Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.643
Filter
1.
J Comp Neurol ; 532(6): e25619, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831653

ABSTRACT

Zebrafish is a useful model organism in neuroscience; however, its gene expression atlas in the adult brain is not well developed. In the present study, we examined the expression of 38 neuropeptides, comparing with GABAergic and glutamatergic neuron marker genes in the adult zebrafish brain by comprehensive in situ hybridization. The results are summarized as an expression atlas in 19 coronal planes of the forebrain. Furthermore, the scanned data of all brain sections were made publicly available in the Adult Zebrafish Brain Gene Expression Database (https://ssbd.riken.jp/azebex/). Based on these data, we performed detailed comparative neuroanatomical analyses of the hypothalamus and found that several regions previously described as one nucleus in the reference zebrafish brain atlas contain two or more subregions with significantly different neuropeptide/neurotransmitter expression profiles. Subsequently, we compared the expression data in zebrafish telencephalon and hypothalamus obtained in this study with those in mice, by performing a cluster analysis. As a result, several nuclei in zebrafish and mice were clustered in close vicinity. The present expression atlas, database, and anatomical findings will contribute to future neuroscience research using zebrafish.


Subject(s)
Neuropeptides , Prosencephalon , Zebrafish , Animals , Zebrafish/anatomy & histology , Prosencephalon/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Atlases as Topic , Gene Expression , Databases, Genetic , Mice
2.
Biochem Biophys Res Commun ; 717: 149992, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38714013

ABSTRACT

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.


Subject(s)
Insect Hormones , Ixodes , Neuropeptides , Oligopeptides , Pyrrolidonecarboxylic Acid , Receptors, G-Protein-Coupled , Animals , Neuropeptides/metabolism , Neuropeptides/genetics , Insect Hormones/metabolism , Insect Hormones/genetics , Ixodes/metabolism , Ixodes/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Oligopeptides/metabolism , Oligopeptides/genetics , Oligopeptides/chemistry , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Phylogeny , Amino Acid Sequence , Cricetulus , CHO Cells , Insect Proteins/genetics , Insect Proteins/metabolism , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics
3.
Exp Dermatol ; 33(5): e15104, 2024 May.
Article in English | MEDLINE | ID: mdl-38794817

ABSTRACT

Psoriasis is a chronic systemic inflammatory cutaneous disease. Where the immune system plays an important role in its pathogenesis, with key inflammatory intercellular signalling peptides and proteins including IL-17 and IL-23. The psychoneurological system also figures prominently in development of psoriasis. There is a high prevalence of comorbidity between psoriasis and mental health disorders such as depression, anxiety and mania. Patients with psoriasis often suffer from pathological pain in the lesions, and their neurological accidents could improve the lesions in innervated areas. The immune system and the psychoneurological system interact closely in the pathogenesis of psoriasis. Patients with psoriasis exhibit abnormal levels of neuropeptides both in circulating and localized lesion, acting as immunomodulators involved in the inflammatory response. Moreover, receptors for inflammatory factors are expressed in both peripheral and central nervous systems (CNSs), suggesting that nervous system can receive and be influenced by signals from immune system. Key inflammatory intercellular signalling peptides and proteins in psoriasis, such as IL-17 and IL-23, can be involved in sensory signalling and may affect synaptic plasticity and the blood-brain barrier of CNS through the circulation. This review provides an overview of the multiple effects on the peripheral and CNS under conditions of systemic inflammation in psoriasis, providing a framework and inspiration for in-depth studies of neuroimmunomodulation in psoriasis.


Subject(s)
Central Nervous System , Interleukin-17 , Interleukin-23 , Psoriasis , Psoriasis/metabolism , Psoriasis/immunology , Humans , Central Nervous System/metabolism , Interleukin-23/metabolism , Interleukin-17/metabolism , Neuroimmunomodulation , Neuropeptides/metabolism , Inflammation/metabolism , Peripheral Nervous System/metabolism , Animals , Signal Transduction
4.
Elife ; 122024 May 10.
Article in English | MEDLINE | ID: mdl-38727714

ABSTRACT

Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) - the most common receptors of bilaterian neuropeptides - but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.


