Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 876
Filter
1.
Theranostics ; 14(8): 3221-3245, 2024.
Article in English | MEDLINE | ID: mdl-38855177

ABSTRACT

The availability of non-invasive drug delivery systems capable of efficiently transporting bioactive molecules across the blood-brain barrier to specific cells at the injury site in the brain is currently limited. Delivering drugs to neurons presents an even more formidable challenge due to their lower numbers and less phagocytic nature compared to other brain cells. Additionally, the diverse types of neurons, each performing specific functions, necessitate precise targeting of those implicated in the disease. Moreover, the complex synthetic design of drug delivery systems often hinders their clinical translation. The production of nanomaterials at an industrial scale with high reproducibility and purity is particularly challenging. However, overcoming this challenge is possible by designing nanomaterials through a straightforward, facile, and easily reproducible synthetic process. Methods: In this study, we have developed a third-generation 2-deoxy-glucose functionalized mixed layer dendrimer (2DG-D) utilizing biocompatible and cost-effective materials via a highly facile convergent approach, employing copper-catalyzed click chemistry. We further evaluated the systemic neuronal targeting and biodistribution of 2DG-D, and brain delivery of a neuroprotective agent pioglitazone (Pio) in a pediatric traumatic brain injury (TBI) model. Results: The 2DG-D exhibits favorable characteristics including high water solubility, biocompatibility, biological stability, nanoscale size, and a substantial number of end groups suitable for drug conjugation. Upon systemic administration in a pediatric mouse model of traumatic brain injury (TBI), the 2DG-D localizes in neurons at the injured brain site, clears rapidly from off-target locations, effectively delivers Pio, ameliorates neuroinflammation, and improves behavioral outcomes. Conclusions: The promising in vivo results coupled with a convenient synthetic approach for the construction of 2DG-D makes it a potential nanoplatform for addressing brain diseases.


Subject(s)
Dendrimers , Deoxyglucose , Drug Delivery Systems , Neurons , Animals , Dendrimers/chemistry , Neurons/drug effects , Neurons/metabolism , Drug Delivery Systems/methods , Deoxyglucose/pharmacology , Deoxyglucose/pharmacokinetics , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Mice , Pioglitazone/pharmacology , Pioglitazone/administration & dosage , Pioglitazone/pharmacokinetics , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain/metabolism , Brain/drug effects , Brain Diseases/drug therapy , Humans , Disease Models, Animal , Tissue Distribution , Male
2.
Biomolecules ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785991

ABSTRACT

Posiphen is a small molecule that exhibits neuroprotective properties by targeting multiple neurotoxic proteins involved in axonal transport, synaptic transmission, neuroinflammation, and cell death. Its broad-spectrum effects make it a promising candidate for treating neurodegenerative conditions, including Alzheimer's and Parkinson's diseases. Despite extensive investigation with animal models and human subjects, a comprehensive comparative analysis of Posiphen's pharmacokinetics across studies remains elusive. Here, we address this gap by examining the metabolic profiles of Posiphen and its breakdown into two primary metabolites-N1 and N8-across species by measuring their concentrations in plasma, brain, and CSF using the LC-MS/MS method. While all three compounds effectively inhibit neurotoxic proteins, the N1 metabolite is associated with adverse effects. Our findings reveal the species-specific behavior of Posiphen, with both Posiphen and N8 being predominant in various species, while N1 remains a minor constituent, supporting the drug's safety. Moreover, in plasma, Posiphen consistently showed fast clearance of all metabolites within 8 h in animal models and in human subjects, whereas in CSF or brain, the compound has an extended half-life of over 12 h. Combining all our human data and analyzing them by population pharmacokinetics showed that there are no differences between healthy volunteers, Alzheimer's, and Parkinson's patients. It also showed that Posiphen is absorbed and metabolized in a similar fashion across all animal species and human groups tested. These observations have critical implications for understanding the drug's safety, therapeutic effect, and clinical translation.


Subject(s)
Species Specificity , Humans , Animals , Rats , Dogs , Mice , Male , Tandem Mass Spectrometry , Brain/metabolism , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacokinetics , Female
3.
Nat Commun ; 15(1): 3987, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734698

ABSTRACT

Despite advances in active drug targeting for blood-brain barrier penetration, two key challenges persist: first, attachment of a targeting ligand to the drug or drug carrier does not enhance its brain biodistribution; and second, many brain diseases are intricately linked to microcirculation disorders that significantly impede drug accumulation within brain lesions even after they cross the barrier. Inspired by the neuroprotective properties of vinpocetine, which regulates cerebral blood flow, we propose a molecular library design centered on this class of cyclic tertiary amine compounds and develop a self-enhanced brain-targeted nucleic acid delivery system. Our findings reveal that: (i) vinpocetine-derived ionizable-lipidoid nanoparticles efficiently breach the blood-brain barrier; (ii) they have high gene-loading capacity, facilitating endosomal escape and intracellular transport; (iii) their administration is safe with minimal immunogenicity even with prolonged use; and (iv) they have potent pharmacologic brain-protective activity and may synergize with treatments for brain disorders as demonstrated in male APP/PS1 mice.


