Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.932
Filter
1.
J Musculoskelet Neuronal Interact ; 24(2): 192-199, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38826002

ABSTRACT

OBJECTIVE: To investigate the effects of the combined application of percutaneous vertebroplasty and zoledronic acid on bone mineral density (BMD), bone metabolism, neuropeptide Y (NPY) and prostaglandin E2 (PGE2) in elderly patients with osteoporotic lumbar vertebral compression fracture (OVCF). METHODS: The medical records of 118 elderly patients with OVCF who received treatment at our hospital from March 2018 to March 2020 were collected and analyzed retrospectively. Vertebral body height, spinal function, pain degree, and lumbar BMD were compared between the two groups upon admission and three years after the operation. Additionally, the levels of bone-specific alkaline phosphatase (BALP), 25-hydroxyvitamin D (25-(OH)D), beta collagen degradation fragments (ß-CTx), neuropeptide Y (NPY), and prostaglandin E2 (PGE2) in the two groups were measured at admission and three years after the operation. Furthermore, complications in the two groups within three years after the operation were documented. RESULTS: After three years post-operation, the combination group showed a significantly greater improvement in vertebral body height compared to the control group (P<0.05). Moreover, the combination group exhibited a significantly lower Oswestry Disability Index (ODI) score compared to the control group (P<0.05). CONCLUSION: In elderly patients with OVCF, the combined use of zoledronic acid and percutaneous vertebroplasty is effective in improving lumbar function, BMD, and bone metabolism indices, while reducing pain and the levels of NPY and PGE2.


Subject(s)
Bone Density Conservation Agents , Bone Density , Dinoprostone , Fractures, Compression , Lumbar Vertebrae , Neuropeptide Y , Osteoporotic Fractures , Spinal Fractures , Vertebroplasty , Zoledronic Acid , Humans , Aged , Female , Fractures, Compression/surgery , Zoledronic Acid/therapeutic use , Male , Vertebroplasty/methods , Bone Density/drug effects , Bone Density/physiology , Spinal Fractures/surgery , Osteoporotic Fractures/surgery , Aged, 80 and over , Bone Density Conservation Agents/therapeutic use , Retrospective Studies , Combined Modality Therapy/methods
2.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791562

ABSTRACT

We compared the effects of two different high-caloric diets administered to 4-week-old rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression. The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length of the astrocyte processes. These data highlight the significance of determining the mechanisms mediating the observed effects of these diets and imply that the cognitive impairments previously found might be related to both the neuroinflammation process and the reduction in PV, NPY, and RELN expression in the hippocampal formation.


Subject(s)
Astrocytes , Cyclin-Dependent Kinase 5 , Hippocampus , Neurogenesis , Reelin Protein , Animals , Astrocytes/metabolism , Rats , Reelin Protein/metabolism , Male , Hippocampus/metabolism , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/genetics , GABAergic Neurons/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Neuropeptide Y/metabolism , Neuropeptide Y/genetics , Rats, Wistar , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Parvalbumins/metabolism
3.
Cell Rep ; 43(5): 114212, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743567

ABSTRACT

Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents.


Subject(s)
Interneurons , Interneurons/metabolism , Animals , Mice , Neuropeptide Y/metabolism , Neocortex/metabolism , Neocortex/cytology , Neocortex/physiology , Vasoactive Intestinal Peptide/metabolism , Male , Parvalbumins/metabolism
4.
ACS Sens ; 9(5): 2645-2652, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38709872