Subject(s)
Neuropeptides , Phylogeny , Receptors, G-Protein-Coupled , Sea Anemones , Animals , Sea Anemones/genetics , Neuropeptides/metabolism , Neuropeptides/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Signal Transduction
5.
J Zhejiang Univ Sci B ; 25(5): 389-409, 2024 May 15.
Article in English, Chinese | MEDLINE | ID: mdl-38725339

ABSTRACT

The short neuropeptide F (sNPF) family of peptides is a multifunctional group of neurohormones involved in the regulation of various physiological processes in insects. They have been found in a broad spectrum of species, but the number of isoforms in the precursor molecule varies from one to four. The receptor for sNPF (sNPFR), which belongs to the G protein-coupled receptor family, has been characterized in various insect orders and was shown to be an ortholog of the mammalian prolactin-releasing peptide receptor (PrPR). The sNPF signaling pathway interacts with other neurohormones such as insulin-like peptides, SIFamide, and pigment-dispersing factors (PDFs) to regulate various processes. The main physiological function of sNPF seems to be involved in the regulation of feeding, but the observed effects are species-specific. sNPF is also connected with the regulation of foraging behavior and the olfactory system. The influence of sNPF on feeding and thus energy metabolism may also indirectly affect other vital processes, such as reproduction and development. In addition, these neurohormones are involved in the regulation of locomotor activity and circadian rhythm in insects. This review summarizes the current state of knowledge about the sNPF system in insects.


Subject(s)
Insecta , Neuropeptides , Signal Transduction , Animals , Neuropeptides/metabolism , Neuropeptides/physiology , Insecta/physiology , Insecta/metabolism , Circadian Rhythm/physiology , Feeding Behavior , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/physiology , Energy Metabolism
6.
Nat Commun ; 15(1): 4273, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769103

ABSTRACT

Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Sex Characteristics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Male , Female , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Sensory Receptor Cells/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Profiling
7.
J Agric Food Chem ; 72(20): 11341-11350, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38713071

ABSTRACT

Insect neuropeptides play an essential role in regulating growth, development, reproduction, nerve conduction, metabolism, and behavior in insects; therefore, G protein-coupled receptors of neuropeptides are considered important targets for designing green insecticides. Cockroach-type allatostatins (ASTs) (FGLamides allatostatins) are important insect neuropeptides in Diploptera punctata that inhibit juvenile hormone (JH) synthesis in the corpora allata and affect growth, development, and reproduction of insects. Therefore, the pursuit of novel insecticides targeting the allatostatin receptor (AstR) holds significant importance. Previously, we identified an AST analogue, H17, as a promising candidate for pest control. Herein, we first modeled the 3D structure of AstR in D. punctata (Dippu-AstR) and predicted the binding mode of H17 with Dippu-AstR to study the critical interactions and residues favorable to its bioactivity. Based on this binding mode, we designed and synthesized a series of H17 derivatives and assessed their insecticidal activity against D. punctata. Among them, compound Q6 showed higher insecticidal activity than H17 against D. punctata by inhibiting JH biosynthesis, indicating that Q6 is a potential candidate for a novel insect growth regulator (IGR)-based insecticide. Moreover, Q6 exhibited insecticidal activity against Plutella xylostella, indicating that these AST analogs may have a wider insecticidal spectrum. The underlying mechanisms and molecular conformations mediating the interactions of Q6 with Dippu-AstR were explored to understand its effects on the bioactivity. The present work clarifies how a target-based strategy facilitates the discovery of new peptide mimics with better bioactivity, enabling improved IGR-based insecticide potency in sustainable agriculture.


Subject(s)
Insect Proteins , Insecticides , Neuropeptides , Peptidomimetics , Insecticides/chemistry , Insecticides/pharmacology , Insecticides/chemical synthesis , Animals , Neuropeptides/chemistry , Neuropeptides/pharmacology , Neuropeptides/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Peptidomimetics/chemical synthesis , Drug Design , Juvenile Hormones/chemistry , Juvenile Hormones/pharmacology , Juvenile Hormones/metabolism , Cockroaches/drug effects , Cockroaches/chemistry
8.
Sci Rep ; 14(1): 10863, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740831

ABSTRACT

Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.