Subject(s)
Blood-Brain Barrier , Brain , Cerebrovascular Circulation , Nanoparticles , Vinca Alkaloids , Animals , Vinca Alkaloids/pharmacology , Vinca Alkaloids/pharmacokinetics , Vinca Alkaloids/administration & dosage , Vinca Alkaloids/chemistry , Nanoparticles/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice , Cerebrovascular Circulation/drug effects , Male , Brain/metabolism , Brain/drug effects , Brain/blood supply , Humans , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Tissue Distribution , Drug Delivery Systems , Mice, Transgenic
4.
Int J Pharm ; 657: 124141, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38677392

ABSTRACT

TPGS (D-α-tocopheryl polyethylene glycol 1000 succinate) polymeric micelles show interesting properties for ocular administration thanks to their solubilization capability, nanometric size and tissue penetration ability. However, micelles formulations are generally characterized by low viscosity, poor adhesion and very short retention time at the administration site. Therefore, the idea behind this work is the preparation and characterization of a crosslinked film based on xanthan gum that contains TPGS micelles and is capable of controlling their release. The system was loaded with melatonin and cyclosporin A, neuroprotective compounds to be delivered to the posterior eye segment. Citric acid and heating at different times and temperatures were exploited as crosslinking approach, giving the possibility to tune swelling, micelles release and drug release. The biocompatibility of the platform was confirmed by HET-CAM assay. Ex vivo studies on isolated porcine ocular tissues, conducted using Franz cells and two-photon microscopy, demonstrated the potential of the xanthan gum-based platform and enlightened micelles penetration mechanism. Finally, the sterilization step was approached, and a process to simultaneously crosslink and sterilize the platform was developed.


Subject(s)
Administration, Ophthalmic , Delayed-Action Preparations , Drug Liberation , Micelles , Neuroprotective Agents , Polysaccharides, Bacterial , Vitamin E , Polysaccharides, Bacterial/chemistry , Animals , Swine , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Vitamin E/chemistry , Vitamin E/administration & dosage , Delayed-Action Preparations/chemistry , Cyclosporine/administration & dosage , Cyclosporine/chemistry , Melatonin/administration & dosage , Melatonin/chemistry , Melatonin/pharmacology , Melatonin/pharmacokinetics , Sterilization , Cross-Linking Reagents/chemistry , Drug Carriers/chemistry , Eye/drug effects , Eye/metabolism , Drug Delivery Systems/methods
5.
J Ethnopharmacol ; 330: 118229, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670403

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Thymus quinquecostatus Celak., a member of thymus genus in Lamiaceae family, has been used as a folk medicine for relieving exterior syndrome and alleviating pain in China. The polyphenol-rich fraction (PRF) derived from Thymus quinquecostatus Celak. had been validated that it can protect cerebral ischemia-reperfusion injury (CIRI) by activating Keap1/Nrf2/HO-1 signaling pathway. AIM OF THIS STUDY: To explore effective components and their pharmacokinetic and pharmacodynamic characteristics as well as possible mechanisms of PRF in treating CIRI. MATERIALS AND METHODS: Normal treated group (NTG) and tMCAO model treated group (MTG) rats were administrated PRF intragastrically. The prototype components and metabolites of PRF in plasma and brain were analyzed by the UPLC-Q-Exactive Orbitrap MSn method. Subsequently, the pharmacokinetics properties of indicative components were performed based on HPLC-QQQ-MS/MS. SOD and LDH activities were determined to study the pharmacodynamic (PD) properties of PRF. The PK-PD relationship of PRF was constructed. In addition, the effect of PRF on endogenous metabolites in plasma and brain was investigated using metabolomic method. RESULTS: Salvianic acid A, caffeic acid, rosmarinic acid, scutellarin, and apigenin-7-O-glucuronide were selected as indicative components based on metabolic analysis. The non-compartmental parameters were calculated for indicative components in plasma and brain of NTG and MTG rats. Furthermore, single-component and multi-component PK-PD modeling involved Emax, Imax PD models for effect indexes were fitted as well as ANN models were established, which indicated that these components can work together to regulate SOD and LDH activities in plasma and SOD activity in brain tissue to improve CIRI. Additionally, PRF may ameliorate CIRI by regulating the disorder of endogenous metabolites in lipid metabolism, amino acid metabolism, and purine metabolism pathways in vivo, among which lipid metabolism and purine metabolism are closely related to oxidative stress. CONCLUSION: The PK-PD properties of effect substances and mechanisms of PRF anti-CIRI were further elaborated. The findings provide a convincing foundation for the application of T. quinquecostatus Celak. in the maintenance of human health disorders.