ABSTRACT

In this work, we present the development of the first implantable aptamer-based platinum microelectrode for continuous measurement of a nonelectroactive molecule, neuropeptide Y (NPY). The aptamer immobilization was performed via conjugation chemistry and characterized using cyclic voltammetry before and after the surface modification. The redox label, methylene blue (MB), was attached at the end of the aptamer sequence and characterized using square wave voltammetry (SWV). NPY standard solutions in a three-electrode cell were used to test three aptamers in steady-state measurement using SWV for optimization. The aptamer with the best performance in the steady-state measurements was chosen, and continuous measurements were performed in a flow cell system using intermittent pulse amperometry. Dynamic measurements were compared against confounding and similar peptides such as pancreatic polypeptide and peptide YY, as well as somatostatin to determine the selectivity in the same modified microelectrode. Our Pt-microelectrode aptamer-based NPY biosensor provides signals 10 times higher for NPY compared to the confounding molecules. This proof-of-concept shows the first potential implantable microelectrode that is selectively sensitive to NPY concentration changes.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Microelectrodes , Neuropeptide Y , Platinum , Neuropeptide Y/analysis , Biosensing Techniques/methods , Platinum/chemistry , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation
5.
Cell Rep Med ; 5(5): 101559, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38744275

ABSTRACT

Dysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However, their exact roles in triggering arrhythmia remain elusive. Here, using an in vitro coculture system with sympathetic neurons, cardiomyocytes, and adipocytes, we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY), which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R, NCX, or CaMKII. Moreover, increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia.


Subject(s)
Adipocytes , Adipose Tissue , Arrhythmias, Cardiac , Leptin , Myocytes, Cardiac , Neuropeptide Y , Pericardium , Humans , Animals , Pericardium/metabolism , Pericardium/pathology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Neuropeptide Y/metabolism , Leptin/metabolism , Adipocytes/metabolism , Male , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Neurons/metabolism , Neurons/pathology , Sodium-Calcium Exchanger/metabolism , Female , Receptors, Neuropeptide Y/metabolism , Middle Aged , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Atrial Fibrillation/pathology , Sympathetic Nervous System/metabolism , Mice , Epicardial Adipose Tissue
6.
FASEB J ; 38(7): e23595, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38572811

ABSTRACT

This study evaluates the sustained antidepressant-like effects and neurogenic potential of a 3-day intranasal co-administration regimen of galanin receptor 2 (GALR2) agonist M1145 and neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31, Pro34]NPY in the ventral hippocampus of adult rats, with outcomes analyzed 3 weeks post-treatment. Utilizing the forced swimming test (FST), we found that this co-administration significantly enhances antidepressant-like behaviors, an effect neutralized by the GALR2 antagonist M871, highlighting the synergistic potential of these neuropeptides in modulating mood-related behaviors. In situ proximity ligation assay (PLA) indicated a significant increase in GALR2/NPYY1R heteroreceptor complexes in the ventral hippocampal dentate gyrus, suggesting a molecular basis for the behavioral outcomes observed. Moreover, proliferating cell nuclear antigen (PCNA) immunolabeling revealed increased cell proliferation in the subgranular zone of the dentate gyrus, specifically in neuroblasts as evidenced by co-labeling with doublecortin (DCX), without affecting quiescent neural progenitors or astrocytes. The study also noted a significant uptick in the number of DCX-positive cells and alterations in dendritic morphology in the ventral hippocampus, indicative of enhanced neuronal differentiation and maturation. These morphological changes highlight the potential of these agonists to facilitate the functional integration of new neurons into existing neural circuits. By demonstrating the long-lasting effects of a brief, 3-day intranasal administration of GALR2 and NPY1R agonists, our findings contribute significantly to the understanding of neuropeptide-mediated neuroplasticity and herald novel therapeutic strategies for the treatment of depression and related mood disorders, emphasizing the therapeutic promise of targeting neurogenesis and neuronal maturation processes.