Subject(s)
Cricetulus , Kinins , Neuropeptides , Peristalsis , Animals , Kinins/metabolism , CHO Cells , Neuropeptides/metabolism , Neuropeptides/genetics , Muscles/metabolism , Muscles/physiology , Ticks/metabolism , Ticks/physiology , Rhipicephalus/metabolism , Rhipicephalus/physiology , Rhipicephalus/genetics , Arthropod Proteins/metabolism , Arthropod Proteins/genetics
9.
Int Immunopharmacol ; 134: 112186, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733824

ABSTRACT

BACKGROUND: Although the pathophysiological mechanism of septic cardiomyopathy has been continuously discovered, it is still a lack of effective treatment method. Cortistatin (CST), a neuroendocrine polypeptide of the somatostatin family, has emerged as a novel cardiovascular-protective peptide, but the specific mechanism has not been elucidated. PURPOSE: The aim of our study is to explore the role of CST in cardiomyocytes pyroptosis and myocardial injury in sepsis and whether CST inhibits cardiomyocytes pyroptosis through specific binding with somastatin receptor 2 (SSTR2) and activating AMPK/Drp1 signaling pathway. METHODS AND RESULTS: In this study, plasma CST levels were significantly high and were negatively correlated with N-terminal pro-B type natriuretic peptide (NT-proBNP), a biomarker for cardiac dysfunction, in patients with sepsis. Exogenous administration of CST significantly improved survival rate and cardiac function in mouse models of sepsis by inhibiting the activation of the NLRP3 inflammasome and pyroptosis of cardiomyocytes (decreased cleavage of caspase-1, IL-1ß and gasdermin D). Pharmacological inhibition and genetic ablation revealed that CST exerted anti-pyroptosis effects by specifically binding to somatostatin receptor subtype 2 (SSTR2), thus activating AMPK and inactivating Drp1 to inhibit mitochondrial fission in cardiomyocytes. CONCLUSIONS: This study is the first to report that CST attenuates septic cardiomyopathy by inhibiting cardiomyocyte pyroptosis through the SSTR2-AMPK-Drp1-NLRP3 pathway. Importantly, CST specifically binds to SSTR2, which promotes AMPK phosphorylation, inhibits Drp1-mediated mitochondrial fission, and reduces ROS levels, thereby inhibiting NLRP3 inflammasome activation-mediated pyroptosis and alleviating sepsis-induced myocardial injury.


Subject(s)
AMP-Activated Protein Kinases , Cardiomyopathies , Mice, Inbred C57BL , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Neuropeptides , Pyroptosis , Receptors, Somatostatin , Sepsis , Signal Transduction , Animals , Pyroptosis/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Receptors, Somatostatin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Sepsis/drug therapy , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Neuropeptides/metabolism , Mice , Male , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Disease Models, Animal , Mice, Knockout
10.
Brain Struct Funct ; 229(5): 1299-1315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720004

ABSTRACT

The expression of Neuritin-1 (NRN1), a neurotrophic factor crucial for neurodevelopment and synaptic plasticity, is enhanced by the Brain Derived Neurotrophic Factor (BDNF). Although the receptor of NRN1 remains unclear, it is suggested that NRN1's activation of the insulin receptor (IR) pathway promotes the transcription of the calcium voltage-gated channel subunit alpha1 C (CACNA1C). These three genes have been independently associated with schizophrenia (SZ) risk, symptomatology, and brain differences. However, research on how they synergistically modulate these phenotypes is scarce. We aimed to study whether the genetic epistasis between these genes affects the risk and clinical presentation of the disorder via its effect on brain structure. First, we tested the epistatic effect of NRN1 and BDNF or CACNA1C on (i) the risk for SZ, (ii) clinical symptoms severity and functionality (onset, PANSS, CGI and GAF), and (iii) brain cortical structure (thickness, surface area and volume measures estimated using FreeSurfer) in a sample of 86 SZ patients and 89 healthy subjects. Second, we explored whether those brain clusters influenced by epistatic effects mediate the clinical profiles. Although we did not find a direct epistatic impact on the risk, our data unveiled significant effects on the disorder's clinical presentation. Specifically, the NRN1-rs10484320 x BDNF-rs6265 interplay influenced PANSS general psychopathology, and the NRN1-rs4960155 x CACNA1C-rs1006737 interaction affected GAF scores. Moreover, several interactions between NRN1 SNPs and BDNF-rs6265 significantly influenced the surface area and cortical volume of the frontal, parietal, and temporal brain regions within patients. The NRN1-rs10484320 x BDNF-rs6265 epistasis in the left lateral orbitofrontal cortex fully mediated the effect on PANSS general psychopathology. Our study not only adds clinical significance to the well-described molecular relationship between NRN1 and BDNF but also underscores the utility of deconstructing SZ into biologically validated brain-imaging markers to explore their mediation role in the path from genetics to complex clinical manifestation.