Subject(s)
Metabolomics , Polyphenols , Rats, Sprague-Dawley , Reperfusion Injury , Thymus Plant , Animals , Male , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Thymus Plant/chemistry , Polyphenols/pharmacology , Polyphenols/pharmacokinetics , Rats , Infarction, Middle Cerebral Artery/drug therapy , Plant Extracts/pharmacology , Plant Extracts/pharmacokinetics , Brain/metabolism , Brain/drug effects , Disease Models, Animal , Brain Ischemia/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/pharmacokinetics
6.
Brain Res ; 1834: 148905, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38565372

ABSTRACT

Alzheimer's disease (AD) is a primary cause of dementia that affects millions of people worldwide and its prevalence is likely to increase largely in the coming decades. Multiple complex pathways, such as oxidative stress, tau and amyloid-beta (Aß) pathology, and cholinergic dysfunction, are involved in the pathogenesis of Alzheimer's disease. The conventional treatments provide only symptomatic relief and not a complete cure for the disease. On the other hand, recent studies have looked into the possibility of flavonoids as an effective therapeutic strategy for treating AD. Quercetin, a well-known flavonol, has been extensively studied for AD treatment. Therefore, this review mainly focuses on the pharmacokinetics properties of quercetin and its modes of action, such as antioxidant, anti-inflammatory, anti-amyloidogenic, and neuroprotective properties, which are beneficial in treating AD. It also highlights the nano delivery systems of quercetin, including liposomes, nanostructures lipid carriers, solid lipid nanoparticles, nanoemulsions, microemulsions, self-emulsifying drug delivery systems, and nanoparticles reported for AD treatment. The remarkable potential of quercetin nanocarriers has been reflected in enhancing its bioavailability and therapeutic efficacy. Therefore, clinical studies must be conducted to explore it as a therapeutic strategy for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Antioxidants , Neuroprotective Agents , Quercetin , Quercetin/administration & dosage , Quercetin/pharmacokinetics , Quercetin/pharmacology , Alzheimer Disease/drug therapy , Humans , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Drug Delivery Systems/methods , Nanoparticles
7.
Expert Opin Drug Deliv ; 21(3): 437-456, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38507231

ABSTRACT

INTRODUCTION: The current treatment modalities available for Parkinson's disease (PD) prove inadequate due to the inherent constraints in effectively transporting bioactive compounds across the blood-brain barrier. The utilization of synergistic combinations of multiple drugs in conjunction with advanced nanotechnology, emerges as a promising avenue for the treatment of PD, offering potential breakthroughs in treatment efficacy, targeted therapy, and personalized medicine. AREAS COVERED: This review provides a comprehensive analysis of the efficacy of multifactorial interventions for PD, simultaneously addressing the primary challenges of conventional therapies and highlighting how advanced technologies can help overcome these limitations. Part II focuses on the effectiveness of nanotechnology for improving pharmacokinetics of conventional therapies, through the synergistic use of dual or multiple therapeutic agents into a single nanoformulation. Significant emphasis is laid on the advancements toward innovative integrations, such as CRISPR/Cas9 with neuroprotective agents and stem cells, all effectively synergized with nanocarriers. EXPERT OPINION: By using drug combinations, we can leverage their combined effects to enhance treatment efficacy and mitigate side effects through lower dosages. This article is meant to give nanocarrier-mediated co-delivery of drugs and the strategic incorporation of CRISPR/Cas9, either as an independent intervention or synergized with a neuroprotective agent.


Subject(s)
Antiparkinson Agents , Drug Carriers , Nanoparticles , Nanotechnology , Neuroprotective Agents , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/therapeutic use , Antiparkinson Agents/pharmacokinetics , Antiparkinson Agents/pharmacology , Drug Carriers/chemistry , Animals , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacokinetics , Blood-Brain Barrier/metabolism , Drug Delivery Systems , Precision Medicine , Drug Therapy, Combination , CRISPR-Cas Systems , Drug Combinations , Combined Modality Therapy , Drug Development , Drug Design
8.
Clin Ther ; 45(12): 1251-1258, 2023 12.
Article in English | MEDLINE | ID: mdl-37953075

ABSTRACT

PURPOSE: Edaravone is a neuroprotective agent approved as an intravenous treatment for amyotrophic lateral sclerosis (ALS). The intravenous administration of edaravone places a burden on patients and there is a clinical need for oral agents for the treatment of ALS. This report aimed to assess the pharmacokinetics and safety of an edaravone oral suspension in patients with ALS after oral and percutaneous endoscopic gastrostomy (PEG) tube administration. METHODS: Two single-dose, open-label phase 1 clinical studies were conducted. Edaravone oral suspension (105 mg of edaravone in 5 mL aqueous suspension) was administered orally and via PEG tube to 9 and 6 Japanese patients with ALS, respectively. Plasma and urinary pharmacokinetics of unchanged edaravone and its metabolites (sulfate and glucuronide conjugates) were determined. Safety was also evaluated. FINDINGS: After reaching maximum plasma concentration, the mean plasma concentration-time of unchanged edaravone showed a triphasic elimination. Mean plasma concentration-time profiles of the metabolites were higher than those of unchanged edaravone. The mean urinary excretion ratios were higher for the glucuronide conjugate than for either unchanged edaravone or the sulfate conjugate. In patients administered edaravone orally, a single adverse event occurred (blood urine present), which was mild and improved without medical intervention. No adverse drug reactions or serious adverse events were reported. In patients administered edaravone via PEG tube, 5 treatment-emergent adverse events were reported in 3 patients; none were related to the study drug. No adverse drug reactions were reported. IMPLICATIONS: In patients with ALS, a single dose of edaravone oral suspension was well absorbed and mainly eliminated in urine as the glucuronide conjugate. No safety concerns emerged. Pharmacokinetics were similar to those previously reported in healthy participants following oral administration. This indicates that effective drug concentrations were achieved and edaravone can be successfully administered both orally and via a PEG tube in patients with ALS. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT04176224 (oral administration) and NCT04254913 (PEG tube administration), www. CLINICALTRIALS: gov.