Subject(s)
Neuropeptide Y , Neuropeptides , Rats , Animals , Receptor, Galanin, Type 2/agonists , Receptor, Galanin, Type 2/metabolism , Administration, Intranasal , Galanin/pharmacology , Galanin/metabolism , Hippocampus/metabolism , Receptors, Neuropeptide Y/metabolism , Neuropeptides/pharmacology , Antidepressive Agents/pharmacology , Neurogenesis
7.
In Vivo ; 38(3): 1133-1142, 2024.
Article in English | MEDLINE | ID: mdl-38688635

ABSTRACT

BACKGROUND/AIM: Cancer-induced bone pain (CIBP) is one of the most common symptoms of bone metastasis of tumor cells. The hypothalamus may play a pivotal role in the regulation of CIBP. However, little is known about the exact mechanisms. MATERIALS AND METHODS: First, we established a CIBP model to explore the relationship among hypothalamic ghrelin, NPY and CIBP. Then, we exogenously administered NPY and NPY receptor antagonists to investigate whether hypothalamic NPY exerted an antinociceptive effect through binding to NPY receptors. Finally, we exogenously administered ghrelin to investigate whether ghrelin alleviated CIBP by inducing the production of hypothalamic NPY through the AMPK-mTOR pathway. Body weight, food intake and behavioral indicators of CIBP were measured every 3 days. Hypothalamic ghrelin, NPY and the AMPK-mTOR pathway were also measured. RESULTS: The expression of hypothalamic ghrelin and NPY was simultaneously decreased in cancer-bearing rats, which was accompanied by CIBP. Intracerebroventricular (i.c.v.) administration of NPY significantly alleviated CIBP in the short term. The antinociceptive effect of NPY was reversed with the i.c.v. administration of the Y1R and Y2R antagonists. The administration of ghrelin activated the AMPK-mTOR pathway and induced hypothalamic NPY production to alleviate CIBP. This effect of ghrelin on NPY and antinociception was reversed with the administration of a GHS-R1α antagonist. CONCLUSION: Ghrelin could induce the production of hypothalamic NPY through the AMPK-mTOR pathway to alleviate CIBP, which can provide a novel therapeutic mechanism for CIBP.


Subject(s)
AMP-Activated Protein Kinases , Bone Neoplasms , Cancer Pain , Disease Models, Animal , Ghrelin , Hypothalamus , Neuropeptide Y , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Ghrelin/pharmacology , Hypothalamus/metabolism , Hypothalamus/drug effects , TOR Serine-Threonine Kinases/metabolism , Neuropeptide Y/metabolism , Rats , Cancer Pain/etiology , Cancer Pain/drug therapy , Cancer Pain/metabolism , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/complications , Bone Neoplasms/drug therapy , Male , Cell Line, Tumor , Female
8.
Pharmacol Res ; 203: 107173, 2024 May.
Article in English | MEDLINE | ID: mdl-38580186

ABSTRACT

Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.


Subject(s)
Cnidaria , Peptides , Receptors, Neuropeptide Y , Animals , Humans , Mice , Cell Movement/drug effects , Focal Adhesion Kinase 1/drug effects , Focal Adhesion Kinase 1/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Ligands , Molecular Docking Simulation , Neovascularization, Physiologic/drug effects , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Peptides/pharmacology , Protein Kinase C/drug effects , Protein Kinase C/metabolism , Receptors, Neuropeptide Y/drug effects , Receptors, Neuropeptide Y/metabolism , Signal Transduction/drug effects , src-Family Kinases/drug effects , src-Family Kinases/metabolism , Zebrafish , Cnidaria/chemistry , Phosphoinositide Phospholipase C/drug effects , Phosphoinositide Phospholipase C/metabolism
9.
Acta Med Okayama ; 78(2): 95-106, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38688827

ABSTRACT

The lungs are very complex organs, and the respiratory system performs the dual roles of repairing tissue while protecting against infection from various environmental stimuli. Persistent external irritation disrupts the immune responses of tissues and cells in the respiratory system, ultimately leading to respiratory disease. Neuropeptide Y (NPY) is a 36-amino-acid polypeptide and a neurotransmitter that regulates homeostasis. The NPY receptor is a seven-transmembrane-domain G-protein-coupled receptor with six subtypes (Y1, Y2, Y3, Y4, Y5, and Y6). Of these receptors, Y1, Y2, Y4, and Y5 are functional in humans, and Y1 plays important roles in the immune responses of many organs, including the respiratory system. NPY and the Y1 receptor have critical roles in the pathogenesis of asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis. The effects of NPY on the airway immune response and pathogenesis differ among respiratory diseases. This review focuses on the involvement of NPY in the airway immune response and pathogenesis of various respiratory diseases.