Subject(s)
Brain-Derived Neurotrophic Factor , Calcium Channels, L-Type , Epistasis, Genetic , Schizophrenia , Humans , Brain-Derived Neurotrophic Factor/genetics , Schizophrenia/genetics , Schizophrenia/pathology , Female , Male , Adult , Calcium Channels, L-Type/genetics , Middle Aged , Brain/pathology , Polymorphism, Single Nucleotide , Neuropeptides/genetics , Neuropeptides/metabolism , Magnetic Resonance Imaging , Young Adult , GPI-Linked Proteins
11.
Mol Biol Rep ; 51(1): 656, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740671

ABSTRACT

BACKGROUND: Prokineticin 2 (PROK2), an important neuropeptide that plays a key role in the neuronal migration of gonadotropin-releasing hormone (GnRH) in the hypothalamus, is known to have regulatory effects on the gonads. In the present study, the impact of intracerebroventricular (icv) PROK2 infusion on hypothalamic-pituitary-gonadal axis (HPG) hormones, testicular tissues, and sperm concentration was investigated. METHODS AND RESULTS: Rats were randomly divided into four groups: control, sham, PROK2 1.5 and PROK2 4.5. Rats in the PROK2 1.5 and PROK2 4.5 groups were administered 1.5 nmol and 4.5 nmol PROK2 intracerebroventricularly for 7 days via an osmotic mini pump (1 µl/h), respectively. Rat blood serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone hormone levels were determined with the ELISA method in the blood samples after 7 days of infusion. GnRH mRNA expression was determined with the RT-PCR in hypothalamus tissues. analyze Sperm concentration was determined, and testicular tissue was examined histologically with the hematoxylin-eosin staining method. It was observed that GnRH mRNA expression increased in both PROK2 infusion groups. Serum FSH, LH and testosterone hormone levels also increased in these groups. Although sperm concentration increased in PROK2 infusion groups when compared to the control and sham, the differences were not statistically significant. Testicular tissue seminiferous epithelial thickness was higher in the PROK2 groups when compared to the control and sham groups. CONCLUSION: The present study findings demonstrated that icv PROK2 infusion induced the HPG axis. It could be suggested that PROK2 could be a potential agent in the treatment of male infertility induced by endocrinological defects.


Subject(s)
Follicle Stimulating Hormone , Gastrointestinal Hormones , Gonadotropin-Releasing Hormone , Luteinizing Hormone , Neuropeptides , Testis , Testosterone , Male , Animals , Rats , Gastrointestinal Hormones/metabolism , Gonadotropin-Releasing Hormone/metabolism , Testosterone/blood , Testosterone/metabolism , Follicle Stimulating Hormone/blood , Follicle Stimulating Hormone/metabolism , Testis/metabolism , Testis/drug effects , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism , Neuropeptides/metabolism , Neuropeptides/pharmacology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/drug effects , Infusions, Intraventricular , Hypothalamus/metabolism , Hypothalamus/drug effects , Sperm Count , Rats, Sprague-Dawley , Hypothalamic-Pituitary-Gonadal Axis
12.
Pestic Biochem Physiol ; 200: 105840, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582602

ABSTRACT

CAPA neuropeptides regulate the diuresis/ antidiuresis process in insects by activating specific cognate receptor, CAPAr. In this study, we characterized the CAPAr gene (BtabCAPAr) in the whitefly, Bemisia tabaci Asia II 1. The two alternatively spliced isoforms of BtabCAPAr gene, BtabCAPAr-1 and BtabCAPAr-2, having six and five exons, respectively, were identified. The BtabCAPAr gene expression was highest in adult whitefly as compared to gene expression in egg, nymphal and pupal stages. Among the three putative CAPA peptides, CAPA-PVK1 and CAPA-PVK2 strongly activated the BtabCAPAr-1 with very low EC50 values of 0.067 nM and 0.053 nM, respectively, in heterologous calcium mobilization assays. None of the peptide activated the alternatively spliced isoform BtabCAPAr-2 that has lost the transmembrane segments 3 and 4. Significant levels of mortality were observed when whiteflies were fed with CAPA-PVK1 at 1.0 µM (50.0%), CAPA-PVK2 at 100.0 nM (43.8%) and CAPA-tryptoPK 1.0 µM (40.0%) at the 96 h after the treatment. This study provides valuable information to design biostable peptides to develop a class of insecticides.


