 expression, thus relieving neuronal injury and excessive autophagy after cerebral ischemia.


Subject(s)
Autophagy , Beclin-1 , Brain Ischemia , Iridoid Glucosides , Neurons , Animals , Autophagy/drug effects , Beclin-1/metabolism , Beclin-1/genetics , Rats , Neurons/metabolism , Neurons/drug effects , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Male , Iridoid Glucosides/pharmacology , Iridoid Glucosides/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal , Apoptosis/drug effects , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Adenosine/analogs & derivatives
16.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773462

ABSTRACT

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Subject(s)
Cardiopulmonary Bypass , Disease Models, Animal , Glycogen Synthase Kinase 3 beta , Proto-Oncogene Proteins c-akt , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Animals , Cardiopulmonary Bypass/adverse effects , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyroptosis/drug effects , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Neurons/enzymology , Neuroprotective Agents/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Brain Edema/prevention & control , Brain Edema/metabolism , Brain Edema/enzymology , Brain Edema/pathology , Anti-Inflammatory Agents/pharmacology , Rats , S100 Calcium Binding Protein beta Subunit/metabolism , Inflammation Mediators/metabolism
17.
Brain Behav ; 14(5): e3503, 2024 May.
Article in English | MEDLINE | ID: mdl-38775292

ABSTRACT

BACKGROUND: Crocin has a good prospect in the treatment of Alzheimer's disease (AD), but the mechanisms underlying its neuroprotective effects remain elusive. This study aimed to investigate the neuroprotective effects of Crocin and its underlying mechanisms in AD. METHODS: AD mice were set up by injecting Aß25-35 solution into the hippocampus. Then, the AD mice were injected intraperitoneally with 40 mg/kg/day of Crocin for 14 days. Following the completion of Crocin treatment, an open-field test, Y-maze test and Morris water maze test were conducted to evaluate the impact of Crocin on spatial learning and memory deficiency in mice. The effects of Crocin on hippocampal neuron injury, proinflammatory cytokine expressions (IL-1ß, IL-6, and TNF-α), and PI3K/AKT signaling-related protein expressions were measured using hematoxylin and eosin staining, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) experiments, respectively. RESULTS: Crocin attenuated Aß25-35-induced spatial learning and memory deficiency and hippocampal neuron injury. Furthermore, the Western blot and qRT-PCR results showed that Crocin effectively suppressed inflammation and activated the PI3K/AKT pathway in Aß25-35-induced mice. CONCLUSION: Crocin restrained neuroinflammation via the activation of the PI3K/AKT pathway, thereby ameliorating the cognitive dysfunction of AD mice.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Carotenoids , Cognitive Dysfunction , Hippocampus , Neuroinflammatory Diseases , Neuroprotective Agents , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Carotenoids/pharmacology , Carotenoids/administration & dosage , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Signal Transduction/drug effects , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases/drug therapy , Disease Models, Animal , Peptide Fragments/pharmacology , Maze Learning/drug effects , Spatial Learning/drug effects , Neurons/drug effects , Neurons/metabolism
18.
Toxins (Basel) ; 16(5)2024 May 12.
Article in English | MEDLINE | ID: mdl-38787077

ABSTRACT

Botulinum neurotoxins E (BoNT/E) and A (BoNT/A) act by cleaving Synaptosome-Associated Protein 25 (SNAP25) at two different C-terminal sites, but they display very distinct durations of action, BoNT/E being short acting and BoNT/A long acting. We investigated the duration of action, spread and neuronal transport of BoNT/E (6.5 ng/kg) and BoNT/A (125 pg/kg) after single intramuscular administrations of high equivalent efficacious doses, in rats, over a 30- or 75-day periods, respectively. To achieve this, we used (i) digit abduction score assay, (ii) immunohistochemistry for SNAP25 (N-ter part; SNAP25N-ter and C-ter part; SNAP25C-ter) and its cleavage sites (cleaved SNAP25; c-SNAP25E and c-SNAP25A) and (iii) muscular changes in histopathology evaluation. Combined in vivo observation and immunohistochemistry analysis revealed that, compared to BoNT/A, BoNT/E induces minimal muscular changes, possesses a lower duration of action, a reduced ability to spread and a decreased capacity to be transported to the lumbar spinal cord. Interestingly, SNAP25C-ter completely disappeared for both toxins during the peak of efficacy, suggesting that the persistence of toxin effects is driven by the persistence of proteases in tissues. These data unveil some new molecular mechanisms of action of the short-acting BoNT/E and long-acting BoNT/A, and reinforce their overall safety profiles.