Subject(s)
Neuropeptide Y , Receptors, Neuropeptide Y , Humans , Neuropeptide Y/physiology , Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/physiology , Animals , Respiratory Tract Diseases/immunology , Asthma/immunology , Respiratory System/immunology , Pulmonary Disease, Chronic Obstructive/immunology
10.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542321

ABSTRACT

Our objective was to investigate the effects of topically applied neuropeptide Y (NPY) on ischemic wounds. Initially, the animal model for ischemic wound healing was validated using 16 male Sprague Dawley albino rats. In the intervention study, an additional 28 rats were divided into three groups: NPY (0.025%), the positive control insulin-like growth factor-I (IGF-I, 0.0025%), and the hydrogel carrier alone (control). The hydrogel was selected due to its capacity to prolong NPY release (p < 0.001), as demonstrated in a Franz diffusion cell. In the animals, an 8 mm full-thickness wound was made in a pedunculated dorsal ischemic skin flap. Wounds were then treated and assessed for 14 days and collected at the end of the experiment for in situ hybridization analysis (RNAscope®) targeting NPY receptor Y2R and for meticulous histologic examination. Wound healing rates, specifically the percentage changes in wound area, did not show an increase with NPY (p = 0.907), but there was an increase with rhIGF-I (p = 0.039) compared to the control. Y2R mRNA was not detected in the wounds or adjacent skin but was identified in the rat brain (used as a positive control). Light microscopic examination revealed trends of increased angiogenesis and enhanced inflammatory cell infiltration with NPY compared to control. An interesting secondary discovery was the presence of melanophages in the wounds. Our findings suggest the potential of NPY to enhance neovascularization under ischemic wound healing conditions, but further optimization of the carrier and dosage is necessary. The mechanism remains elusive but likely involves NPY receptor subtypes other than Y2R.


Subject(s)
Neuropeptide Y , Wound Healing , Rats , Male , Animals , Neuropeptide Y/genetics , Neuropeptide Y/pharmacology , Rats, Sprague-Dawley , Receptors, Neuropeptide Y , Hydrogels/pharmacology
11.
Clin Nucl Med ; 49(5): 419-426, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38546331

ABSTRACT

INTRODUCTION: 123 I-MIBG has been well established as a functional imaging tool, and 131 I-MIBG therapy is being considered for catecholamine-secreting tumors. Tumors with the characteristics of a noradrenergic biochemical phenotype, small, malignant, metastatic, extra-adrenal, bilateral, and hereditary, especially SDHx -related tumors, are reported to correlate with reduced MIBG uptake. However, the potential molecular mechanisms influencing MIBG uptake have been poorly studied. PATIENTS AND METHODS: To identify critical genes that may enhance MIBG accumulation in pheochromocytomas (PCCs), we performed RNA-seq analyses for 16 operated patients with PCCs (6 MIBG-negative and 10 MIBG-positive) combined with RT-qPCR for 27 PCCs (5 MIBG-negative and 22 MIBG-positive) and examined primary cultures of the surgical tissues. RESULTS: In the present study, 6 adrenal nodules of 66 nodules surgically removed from 63 patients with PCCs (9%) were MIBG negative. MIBG, a guanethidine analog of norepinephrine, can enter chromaffin cells through active uptake via the cellular membrane, be deposited in chromaffin granules, and be released via Ca 2+ -triggered exocytosis from adrenal chromaffin cells. When we compared expression of several catecholamine biosynthesis and secretion-associated genes between MIBG-negative and MIBG-positive tumors using transcriptome analyses, we found that neuropeptide Y, which is contained in chromaffin granules, was significantly increased in MIBG-negative tumors. NPY stimulated norepinephrine secretion dose-dependently in primary cell culture derived from MIBG-positive PCC. In our study, MIBG-negative PCCs were all norepinephrine-hypersecreting tumors. CONCLUSIONS: These data indicate that NPY upregulation in PCCs may stimulate chromaffin granule catecholamine secretion, which is associated with false-negative 123 I-MIBG scintigraphy.


