Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Free Radic Biol Med ; 145: 349-356, 2019 12.
Article in English | MEDLINE | ID: mdl-31605749

ABSTRACT

Appropriate diet is essential for the regulation of age-related macular degeneration (AMD). In particular the type of dietary polyunsaturated fatty acids (PUFA) and poor antioxidant status including carotenoid levels concomitantly contribute to AMD risk. Build-up of oxidative stress in AMD induces PUFA oxidation, and a mix of lipid oxidation products (LOPs) are generated. However, LOPs are not comprehensively evaluated in AMD. LOPs are considered biomarkers of oxidative stress but also contributes to inflammatory response. In this cross-sectional case-control study, plasma omega-6/omega-3 PUFA ratios and antioxidant status (glutathione, superoxide dismutase and catalase), and plasma and urinary LOPs (41 types) were determined to evaluate its odds-ratio in the risk of developing exudative AMD (n = 99) compared to age-gender-matched healthy controls (n = 198) in adults with Chinese diet. The odds ratio of developing exudative AMD increased with LOPs from omega-6 PUFA and decreased from those of omega-3 PUFA. These observations were associated with a high plasma omega-6/omega-3 PUFA ratio and low carotenoid levels. In short, poor PUFA and antioxidant status increased the production of omega-6 PUFA LOPs such as dihomo-isoprostane and dihomo-isofuran, and lowered omega-3 PUFA LOPs such as neuroprostanes due to the high omega-6/omega-3 PUFA ratios; they were also correlated to the risk of AMD development. These findings indicate the generation of specific LOPs is associated with the development of exudative AMD.


Subject(s)
Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/administration & dosage , Macular Degeneration/metabolism , Oxidative Stress/drug effects , 3-Hydroxyacyl CoA Dehydrogenases/genetics , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Acetyl-CoA C-Acyltransferase/genetics , Acetyl-CoA C-Acyltransferase/metabolism , Aged , Aldehydes/administration & dosage , Antioxidants/administration & dosage , Biomarkers/blood , Carbon-Carbon Double Bond Isomerases/genetics , Carbon-Carbon Double Bond Isomerases/metabolism , Carotenoids/metabolism , Diet/adverse effects , Enoyl-CoA Hydratase/genetics , Enoyl-CoA Hydratase/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Female , Humans , Isoprostanes/administration & dosage , Lipid Peroxidation/drug effects , Lipid Peroxidation/genetics , Macular Degeneration/etiology , Macular Degeneration/genetics , Macular Degeneration/pathology , Male , Middle Aged , Neuroprostanes/administration & dosage , Oxidation-Reduction/drug effects , Oxidative Stress/genetics , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Risk Factors
2.
Transl Stroke Res ; 9(2): 146-156, 2018 04.
Article in English | MEDLINE | ID: mdl-28842830

ABSTRACT

Despite ischemic stroke being the fifth leading cause of death in the USA, there are few therapeutic options available. We recently showed that the neuroprotective compound P7C3-A20 reduced brain atrophy, increased neurogenesis, and improved functional recovery when treatment was initiated immediately post-reperfusion after a 90-min middle cerebral artery occlusion (MCAO). In the present study, we investigated a more clinically relevant therapeutic window for P7C3-A20 treatment after ischemic stroke. MCAO rats were administered P7C3-A20 for 1 week, beginning immediately or at a delayed point, 6 h post-reperfusion. Delayed P7C3-A20 treatment significantly improved stroke-induced sensorimotor deficits in motor coordination and symmetry, as well as cognitive deficits in hippocampal-dependent spatial learning, memory retention, and working memory. In the cerebral cortex, delayed P7C3-A20 treatment significantly increased tissue sparing 7 weeks after stroke and reduced hemispheric infarct volumes 48 h after reperfusion. Despite no reduction in striatal infarct volumes acutely, there was a significant increase in spared tissue volume chronically. In the hippocampus, only immediately treated P7C3-A20 animals had a significant increase in tissue sparing compared to vehicle-treated stroke animals. This structural protection translated into minimal hippocampal-dependent behavioral improvements with delayed P7C3-A20 treatment. However, all rats treated with delayed P7C3-A20 demonstrated a significant improvement in both sensorimotor tasks compared to vehicle controls, suggesting a somatosensory-driven recovery. These results demonstrate that P7C3-A20 improves chronic functional and histopathological outcomes after ischemic stroke with an extended therapeutic window.