Subject(s)
Botulinum Toxins, Type A , Botulinum Toxins , Synaptosomal-Associated Protein 25 , Animals , Synaptosomal-Associated Protein 25/metabolism , Botulinum Toxins/toxicity , Botulinum Toxins/metabolism , Botulinum Toxins, Type A/toxicity , Injections, Intramuscular , Male , Rats , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Rats, Sprague-Dawley , Neurons/drug effects , Neurons/metabolism
19.
CNS Neurosci Ther ; 30(5): e14739, 2024 05.
Article in English | MEDLINE | ID: mdl-38702935

ABSTRACT

AIMS: The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS: Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS: We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS: These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.


Subject(s)
Antipsychotic Agents , Aripiprazole , Disease Models, Animal , Dizocilpine Maleate , Hippocampus , Hyperkinesis , Schizophrenia , Animals , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Schizophrenia/drug therapy , Hippocampus/drug effects , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Dizocilpine Maleate/pharmacology , Mice , Hyperkinesis/drug therapy , Male , Locomotion/drug effects , Locomotion/physiology , Excitatory Amino Acid Antagonists/pharmacology , Mice, Inbred C57BL , Animals, Newborn , Neurons/drug effects , Theta Rhythm/drug effects , Theta Rhythm/physiology
20.
CNS Neurosci Ther ; 30(5): e14740, 2024 05.
Article in English | MEDLINE | ID: mdl-38715318

ABSTRACT

AIMS: γ-aminobutyric acid (GABA) from reactive astrocytes is critical for the dysregulation of neuronal activity in various neuroinflammatory conditions. While Scutellaria baicalensis Georgi (S. baicalensis) is known for its efficacy in addressing neurological symptoms, its potential to reduce GABA synthesis in reactive astrocytes and the associated neuronal suppression remains unclear. This study focuses on the inhibitory action of monoamine oxidase B (MAO-B), the key enzyme for astrocytic GABA synthesis. METHODS: Using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model, we conducted immunohistochemistry to assess the effect of S. baicalensis on astrocyte reactivity and its GABA synthesis. High-performance liquid chromatography was performed to reveal the major compounds of S. baicalensis, the effects of which on MAO-B inhibition, astrocyte reactivity, and tonic inhibition in hippocampal neurons were validated by MAO-B activity assay, qRT-PCR, and whole-cell patch-clamp. RESULTS: The ethanolic extract of S. baicalensis ameliorated astrocyte reactivity and reduced excessive astrocytic GABA content in the CA1 hippocampus. Baicalin and baicalein exhibited significant MAO-B inhibition potential. These two compounds downregulate the mRNA levels of genes associated with reactive astrogliosis or astrocytic GABA synthesis. Additionally, LPS-induced aberrant tonic inhibition was reversed by both S. baicalensis extract and its key compounds. CONCLUSIONS: In summary, baicalin and baicalein isolated from S. baicalensis reduce astrocyte reactivity and alleviate aberrant tonic inhibition of hippocampal neurons during neuroinflammation.


Subject(s)
Astrocytes , Flavanones , Flavonoids , Lipopolysaccharides , Neurons , Plant Extracts , Scutellaria baicalensis , gamma-Aminobutyric Acid , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Flavanones/pharmacology , Scutellaria baicalensis/chemistry , Mice , gamma-Aminobutyric Acid/metabolism , Neurons/drug effects , Neurons/metabolism , Male , Flavonoids/pharmacology , Plant Extracts/pharmacology , Lipopolysaccharides/toxicity , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Monoamine Oxidase/metabolism , Neural Inhibition/drug effects , Hippocampus/drug effects , Hippocampus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...