Subject(s)
Adrenal Gland Neoplasms , Pheochromocytoma , Humans , Pheochromocytoma/pathology , 3-Iodobenzylguanidine , Neuropeptide Y/metabolism , Adrenal Gland Neoplasms/metabolism , Catecholamines/metabolism , Radionuclide Imaging , Norepinephrine/metabolism
12.
Nat Commun ; 15(1): 2382, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493217

ABSTRACT

Maternal overnutrition during lactation predisposes offspring to develop metabolic diseases and exacerbates the relevant syndromes in males more than females in later life. The hypothalamus is a heterogenous brain region that regulates energy balance. Here we combined metabolic trait quantification of mother and offspring mice under low and high fat diet (HFD) feeding during lactation, with single nucleus transcriptomic profiling of their offspring hypothalamus at peak lacation to understand the cellular and molecular alterations in response to maternal dietary pertubation. We found significant expansion in neuronal subpopulations including histaminergic (Hdc), arginine vasopressin/retinoic acid receptor-related orphan receptor ß (Avp/Rorb) and agouti-related peptide/neuropeptide Y (AgRP/Npy) in male offspring when their mothers were fed HFD, and increased Npy-astrocyte interactions in offspring responding to maternal overnutrition. Our study provides a comprehensive offspring hypothalamus map at the peak lactation and reveals how the cellular subpopulations respond to maternal dietary fat in a sex-specific manner during development.


Subject(s)
Dietary Fats , Obesity , Humans , Female , Mice , Male , Animals , Dietary Fats/metabolism , Obesity/metabolism , Hypothalamus/metabolism , Diet, High-Fat/adverse effects , Neuropeptide Y/metabolism , Lactation , Gene Expression Profiling , Maternal Nutritional Physiological Phenomena
13.
Neurosci Lett ; 825: 137707, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38431039

ABSTRACT

Visfatin play an essential role in the central regulation of appetite in birds. This study aimed to determine role of intracerebroventricular (ICV) injection of the visfatin on food intake and its possible interaction with neuropeptide Y (NPY) and nitric oxide system in neonatal broiler chicken. In experiment 1, neonatal chicken received ICV injection visfatin (1, 2 and 4 µg). In experiment 2, chicken received ICV injection of B5063 (NPY1 receptor antagonist 1.25 µg), visfatin (4 µg) and co-injection of the B5063 + Visfatin. In experiments 3-6, SF22 (NPY2 receptor antagonist 1.25 µg), SML0891 (NPY5 receptor antagonist 1.25 µg), L-NAME (nitric oxide synthase inhibitor, 100 nmol) and L-arginine (Precursor of nitric oxide, 200 nmol) were injected instead of B5063. Then the amount of cumulative food was measured at 30, 60 and 120 min after injection. Obtained data showed, injection visfatin (2 and 4 µg) increased food intake compared to control group (P < 0.05). Co-injection of the B5063 + Visfatin decreased visfatin-induced hyperphagia compared to control group (P < 0.05). Co-injection of the L-NAME + Visfatin amplified visfatin-induced hyperphagia compared to control group (P < 0.05). The result showed that visfatin has hyperphagic role and this effect mediates via NPY1 and nitric oxide system in neonatal chicken.