Subject(s)
Amyotrophic Lateral Sclerosis , Neuroprotective Agents , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Edaravone/pharmacokinetics , Glucuronides/therapeutic use , Neuroprotective Agents/pharmacokinetics , Sulfates/therapeutic use
9.
J Neurotrauma ; 40(17-18): 1889-1906, 2023 09.
Article in English | MEDLINE | ID: mdl-37130044

ABSTRACT

To date, no drug therapy has shown significant efficacy in improving functional outcomes in patients with acute spinal cord injury (SCI). Riluzole is an approved benzothiazole sodium channel blocker to attenuate neurodegeneration in amyotrophic lateral sclerosis (ALS) and is of interest for neuroprotection in SCI. In a Phase I clinical trial (ClinicalTrials.gov Identifier: NCT00876889), riluzole was well tolerated with a 2-week treatment at the dose level approved for ALS and exhibited potential efficacy in patients with SCI. The acute and progressive nature of traumatic SCI and the complexity of secondary injury processes alter the pharmacokinetics (PK) of therapeutics. In the PK sub-study of the multi-center, randomized, placebo-controlled, double-blinded Riluzole in Spinal Cord Injury Study (RISCIS) Phase II/III trial (ClinicalTrials.gov Identifier: NCT01597518), a total of 32 SCI patients were enrolled, and most of our patients were middle-age Caucasian males with head and neck injuries. We studied the PK and pharmacodynamics (PD) of riluzole on motor recovery, measured by International Standards for Neurological Classification of SCI (ISNCSCI) Motor Score at injury and at 3-month and 6-month follow-ups, along with levels of the axonal injury biomarker phosphorylated neurofilament heavy chain (pNF-H), during the 2-week treatment. PK modeling, PK/PD correlations were developed to identify the potential effective exposure of riluzole for intended PD outcomes. The longitudinal impacts of SCI on the PK of riluzole are characterized. A time-varying population PK model of riluzole is established, incorporating time-varying clearance and volume of distribution from combined data of Phase I and Phase II/III trials. With the developed model, a rational, optimal dosing scheme can be designed with time-dependent modification to preserve the required therapeutic exposure of riluzole. The PD of riluzole and the relationship between PK and neurological outcomes of the treatment were established. The time course of efficacy in total motor score improvement (ΔTMS) and pNF-H were monitored. A three-dimensional (3D) PK/PD correlation was established for ΔTMS at 6 months with overall riluzole exposure area under the curve for Day 0-Day14 (AUCD0-D14) and baseline TMS for individual patients. Patients with baseline TMS between 1 and 36 benefited from the optimal exposure range of 16-48 mg*h/mL. The PD models of pNF-H revealed the riluzole efficacy, as treated subjects exhibited a diminished increase in progression of pNF-H, indicative of reduced axonal breakdown. The independent parameter of area between effective curves (ABEC) between the time profiles of pNF-H in placebo and treatment groups was statistically identified as a significant predictor for the treatment effect on the biomarker. A mechanistic clinical outcomes (CO)/PD (pNF-H) model was established, and the proposed structure demonstrated the feasibility of PK/PD/CO correlation model. No appreciable hepatic toxicity was observed with the current riluzole treatment regimen. The development of effective treatment for SCI is challenging. However, the future model-informed and PK-guided drug development and regimen modification can be rationally executed with the optimal dosing regimen design based on the developed 3D PK/PD model. The PK/PD/CO model can serve as a rational guide for future drug development, PKPD model refinement, and extension to other studies in SCI settings.