Subject(s)
Carbazoles/administration & dosage , Infarction, Middle Cerebral Artery/drug therapy , Neuroprostanes/administration & dosage , Analysis of Variance , Animals , Behavior, Animal/drug effects , Cerebral Infarction/etiology , Cerebral Infarction/prevention & control , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Disease Models, Animal , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/mortality , Male , Maze Learning/drug effects , Neurogenesis/drug effects , Rats , Rats, Sprague-Dawley , Reperfusion , Time Factors
3.
J Alzheimers Dis ; 59(4): 1415-1426, 2017.
Article in English | MEDLINE | ID: mdl-28759972

ABSTRACT

Heat shock protein 70, encoded by the HSPA1A gene in humans, is a key component of the machinery that protects neuronal cells from various stress conditions and whose production significantly declines during the course of aging and as a result of several neurodegenerative diseases. Herein, we investigated whether sub-chronic intranasal administration of exogenous Hsp70 (eHsp70) exerts a neuroprotective effect on the temporal cortex and areas of the hippocampus in transgenic 5XFAD mice, a model of Alzheimer's disease. The quantitative analysis of neuronal pathologies in the compared groups, transgenic (Tg) versus non-transgenic (nTg), revealed high level of abnormalities in the brains of transgenic mice. Treatment with human recombinant Hsp70 had profound rejuvenation effect on both neuronal morphology and functional state in the temporal cortex and hippocampal regions in transgenic mice. Hsp70 administration had a smaller, but still significant, effect on the functional state of neurons in non-transgenic mice as well. Using deep sequencing, we identified multiple differentially expressed genes (DEGs) in the hippocampus of transgenic and non-transgenic mice. Furthermore, this analysis demonstrated that eHsp70 administration strongly modulates the spectrum of DEGs in transgenic animals, reverting to a pattern similar to that observed in non-transgenic age-matched mice, which included upregulation of genes responsible for amine transport, transmission of nerve impulses and other pathways that are impaired in 5XFAD mice. Overall, our data indicate that Hsp70 treatment may be an effective therapeutic against old age diseases of the Alzheimer's type.


Subject(s)
Alzheimer Disease/drug therapy , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/administration & dosage , Neuroprostanes/administration & dosage , Administration, Intranasal/methods , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Analysis of Variance , Animals , Brain/pathology , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Male , Mice , Mice, Transgenic , Mutation/genetics , Neurons/drug effects , Presenilin-1/genetics
4.
J Neuroinflammation ; 14(1): 143, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28738820

ABSTRACT

BACKGROUND: Microglial activation and the subsequent inflammatory response in the central nervous system play important roles in secondary damage after traumatic brain injury (TBI). High-mobility group box 1 (HMGB1) protein, an important mediator in late inflammatory responses, interacts with transmembrane receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs) to activate downstream signaling pathways, such as the nuclear factor (NF)-κB signaling pathway, leading to a cascade amplification of inflammatory responses, which are related to neuronal damage after TBI. Omega-3 polyunsaturated fatty acid (ω-3 PUFA) is a commonly used clinical immunonutrient, which has antioxidative and anti-inflammatory effects. However, the effects of ω-3 PUFA on HMGB1 expression and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway are not clear. METHODS: The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglial activation in lesioned sites and protein markers for proinflammatory, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, interferon (IFN)-γ, and HMGB1 were used to evaluate neuroinflammatory responses and anti-inflammation effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway to evaluate the effects of ω-3 PUFA supplementation and gain further insight into the mechanisms underlying the development of the neuroinflammatory response after TBI. RESULTS: It was found that ω-3 PUFA supplementation inhibited TBI-induced microglial activation and expression of inflammatory factors (TNF-α, IL-1ß, IL-6, and IFN-γ), reduced brain edema, decreased neuronal apoptosis, and improved neurological functions after TBI. We further demonstrated that ω-3 PUFA supplementation inhibited HMGB1 nuclear translocation and secretion and decreased expression of HMGB1 in neurons and microglia in the lesioned areas. Moreover, ω-3 PUFA supplementation inhibited microglial activation and the subsequent inflammatory response by regulating HMGB1 and the TLR4/NF-κB signaling pathway. CONCLUSIONS: The results of this study suggest that microglial activation and the subsequent neuroinflammatory response as well as the related HMGB1/TLR4/NF-κB signaling pathway play essential roles in secondary injury after TBI. Furthermore, ω-3 PUFA supplementation inhibited TBI-induced microglial activation and the subsequent inflammatory response by regulating HMGB1 nuclear translocation and secretion and also HMGB1-mediated activation of the TLR4/NF-κB signaling pathway, leading to neuroprotective effects.