Subject(s)
Chickens , Neuropeptide Y , Animals , Animals, Newborn , Neuropeptide Y/pharmacology , Chickens/physiology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide , Nicotinamide Phosphoribosyltransferase , Eating , Receptors, Neuropeptide Y , Hyperphagia , Feeding Behavior/physiology
14.
Neuropeptides ; 105: 102425, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554699

ABSTRACT

The control of feeding and physical activity is tightly linked and coordinated. However the underlying mechanisms are unclear. One of the major regulatory systems of feeding behaviour involves neuropeptide Y (NPY) signalling, with the signalling mediated through NPY Y4 receptor also known to influence activity. Here we show that mice globally lacking the Npy4r (Npy4r-/-) in the absence of access to a running wheel behaved WT-like with regards to food intake, energy expenditure, respiratory exchange ratio and locomotion regardless of being fed on a chow or high fat diet. Interestingly however, when given the access to a running wheel, Npy4r-/- mice while having a comparable locomotor activity, showed significantly higher wheel-running activity than WT, again regardless of dietary conditions. This higher wheel-running activity in Npy4r-/-mice arose from an increased dark-phase running time rather than changes in number of running bouts or the running speed. Consistently, energy expenditure was higher in Npy4r-/- than WT mice. Importantly, food intake was reduced in Npy4r-/-mice under wheel access condition which was due to decreased feeding bouts rather than changes in meal size. Together, these findings demonstrate an important role of Npy4r signalling in the dual control of feeding and physical activity, particularly in the form of wheel-running activity.


Subject(s)
Eating , Energy Metabolism , Feeding Behavior , Mice, Knockout , Neuropeptide Y , Receptors, Neuropeptide Y , Signal Transduction , Animals , Receptors, Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/genetics , Signal Transduction/physiology , Neuropeptide Y/metabolism , Energy Metabolism/physiology , Feeding Behavior/physiology , Eating/physiology , Mice , Male , Mice, Inbred C57BL , Motor Activity/physiology , Physical Conditioning, Animal/physiology , Diet, High-Fat , Locomotion/physiology
15.
Mol Pain ; 20: 17448069241242982, 2024.
Article in English | MEDLINE | ID: mdl-38485252

ABSTRACT

Itch is a somatosensory sensation to remove potential harmful stimulation with a scratching desire, which could be divided into mechanical and chemical itch according to diverse stimuli, such as wool fiber and insect biting. It has been reported that neuropeptide Y (NPY) neurons, a population of spinal inhibitory interneurons, could gate the transmission of mechanical itch, with no effect on chemical itch. In our study, we verified that chemogenetic activation of NPY neurons could inhibit the mechanical itch as well as the chemical itch, which also attenuated the alloknesis phenomenon in the chronic dry skin model. Afterwards, intrathecal administration of NPY1R agonist, [Leu31, Pro34]-NPY (LP-NPY), showed the similar inhibition effect on mechanical itch, chemical itch and alloknesis as chemo-activation of NPY neurons. Whereas, intrathecal administration of NPY1R antagonist BIBO 3304 enhanced mechanical itch and reversed the alloknesis phenomenon inhibited by LP-NPY treatment. Moreover, selectively knocking down NPY1R by intrathecal injection of Npy1r siRNA enhanced mechanical and chemical itch behavior as well. These results indicate that NPY neurons in spinal cord regulate mechanical and chemical itch, and alloknesis in dry skin model through NPY1 receptors.


Subject(s)
Neuropeptide Y , Receptors, Neuropeptide Y , Animals , Pruritus/chemically induced , Signal Transduction , Spinal Cord
16.
Gut Microbes ; 16(1): 2319844, 2024.
Article in English | MEDLINE | ID: mdl-38404132