Subject(s)
Amyotrophic Lateral Sclerosis , Cervical Cord , Neck Injuries , Neuroprotective Agents , Spinal Cord Injuries , Male , Middle Aged , Humans , Riluzole/adverse effects , Neuroprotective Agents/adverse effects , Neuroprotective Agents/pharmacokinetics , Amyotrophic Lateral Sclerosis/drug therapy , Spinal Cord Injuries/drug therapy , Neck Injuries/drug therapy
10.
Inflammopharmacology ; 31(3): 1449-1464, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36856916

ABSTRACT

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative illnesses, and yet, no workable treatments have been discovered to prevent or reverse AD. Curcumin (CUR), the major polyphenolic compound of turmeric (Curcuma longa) rhizomes, and Ginkgo biloba extract (GBE) are natural substances derived from conventional Chinese herbs that have long been shown to provide therapeutic advantages for AD. The uptake of curcumin into the brain is severely restricted by its low ability to cross the blood-brain barrier (BBB). Meanwhile, GBE has been shown to improve BBB permeability. The present study evaluated the neuroprotective effects and pharmacokinetic profile of curcumin and GBE combination to find out whether GBE can enhance curcumin's beneficial effects in AD by raising its brain concentration. Results revealed that CUR + GBE achieved significantly higher levels of curcumin in the brain and plasma after 30 min and 1 h of oral administration, compared to curcumin alone, and this was confirmed by reversed phase high-performance liquid chromatography (RP-HPLC). The effect of combined oral treatment, for 28 successive days, on cognitive function and other AD-like alterations was studied in scopolamine-heavy metal mixtures (SCO + HMM) AD model in rats. The combination reversed at least, partially on the learning and memory impairment induced by SCO + HMM. This was associated with a more pronounced inhibitory effect on acetylcholinesterase (AChE), caspase-3, hippocampal amyloid beta (Aß1-42), and phosphorylated tau protein (p-tau) count, and pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukine-1beta (IL-1ß), as compared to the curcumin alone-treated group. Additionally, the combined treatment significantly decreased lipid peroxidation (MDA) and increased levels of reduced glutathione (GSH), when compared with the curcumin alone. These findings support the concept that the combination strategy might be an alternative therapy in the management/prevention of neurological disorders. This study sheds light on a new approach for exploring new phyto-therapies for AD and emphasizes that more research should focus on the synergic effects of herbal drugs in future.


Subject(s)
Alzheimer Disease , Curcumin , Neuroprotective Agents , Animals , Rats , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Curcumin/pharmacokinetics , Curcumin/pharmacology , Curcumin/therapeutic use , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Ginkgo Extract/pharmacokinetics , Ginkgo Extract/pharmacology , Ginkgo Extract/therapeutic use , Humans , Blood-Brain Barrier
11.
ACS Chem Neurosci ; 14(4): 554-572, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36735764

ABSTRACT

Neurodegenerative diseases of the central nervous system (CNS) pose a serious health concern worldwide, with a particular incidence in developed countries as a result of life expectancy increase and the absence of restorative treatments. Presently, treatments for these neurological conditions are focused on managing the symptoms and/or slowing down their progression. As so, the research on novel neuroprotective drugs is of high interest. Glypromate (glycyl-l-prolyl-l-glutamic acid, also known as GPE), an endogenous small peptide widespread in the brain, holds great promise to tackle neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's, s well as other CNS-related disorders like Rett and Down's syndromes. However, the limited pharmacokinetic properties of Glypromate hinder its clinical application. As such, intense research has been devoted to leveraging the pharmacokinetic profile of this neuropeptide. This review aims to offer an updated perspective on Glypromate research by exploring the vast array of chemical derivatizations of more than 100 analogs described in the literature over the past two decades. The collection and discussion of the most relevant structure-activity relationships will hopefully guide the discovery of new Glypromate-based neuroprotective drugs.


Subject(s)
Central Nervous System Diseases , Neurodegenerative Diseases , Neuropeptides , Neuroprotective Agents , Neurosciences , Humans , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacokinetics , Neurodegenerative Diseases/drug therapy
12.
Nanomedicine ; 43: 102547, 2022 07.
Article in English | MEDLINE | ID: mdl-35292367

ABSTRACT

Baicalin (BA) has a good intervention effect on encephalopathy. In this study, macrophage membrane was modified on the surface of baicalin liposomes (BA-LP) by extrusion method. Macrophage membrane modified BA-LP (MM-BA-LP) was characterized by various analytical techniques, and evaluated for brain targeting. The results presented MM-BA-LP had better brain targeting compared with BA-LP. Pharmacokinetic experiments showed that MM-BA-LP improved pharmacokinetic parameters and increased the residence time of BA. Pharmacodynamic of middle cerebral artery occlusion (MCAO) rat model was studied to verify the therapeutic effect of MM-BA-LP on cerebral ischemia reperfusion injury (CIRI). The results showed that MM-BA-LP could significantly improve the neurological deficit, cerebral infarction volume and brain pathological state of MCAO rats compared with BA-LP. These results suggested that MM-BA-LP could significantly enhance the brain targeting and improve the circulation of BA in blood, and had a significantly better neuroprotective effect on MCAO rats than BA-LP.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Animals , Brain , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Flavonoids , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Liposomes/pharmacokinetics , Macrophages , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/therapeutic use , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy
13.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35163820