Subject(s)
Hemiptera , Neuropeptides , Animals , Peptides/metabolism , Neuropeptides/chemistry , Neuropeptides/genetics , Neuropeptides/metabolism , Signal Transduction , Protein Isoforms/genetics , Protein Isoforms/metabolism , Hemiptera/genetics , Hemiptera/metabolism
13.
Cell Rep ; 43(4): 114042, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573858

ABSTRACT

Pathogenic infection elicits behaviors that promote recovery and survival of the host. After exposure to the pathogenic bacterium Pseudomonas aeruginosa PA14, the nematode Caenorhabditis elegans modifies its sensory preferences to avoid the pathogen. Here, we identify antagonistic neuromodulators that shape this acquired avoidance behavior. Using an unbiased cell-directed neuropeptide screen, we show that AVK neurons upregulate and release RF/RYamide FLP-1 neuropeptides during infection to drive pathogen avoidance. Manipulations that increase or decrease AVK activity accelerate or delay pathogen avoidance, respectively, implicating AVK in the dynamics of avoidance behavior. FLP-1 neuropeptides drive pathogen avoidance through the G protein-coupled receptor DMSR-7, as well as other receptors. DMSR-7 in turn acts in multiple neurons, including tyraminergic/octopaminergic neurons that receive convergent avoidance signals from the cytokine DAF-7/transforming growth factor ß. Neuromodulators shape pathogen avoidance through multiple mechanisms and targets, in agreement with the distributed neuromodulatory connectome of C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Neuropeptides , Pseudomonas aeruginosa , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Neuropeptides/metabolism , Pseudomonas aeruginosa/metabolism , Caenorhabditis elegans Proteins/metabolism , Biogenic Monoamines/metabolism , Neurons/metabolism , Avoidance Learning/physiology , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
14.
Sheng Li Xue Bao ; 76(2): 309-318, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658379

ABSTRACT

Innate behavior is mainly controlled by genetics, but is also regulated by social experiences such as social isolation. Studies in animal models such as Drosophila and mice have found that social isolation can regulate innate behaviors through the changes at the molecular level, such as hormone, neurotransmitter, neuropeptide level, and at the level of neural circuits. In this review, we summarized the research progress on the regulation of social isolation on various animal innate behaviors, such as sleep, reproduction and aggression by altering the expression of conserved neuropeptides and neurotransmitters, hoping to deepen the understanding of the key and conserved signal pathways that regulate innate behavior by social isolation.


Subject(s)
Neuropeptides , Social Isolation , Animals , Neuropeptides/physiology , Neuropeptides/metabolism , Behavior, Animal/physiology , Mice , Instinct , Sleep/physiology , Aggression/physiology , Humans , Reproduction/physiology , Neurotransmitter Agents/physiology , Neurotransmitter Agents/metabolism
15.
Nat Commun ; 15(1): 3514, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664401

ABSTRACT

Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.


Subject(s)
Eating , Enteroendocrine Cells , Glutamic Acid , Neuropeptides , Peptide YY , Animals , Enteroendocrine Cells/metabolism , Female , Neuropeptides/metabolism , Neuropeptides/genetics , Eating/physiology , Peptide YY/metabolism , Glutamic Acid/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Feeding Behavior/physiology , Receptors, Metabotropic Glutamate/metabolism , Dopaminergic Neurons/metabolism , Diet
16.
Methods Mol Biol ; 2757: 531-581, 2024.
Article in English | MEDLINE | ID: mdl-38668982

ABSTRACT

Experimental discovery of neuropeptides and peptide hormones is a long and tedious task. Mining the genomic and transcriptomic sequence data with robust secretory peptide prediction tools can significantly facilitate subsequent experiments. We describe the application of various in silico neuropeptide discovery methods for the placozoan Trichopax adhaerens as an illustrated example and a powerful experimental paradigm for cellular and evolutionary biology. In total, 33 placozoan (neuro)peptide-like hormone precursors were found using homology-based BLAST search and repeat-based and comparative evolutionary methods. Some of the discovered precursors are homologous to insulins and RFamide precursors from Cnidaria and other animal phyla.