ABSTRACT

Patients with inflammatory bowel disease (IBD), including ulcerative colitis (UC), show an increased incidence of anxiety and depression; however, the association between UC-associated psychiatric disorders and the gut microbiota is unclear. This study aimed to examine whether gut microbiota from patients with UC can alter colonic gene expression, leading to anxiety- and depression-like behavior in mice receiving fecal microbiota transplantation (FMT). RNA sequencing transcriptome analyses revealed a difference in colonic gene expression between mice receiving FMT from patients with UC (UC-FMT mice) and those receiving FMT from healthy controls (HC-FMT mice). Gene ontology analysis revealed the downregulation of neuropeptide signaling pathways, including neuropeptide Y (NPY) expression, in the colons of UC-FMT mice. The protein levels of NPY also decreased in the colon and plasma of UC-FMT mice compared to those in HC-FMT mice. The oral administration of Enterococcus mundtii (EM), a bacterium isolated from the feces of patients with UC, reduced NPY expression in the colons of mice and induced intestinal inflammation, anxiety, and depression-like behavior. Reduced NPY protein levels were also observed in the plasma and hippocampus of EM-treated mice. Intraperitoneal administration of NPY significantly alleviated anxiety- and depressive-like behaviors induced by EM in mice. Capsular polysaccharide in EM was associated with EM-induced NPY downregulation in the colon. Analysis of Gene Expression Omnibus datasets showed markedly reduced NPY expression in the inflamed colons of patients with UC compared with that in the colons of healthy controls. In summary, EM-induced reduction in the colonic expression of NPY may be associated with a decrease in hippocampal NPY and anxiety- and depression-like behavior in mice.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Neuropeptide Y , Humans , Anxiety , Colitis, Ulcerative/microbiology , Depression , Fecal Microbiota Transplantation , Feces/microbiology , Neuropeptide Y/genetics , Animals , Mice
17.
Endocrinology ; 165(5)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38368624

ABSTRACT

Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.


Subject(s)
Feeding Behavior , Hypothalamus , Neurons , Neuropeptide Y , Rats, Sprague-Dawley , Animals , Female , Male , Rats , Deoxyglucose/pharmacology , Eating/drug effects , Eating/physiology , Feeding Behavior/drug effects , Glucose/metabolism , Hypothalamic Area, Lateral/metabolism , Hypothalamic Area, Lateral/drug effects , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Hypothalamus/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Melanins/metabolism , Neurons/metabolism , Neurons/drug effects , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Neuropeptides/metabolism , Orexins/metabolism , Pituitary Hormones/metabolism , Receptors, Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/genetics , Ribosome Inactivating Proteins, Type 1/pharmacology , Saporins/pharmacology
18.
ESC Heart Fail ; 11(3): 1625-1635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38400690

ABSTRACT

AIMS: Cardiac dysfunction is commonly observed in patients with subarachnoid haemorrhage (SAH). However, the specific timeline of cardiac remodelling and the underlying mechanisms responsible for this effect following SAH remain unknown. This study aims to explore the impact of SAH on cardiac dysfunction and its potential mechanisms over time. METHODS AND RESULTS: In Protocol 1, we investigated cardiac function and potential mechanisms in a Sprague-Dawley rat model of SAH at six time points (baseline and Days 1, 3, 7, 14, and 28) while exploring the underlying mechanisms. Our assessments included the haemodynamic profile, echocardiography, and the concentrations of plasma biomarkers at various time points post-SAH. We determined neuropeptide Y (NPY) 1-5 receptor protein expression levels through western blotting. In Protocol 2, we administered an NPY1 receptor antagonist to evaluate the effects of cardiac dysfunction induced by SAH on Day 3. In Protocol 1, SAH gradually provoked cardiac systolic dysfunction during the acute phase, reaching its peak on Day 3 without concurrent alterations in wall thickness. However, no significant changes were observed from Days 14 to 28 compared with Day 0. The changes in cardiac dysfunction were consistent with myocardial injury, inflammatory biomarkers, and NPY levels. SAH resulted in a heightened heart rate and systolic blood pressure, correlating with elevated epinephrine and norepinephrine levels. In Protocol 2, the administration of the NPY1 receptor antagonist effectively ameliorated cardiac dysfunction. CONCLUSIONS: SAH induces transient cardiac dysfunction in the acute phase, and the underlying mechanisms for this response involve the NPY-NPY1 receptor pathway, otherwise known as catecholamines.