ABSTRACT

Globally, stroke is a leading cause of death and long-term disability. Over the past decades, several efforts have attempted to discover new drugs or repurpose existing therapeutics to promote post-stroke neurological recovery. Preclinical stroke studies have reported successes in identifying novel neuroprotective agents; however, none of these compounds have advanced beyond a phase III clinical trial. One reason for these failures is the lack of consideration of blood-brain barrier (BBB) transport mechanisms that can enable these drugs to achieve efficacious concentrations in ischemic brain tissue. Despite the knowledge that drugs with neuroprotective properties (i.e., statins, memantine, metformin) are substrates for endogenous BBB transporters, preclinical stroke research has not extensively studied the role of transporters in central nervous system (CNS) drug delivery. Here, we review current knowledge on specific BBB uptake transporters (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents); organic cation transporters (OCTs in humans; Octs in rodents) that can be targeted for improved neuroprotective drug delivery. Additionally, we provide state-of-the-art perspectives on how transporter pharmacology can be integrated into preclinical stroke research. Specifically, we discuss the utility of in vivo stroke models to transporter studies and considerations (i.e., species selection, co-morbid conditions) that will optimize the translational success of stroke pharmacotherapeutic experiments.


Subject(s)
Blood-Brain Barrier/metabolism , Ischemic Stroke/metabolism , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/metabolism , Animals , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Ischemic Stroke/drug therapy , Molecular Targeted Therapy , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/therapeutic use
14.
Molecules ; 27(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35164373

ABSTRACT

Acanthopanax senticosus (AS) is a medicinal and food homologous plant with many biological activities. In this research, we generated a brain injury model by 60Co -γ ray radiation at 4 Gy, and gavaged adult mice with the extract with AS, Acanthopanax senticocus polysaccharides (ASPS), flavones, syringin and eleutheroside E (EE) to explore the therapeutic effect and metabolic characteristics of AS on the brain injury. Behavioral tests and pathological experiments showed that the AS prevented the irradiated mice from learning and memory ability impairment and protected the neurons of irradiated mice. Meanwhile, the functional components of AS increased the antioxidant activity of irradiated mice. Furthermore, we found the changes of neurotransmitters, especially in the EE and syringin groups. Finally, distribution and pharmacokinetic analysis of AS showed that the functional components, especially EE, could exert their therapeutic effects in brain of irradiated mice. This lays a theoretical foundation for the further research on the treatment of radiation-induced brain injury by AS.


Subject(s)
Antioxidants/pharmacology , Brain Injuries/drug therapy , Eleutherococcus/chemistry , Neuroprotective Agents/pharmacology , Neurotransmitter Agents/metabolism , Plant Extracts/pharmacology , Radiation Injuries/drug therapy , Animals , Antioxidants/pharmacokinetics , Brain/drug effects , Brain Injuries/etiology , Brain Injuries/pathology , Cobalt Radioisotopes/toxicity , Male , Mice , Neuroprotective Agents/pharmacokinetics , Plant Extracts/pharmacokinetics , Radiation Injuries/etiology , Radiation Injuries/pathology , Tissue Distribution
15.
Nutrients ; 14(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35057429

ABSTRACT

For thousands of years, mankind has been using plant extracts or plants themselves as medicinal herbs. Currently, there is a great deal of public interest in naturally occurring medicinal substances that are virtually non-toxic, readily available, and have an impact on well-being and health. It has been noted that dietary curcumin is one of the regulators that may positively influence changes in the brain after ischemia. Curcumin is a natural polyphenolic compound with pleiotropic biological properties. The observed death of pyramidal neurons in the CA1 region of the hippocampus and its atrophy are considered to be typical changes for post-ischemic brain neurodegeneration and for Alzheimer's disease. Additionally, it has been shown that one of the potential mechanisms of severe neuronal death is the accumulation of neurotoxic amyloid and dysfunctional tau protein after cerebral ischemia. Post-ischemic studies of human and animal brains have shown the presence of amyloid plaques and neurofibrillary tangles. The significant therapeutic feature of curcumin is that it can affect the aging-related cellular proteins, i.e., amyloid and tau protein, preventing their aggregation and insolubility after ischemia. Curcumin also decreases the neurotoxicity of amyloid and tau protein by affecting their structure. Studies in animal models of cerebral ischemia have shown that curcumin reduces infarct volume, brain edema, blood-brain barrier permeability, apoptosis, neuroinflammation, glutamate neurotoxicity, inhibits autophagy and oxidative stress, and improves neurological and behavioral deficits. The available data suggest that curcumin may be a new therapeutic substance in both regenerative medicine and the treatment of neurodegenerative disorders such as post-ischemic neurodegeneration.