Subject(s)
Brain Injuries, Traumatic/pathology , Encephalitis/diet therapy , Fatty Acids, Omega-3/administration & dosage , HMGB1 Protein/metabolism , Microglia/drug effects , Neuroprostanes/administration & dosage , Animals , Brain Edema/etiology , Brain Injuries, Traumatic/complications , Calcium-Binding Proteins/metabolism , Cerebral Cortex/pathology , Cytokines/metabolism , Disease Models, Animal , Encephalitis/etiology , Encephalitis/metabolism , Gene Expression Regulation/drug effects , Male , Microfilament Proteins/metabolism , Microglia/pathology , Nerve Tissue Proteins/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sirtuin 1/metabolism , Time Factors
5.
Free Radic Biol Med ; 102: 229-239, 2017 01.
Article in English | MEDLINE | ID: mdl-27932075

ABSTRACT

Acute myocardial infarction leads to an increase in oxidative stress and lipid peroxidation. 4(RS)-4-F4t-Neuroprostane (4-F4t-NeuroP) is a mediator produced by non-enzymatic free radical peroxidation of the cardioprotective polyunsaturated fatty acid, docosahexaenoic acid (DHA). In this study, we investigated whether intra-cardiac delivery of 4-F4t-NeuroP (0.03mg/kg) prior to occlusion (ischemia) prevents and protects rat myocardium from reperfusion damages. Using a rat model of ischemic-reperfusion (I/R), we showed that intra-cardiac infusion of 4-F4t-NeuroP significantly decreased infarct size following reperfusion (-27%) and also reduced ventricular arrhythmia score considerably during reperfusion (-41%). Most notably, 4-F4t-NeuroP decreased ventricular tachycardia and post-reperfusion lengthening of QT interval. The evaluation of the mitochondrial homeostasis indicates a limitation of mitochondrial swelling in response to Ca2+ by decreasing the mitochondrial permeability transition pore opening and increasing mitochondria membrane potential. On the other hand, mitochondrial respiration measured by oxygraphy, and mitochondrial ROS production measured with MitoSox red® were unchanged. We found decreased cytochrome c release and caspase 3 activity, indicating that 4-F4t-NeuroP prevented reperfusion damages and reduced apoptosis. In conclusion, 4-F4t-NeuroP derived from DHA was able to protect I/R cardiac injuries by regulating the mitochondrial homeostasis.


Subject(s)
Docosahexaenoic Acids/administration & dosage , Mitochondria, Heart/drug effects , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/drug therapy , Neuroprostanes/administration & dosage , Animals , Docosahexaenoic Acids/metabolism , Heart/drug effects , Heart/physiopathology , Humans , Lipid Peroxidation/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , Oxidative Stress/genetics , Protective Agents/administration & dosage , Rats , Reactive Oxygen Species/metabolism , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/pathology
6.
Nihon Rinsho ; 74(4): 560-6, 2016 Apr.
Article in Japanese | MEDLINE | ID: mdl-27333740

ABSTRACT

In the last few decades, medical treatment for stroke has made progress greatly. Effective and safe antihypertensive drug dramatically reduced incidence of hemorrhagic stroke Although intravenous thrombolysis is effective therapeutic strategy, only limited patient can receive the benefit due to narrow time window. There are some ongoing trials to develop safer and more effective thrombolytic therapy. Antithrombotic therapy is important for prevention of recurrent stroke in the acute and chronic phase. Aspirin and warfarin have been used for a long period. Now, we can also choose clopidogrel, cilostazol and non-vitamin K antagonist oral anticoagulants. Researchers and physicians will continue effort to develop more effective strategy for management of stroke.


Subject(s)
Stroke/drug therapy , Stroke/prevention & control , Anticoagulants/administration & dosage , Antihypertensive Agents/administration & dosage , Antipyrine/administration & dosage , Antipyrine/analogs & derivatives , Edaravone , Fibrinolytic Agents/administration & dosage , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hypertension/complications , Hypertension/drug therapy , Neuroprostanes/administration & dosage , Platelet Aggregation Inhibitors/administration & dosage , Recombinant Proteins/administration & dosage , Risk Factors , Risk Management , Stroke/etiology , Thrombolytic Therapy , Tissue Plasminogen Activator/administration & dosage
7.
J Exp Clin Cancer Res ; 34: 155, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26689718