Subject(s)
Computational Biology , Neuropeptides , Placozoa , Animals , Computational Biology/methods , Placozoa/genetics , Neuropeptides/genetics , Neuropeptides/metabolism , Amino Acid Sequence , Phylogeny , Evolution, Molecular
17.
Biosci Rep ; 44(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38577975

ABSTRACT

Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.


Subject(s)
Anti-Obesity Agents , Neuropeptides , Neuroprotective Agents , Obesity , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Animals , Obesity/drug therapy , Obesity/metabolism , Neuropeptides/metabolism , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/prevention & control , Hypothalamus/drug effects , Hypothalamus/metabolism , Hypothalamus/pathology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Brain/drug effects , Brain/metabolism , Brain/pathology , Eating/drug effects
18.
J Agric Food Chem ; 72(18): 10304-10313, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657164

ABSTRACT

Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.


Subject(s)
Insect Proteins , Larva , Neuropeptides , Spodoptera , Animals , Spodoptera/physiology , Spodoptera/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics , Neuropeptides/chemistry , Larva/growth & development , Larva/metabolism , Larva/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Flavones/metabolism , Flavones/chemistry , Feeding Behavior , Amino Acid Sequence
19.
J Proteome Res ; 23(5): 1757-1767, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38644788

ABSTRACT

The American lobster, Homarus americanus, is not only of considerable economic importance but has also emerged as a premier model organism in neuroscience research. Neuropeptides, an important class of cell-to-cell signaling molecules, play crucial roles in a wide array of physiological and psychological processes. Leveraging the recently sequenced high-quality draft genome of the American lobster, our study sought to profile the neuropeptidome of this model organism. Employing advanced mass spectrometry techniques, we identified 24 neuropeptide precursors and 101 unique mature neuropeptides in Homarus americanus. Intriguingly, 67 of these neuropeptides were discovered for the first time. Our findings provide a comprehensive overview of the peptidomic attributes of the lobster's nervous system and highlight the tissue-specific distribution of these neuropeptides. Collectively, this research not only enriches our understanding of the neuronal complexities of the American lobster but also lays a foundation for future investigations into the functional roles that these peptides play in crustacean species. The mass spectrometry data have been deposited in the PRIDE repository with the identifier PXD047230.


Subject(s)
Amino Acid Sequence , Nephropidae , Neuropeptides , Proteomics , Animals , Nephropidae/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics , Neuropeptides/analysis , Proteomics/methods , Mass Spectrometry , Molecular Sequence Data
20.
J Dermatol ; 51(5): 621-631, 2024 May.
Article in English | MEDLINE | ID: mdl-38605467

ABSTRACT

Alopecia areata refers to an autoimmune illness indicated by persistent inflammation. The key requirement for alopecia areata occurrence is the disruption of immune-privileged regions within the hair follicles. Recent research has indicated that neuropeptides play a role in the damage to hair follicles by triggering neurogenic inflammation, stimulating mast cells ambient the follicles, and promoting apoptotic processes in keratinocytes. However, the exact pathogenesis of alopecia areata requires further investigation. Recently, there has been an increasing focus on understanding the mechanisms of immune diseases resulting from the interplay between the nervous and the immune system. Neurogenic inflammation due to neuroimmune disorders of the skin system may disrupt the inflammatory microenvironment of the hair follicle, which plays a crucial part in the progression of alopecia areata.


Subject(s)
Alopecia Areata , Hair Follicle , Neurogenic Inflammation , Alopecia Areata/immunology , Alopecia Areata/etiology , Alopecia Areata/pathology , Humans , Hair Follicle/immunology , Hair Follicle/pathology , Neurogenic Inflammation/immunology , Neurogenic Inflammation/etiology , Neuropeptides/metabolism , Neuropeptides/immunology , Mast Cells/immunology , Keratinocytes/immunology , Keratinocytes/pathology , Apoptosis/immunology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...