Subject(s)
Alzheimer Disease/drug therapy , Brain Ischemia/complications , Curcumin/pharmacology , Neuroprotective Agents/pharmacology , Alzheimer Disease/etiology , Amyloid/drug effects , Amyloid/metabolism , Animals , Apoptosis/drug effects , Atrophy/etiology , Biological Availability , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain Edema/drug therapy , Brain Ischemia/drug therapy , Curcumin/chemistry , Curcumin/pharmacokinetics , Disease Models, Animal , Gastrointestinal Microbiome/physiology , Gerbillinae , Hippocampus/pathology , Humans , Mice , Neuroinflammatory Diseases/drug therapy , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Oxidative Stress/drug effects , Rats , tau Proteins/drug effects , tau Proteins/metabolism
16.
Naunyn Schmiedebergs Arch Pharmacol ; 395(2): 167-185, 2022 02.
Article in English | MEDLINE | ID: mdl-34988596

ABSTRACT

Ischemic stroke presents multifaceted pathological outcomes with overlapping mechanisms of cerebral injury. High mortality and disability with stroke warrant a novel multi-targeted therapeutic approach. The neuroprotection with progesterone (PG) and noscapine (NOS) on cerebral ischemia-reperfusion (I-R) injury was demonstrated individually, but the outcome of combination treatment to alleviate cerebral damage is still unexplored. Randomly divided groups of rats (n = 6) were Sham-operated, I-R, PG (8 mg/kg), NOS (10 mg/kg), and PG + NOS (8 mg/kg + 10 mg/kg). The rats were exposed to bilateral common carotid artery occlusion, except Sham-operated, to investigate the therapeutic outcome of PG and NOS alone and in combination on I-R injury. Besides the alterations in cognitive and motor abilities, we estimated infarct area, oxidative stress, blood-brain barrier (BBB) permeability, and histology after treatment. Pharmacokinetic parameters like Cmax, Tmax, half-life, and AUC0-t were estimated in biological samples to substantiate the therapeutic outcomes of the combination treatment. We report PG and NOS prevent loss of motor ability and improve spatial memory after cerebral I-R injury. Combination treatment significantly reduced inflammation and restricted infarction; it attenuated oxidative stress and BBB damage and improved grip strength. Histopathological analysis demonstrated a significant reduction in leukocyte infiltration with the most profound effect in the combination group. Simultaneous analysis of PG and NOS in plasma revealed enhanced peak drug concentration, improved AUC, and prolonged half-life; the drug levels in the brain have increased significantly for both. We conclude that PG and NOS have beneficial effects against brain damage and the co-administration further reinforced neuroprotection in the cerebral ischemia-reperfusion injury.


Subject(s)
Brain Ischemia/drug therapy , Neuroprotective Agents/administration & dosage , Noscapine/administration & dosage , Progesterone/administration & dosage , Animals , Area Under Curve , Blood-Brain Barrier/metabolism , Disease Models, Animal , Drug Therapy, Combination , Half-Life , Ischemic Stroke/drug therapy , Male , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Noscapine/pharmacokinetics , Noscapine/pharmacology , Oxidative Stress/drug effects , Progesterone/pharmacokinetics , Progesterone/pharmacology , Rats , Rats, Wistar , Reperfusion Injury/drug therapy
17.
Eur J Med Chem ; 229: 114080, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34992038

ABSTRACT

Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are the most common genetic causes of Parkinson's Disease (PD). The G2019S mutation is the most common inherited LRRK2 mutation, occurs in the kinase domain, and results in increased kinase activity. We report the discovery and development of compound 38, an indazole-based, G2019S-selective (>2000-fold vs. WT) LRRK2 inhibitor capable of entering rodent brain (Kp = 0.5) and selectively inhibiting G2019S-LRRK2. The compounds disclosed herein present a starting point for further development of brain penetrant G2019S selective inhibitors that hopefully reduce lung phenotype side-effects and pave the way to providing a precision medicine for people with PD who carry the G2019S mutation.


Subject(s)
Indazoles/chemical synthesis , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Neuroprotective Agents/chemical synthesis , Parkinson Disease/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Animals , Brain , Disease Models, Animal , Drug Discovery , Humans , Indazoles/pharmacokinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Lung , Male , Mice , Molecular Docking Simulation , Mutation , Neuroprotective Agents/pharmacokinetics , Phenotype , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Rodentia , Structure-Activity Relationship
18.
Exp Neurol ; 348: 113923, 2022 02.
Article in English | MEDLINE | ID: mdl-34780773