Subject(s)
Disease Models, Animal , Rats, Sprague-Dawley , Receptors, Neuropeptide Y , Subarachnoid Hemorrhage , Animals , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/physiopathology , Rats , Male , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/metabolism , Time Factors , Echocardiography , Biomarkers/blood , Neuropeptide Y/metabolism , Ventricular Remodeling/physiology
19.
Mol Cell Endocrinol ; 586: 112179, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38387703

ABSTRACT

Neuropeptide Y (Npy) is an abundant neuropeptide expressed in the central and peripheral nervous systems. NPY-secreting neurons in the hypothalamic arcuate nucleus regulate energy homeostasis, and Npy mRNA expression is regulated by peripheral nutrient and hormonal signals like leptin, interleukin-6 (IL-6), and fatty acids. This study demonstrates that IL-6, which phosphorylates tyrosine 705 (Y705) of STAT3, decreased Npy mRNA in arcuate immortalized hypothalamic neurons. In parallel, inhibitors of STAT3-Y705 phosphorylation, stattic and cucurbitacin I, robustly upregulated Npy mRNA. Chromatin-immunoprecipitation showed high baseline total STAT3 binding to multiple regulatory regions of the Npy gene, which are decreased by IL-6 exposure. The STAT3-Npy interaction was further examined in obesity-related pathologies. Notably, in four different hypothalamic neuronal models where palmitate potently stimulated Npy mRNA, Socs3, a specific STAT3 activity marker, was downregulated and was negatively correlated with Npy mRNA levels (R2 = 0.40, p < 0.001), suggesting that disrupted STAT3 signaling is involved in lipotoxicity-mediated dysregulation of Npy. Finally, human NPY SNPs that map to human obesity or body mass index were investigated for potential STAT3 binding sites. Although none of the SNPs were linked to direct STAT3 binding, analysis show that rs17149106 (-602 G > T) is located on an upstream enhancer element of NPY, where the variant is predicted to disrupt validated binding of KLF4, a known inhibitory cofactor of STAT3 and downstream effector of leptin signaling. Collectively, this study demonstrates that STAT3 signaling negatively regulates Npy transcription, and that disruption of this interaction may contribute to metabolic disorders.


Subject(s)
Leptin , Neuropeptide Y , Humans , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Leptin/pharmacology , Leptin/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Hypothalamus/metabolism , Obesity/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Neurons/metabolism , RNA, Messenger/genetics , STAT3 Transcription Factor/metabolism
20.
Gen Physiol Biophys ; 43(3): 255-261, 2024 May.
Article in English | MEDLINE | ID: mdl-38385362

ABSTRACT

The arcuate nucleus (ARN) of the hypothalamus is involved in multiple biological functions, such as feeding, sexual activity, and the regulation of the cardiovascular system. It was reported that leptin increased c-Fos expression in the proopiomelanocortin (POMC)- and decreased it in the neuropeptide-Y (NPY)-positive neurons of the ARN, suggesting that it stimulates the former, and inhibits the later. This study aimed at the direct electrophysiological examination of the effect of leptin on ARN neurons and to investigate potential sex-dimorphic changes. Wistar rats were anesthetized with urethane and the electrodes were inserted into the ARN. After a spontaneous active neuron was recorded for at least one minute, leptin was administered intravenously, and the firing activity of the same neuron was recorded for two additional minutes. It was found that approximately half of the ARN neurons had an excitatory, and another half an inhibitory response to the leptin administration. The excitability of the neurons with excitatory response to leptin was not different between the sexes. The average firing rate of the neurons with inhibitory response to leptin in females was, however, significantly lower comparing to the males. The obtained results demonstrate that the ARN neurons with stimulatory response to leptin are POMC and those with inhibitory response are NPY neurons. NPY Y1 receptor be might responsible, at least in part, for the sex differences in the excitability of the neurons putatively identified as NPY neurons.


Subject(s)
Arcuate Nucleus of Hypothalamus , Leptin , Neurons , Neuropeptide Y , Pro-Opiomelanocortin , Rats, Wistar , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/drug effects , Pro-Opiomelanocortin/metabolism , Male , Female , Rats , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Leptin/pharmacology , Leptin/metabolism , Neurons/metabolism , Neurons/drug effects , Action Potentials/drug effects , Action Potentials/physiology , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...