ABSTRACT

BACKGROUND: Nanocapsules, as a delivery system, are able to target drugs and other biologically sensitive molecules to specific cells or organs. This system has been intensively investigated as a way to protect bioactives drugs from inactivation upon interaction with the body and to ensure the release to the target. However, the mechanism of improved activity of the nanoencapsulated molecules is far from being understood at the cellular and subcellular levels. Epidemiological studies suggest that dietary polyunsaturated fatty acids (PUFA) can reduce the morbidity and mortality from breast cancer. This influence could be modulated by the oxidative status of the diet and it has been suggested that the anti-proliferative properties of docosahexaenoic acid (DHA) are enhanced by pro-oxidant agents. METHODS: The effect of encapsulation of PUFA on breast cancer cell proliferation in different oxidative medium was evaluated in vitro. We compared the proliferation of the human breast cancer cell line MDA-MB-231 and of the non-cancer human mammary epithelial cell line MCF-10A in different experimental conditions. RESULTS: DHA possessed anti-proliferative properties that were prevented by alpha-tocopherol (an antioxidant) and enhanced by the pro-oxidant hydrogen peroxide that confirms that DHA has to be oxidized to exert its anti-proliferative properties. We also evaluated the anti-proliferative effects of the 4(RS)-4-F4t-neuroprostane, a bioactive, non-enzymatic oxygenated metabolite of DHA known to play a major role in the prevention of cardiovascular diseases. DHA-loaded nanocapsules was less potent than non-encapsulated DHA while co-encapsulation of DHA with H2O2 maintained the inhibition of proliferation. The nanocapsules slightly improves the anti-proliferative effect in the case of 4(RS)-4-F4t-neuroprostane that is more hydrophilic than DHA. CONCLUSION: Overall, our findings suggest that the sensitivity of tumor cell lines to DHA involves oxidized metabolites. They also indicate that neuroprostane is a metabolite participating in the growth reducing effect of DHA, but it is not the sole. These results also suggest that NC seek to enhance the stability against degradation, enhance cellular availability, and control the release of bioactive fatty acids following their lipophilicities.


Subject(s)
Breast Neoplasms/drug therapy , Docosahexaenoic Acids/administration & dosage , Drug Delivery Systems , Neuroprostanes/administration & dosage , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Docosahexaenoic Acids/chemistry , Female , Humans , Hydrogen Peroxide/chemistry , Nanocapsules/administration & dosage , Nanocapsules/chemistry , Neuroprostanes/chemistry , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism
8.
Brain ; 134(Pt 3): 783-97, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21252113

ABSTRACT

Recent findings suggest that neurotoxicity is the mechanism underlying the induction of neuronal insulin resistance by a high cholesterol diet. Troxerutin, a naturally occurring flavonoid, has been reported to possess biological activity beneficial to human health. Our recent studies have demonstrated that troxerutin attenuates cognitive impairment and oxidative stress induced by D-galactose in mouse brain through decreasing advanced glycation end products, reactive oxygen species and protein carbonyl levels and enhancing phosphoinositide 3-kinase/Akt activation. In this study, we evaluated the effect of troxerutin on cognitive impairment induced by brain insulin resistance in mice fed a high-cholesterol diet, and explored its potential mechanism. Our results showed that oral administration of troxerutin to these mice significantly improved behavioural performance in a step-through passive avoidance task and a Morris water maze task, at least in part, by decreasing the levels of reactive oxygen species, protein carbonyl and advanced glycation end products and blocking endoplasmic reticulum stress via reduced phosphorylation of the pancreatic endoplasmic reticulum-resident kinase and eukaryotic translation initiation factor 2α. Furthermore, troxerutin significantly inhibited the activation of c-jun N-terminal kinase 1 and IκB kinase ß/nuclear factor-κB induced by endoplasmic reticulum stress and enhanced insulin signalling pathway, which prevented obesity, restored normal levels of blood glucose, fatty acids and cholesterol and increased the phosphorylation of cyclic adenosine monophosphate response element-binding protein and the expression levels of c-fos in the hippocampus. Moreover, troxerutin significantly inhibited endoplasmic reticulum stress-induced apoptosis and decreased the activation of caspase-12 and caspase-3, and reduced the mean optical density of the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end label-positive cells in the hippocampus. However, intra-cerebroventricular infusion of PI-103, a specific phosphoinositide 3-kinase 110α inhibitor, significantly inhibited the expression levels of phosphoinositide 3-kinase 110α and phosphoinositide 3-kinase downstream signalling in the hippocampus of mice co-treated with high cholesterol and troxerutin and vehicle control mice. These results suggest that troxerutin could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in type 2 diabetes mellitus and Alzheimer's disease.


Subject(s)
Cholesterol/toxicity , Cognition Disorders/chemically induced , Cognition Disorders/drug therapy , Hydroxyethylrutoside/analogs & derivatives , Neuroprostanes/administration & dosage , Animals , Avoidance Learning/drug effects , Blood Glucose/drug effects , Body Weight/drug effects , Brain/metabolism , Brain/pathology , CREB-Binding Protein/metabolism , Cholesterol/blood , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Fatty Acids, Nonesterified/blood , Gene Expression Regulation/drug effects , Glycation End Products, Advanced/metabolism , Hydroxyethylrutoside/administration & dosage , Immunoprecipitation , In Situ Nick-End Labeling/methods , Infusions, Intraventricular , Insulin Resistance/physiology , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Protein Carbonylation/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...