ABSTRACT

Arginase 1 (A1) is the enzyme that hydrolyzes the amino acid, L-arginine, to ornithine and urea. We have previously shown that A1 deletion worsens retinal ischemic injury, suggesting a protective role of A1. In this translational study, we aimed to study the utility of systemic pegylated A1 (PEG-A1, recombinant human arginase linked to polyethylene glycol) treatment in mouse models of acute retinal and brain injury. Cohorts of WT mice were subjected to retinal ischemia-reperfusion (IR) injury, traumatic optic neuropathy (TON) or brain cerebral ischemia via middle cerebral artery occlusion (MCAO) and treated with intraperitoneal injections of PEG-A1 or vehicle (PEG only). Drug penetration into retina and brain tissues was measured by western blotting and immunolabeling for PEG. Neuroprotection was measured in a blinded fashion by quantitation of NeuN (neuronal marker) immunolabeling of retina flat-mounts and brain infarct area using triphenyl tetrazolium chloride (TTC) staining. Furthermore, ex vivo retina explants and in vitro retina neuron cultures were subjected to oxygen-glucose deprivation (OGD) followed by reoxygenation (R) and treated with PEG-A1. PEG-A1 given systemically did not cross the intact blood-retina/brain barriers in sham controls but reached the retina and brain after injury. PEG-A1 provided neuroprotection after retinal IR injury, TON and cerebral ischemia. PEG-A1 treatment was also neuroprotective in retina explants subjected to OGD/R but did not improve survival in retinal neuronal cultures exposed to OGD/R. In summary, systemic PEG-A1 administration is neuroprotective and provides an excellent route to deliver the drug to the retina and the brain after acute injury.


Subject(s)
Arginase/therapeutic use , Brain Injuries/drug therapy , Neuroprotective Agents/therapeutic use , Retina/injuries , Animals , Arginase/pharmacokinetics , Blood-Brain Barrier , Blood-Retinal Barrier , Brain/metabolism , Brain Ischemia/drug therapy , Cell Survival/drug effects , Humans , Infarction, Middle Cerebral Artery/drug therapy , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacokinetics , Optic Nerve Injuries/drug therapy , Polyethylene Glycols , Recombinant Proteins/therapeutic use , Reperfusion Injury/prevention & control , Retina/metabolism
19.
Drug Deliv ; 28(1): 2469-2479, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34766542

ABSTRACT

As a multi-target drug to treat ischemic stroke, N-butylphthalide (NBP) is extremely water-insoluble and exhibits limited oral bioavailability, impeding its wide oral application. Effective treatment of ischemic stroke by NBP requires timely and efficient drug exposure, necessitating the development of new oral formulations. Herein, liposomes containing biosurfactant sodium cholate (CA-liposomes) were systemically investigated as an oral NBP delivery platform because of its high biocompatibility and great potential for clinical applications. The optimized liposomes have a uniform hydrodynamic size of 104.30 ± 1.60 nm and excellent encapsulation efficiency (93.91 ± 1.10%). Intriguingly, NBP-loaded CA-liposomes produced rapid drug release and the cumulative release was up to 88.09 ± 4.04% during 12 h while that for NBP group was only 6.79 ± 0.99%. Caco-2 cell monolayer assay demonstrated the superior cell uptake and transport efficiency of NBP-loaded CA-liposomes than free NBP, which was mediated by passive diffusion via transcellular and paracellular routes. After oral administration to rats, NBP-loaded CA-liposomes exhibited rapid and almost complete drug absorption, with a tmax of 0.70 ± 0.14 h and an absolute bioavailability of 92.65% while NBP suspension demonstrated relatively low bioavailability (21.7%). Meanwhile, NBP-loaded CA-liposomes produced 18.30-fold drug concentration in the brain at 5 min compared with NBP suspension, and the brain bioavailability increased by 2.48-fold. As expected, NBP-loaded CA-liposomes demonstrated significant therapeutic efficacy in a middle cerebral artery occlusion rat model. Our study provides new insights for engineering oral formulations of NBP with fast and sufficient drug exposure against ischemic stroke in the clinic.


Subject(s)
Benzofurans/administration & dosage , Benzofurans/pharmacology , Liposomes/chemistry , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Animals , Area Under Curve , Benzofurans/pharmacokinetics , Caco-2 Cells , Chemistry, Pharmaceutical , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Drug Liberation , Humans , Ischemic Stroke/pathology , Male , Neuroprotective Agents/pharmacokinetics , Particle Size , Random Allocation , Rats , Rats, Sprague-Dawley , Sodium Cholate/chemistry , Tissue Distribution
20.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830148

ABSTRACT

Phytosterols constitute a class of natural products that are an important component of diet and have vast applications in foods, cosmetics, and herbal medicines. With many and diverse isolated structures in nature, they exhibit a broad range of biological and pharmacological activities. Among over 200 types of phytosterols, stigmasterol and ß-sitosterol were ubiquitous in many plant species, exhibiting important aspects of activities related to neurodegenerative diseases. Hence, this mini-review presented an overview of the reported studies on selected phytosterols related to neurodegenerative diseases. It covered the major phytosterols based on biosynthetic considerations, including other phytosterols with significant in vitro and in vivo biological activities.


Subject(s)
Brain/metabolism , Neurodegenerative Diseases/prevention & control , Phytosterols/therapeutic use , Phytotherapy/methods , Plants, Medicinal/chemistry , Brain/pathology , Humans , Molecular Structure , Neurodegenerative Diseases/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/therapeutic use , Phytosterols/chemistry , Phytosterols/pharmacokinetics , Sitosterols/chemistry , Sitosterols/pharmacokinetics , Sitosterols/therapeutic use , Stigmasterol/chemistry , Stigmasterol/pharmacokinetics , Stigmasterol/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...