Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters











Publication year range
1.
mBio ; 14(1): e0329122, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36744948

ABSTRACT

Heat shock protein (HSP)-encoding genes (hsp), part of the highly conserved heat shock response (HSR), are known to be induced by thermal stress in several organisms. In Neurospora crassa, three hsp genes, hsp30, hsp70, and hsp80, have been characterized; however, the role of defined cis elements in their responses to discrete changes in temperature remains largely unexplored. To fill this gap, while also aiming to obtain a reliable fungal heat shock-inducible system, we analyzed different sections of each hsp promoter by assessing the expression of real-time transcriptional reporters. Whereas all three promoters and their resected versions were acutely induced by high temperatures, only hsp30 displayed a broad range of expression and high tunability, amply exceeding other inducible promoter systems existing in Neurospora, such as quinic acid- or light-inducible ones. As proof of concept, we employed one of these promoters to control the expression of clr-2, which encodes the master regulator of Neurospora cellulolytic capabilities. The resulting strain fails to grow on cellulose at 25°C, whereas it grows robustly if heat shock pulses are delivered daily. Additionally, we designed two hsp30 synthetic promoters and characterized them, as well as the native promoters, using a gradient of high temperatures, yielding a wide range of responses to thermal stimuli. Thus, Neurospora hsp30-based promoters represent a new set of modular elements that can be used as transcriptional rheostats to adjust the expression of a gene of interest or for the implementation of regulated circuitries for synthetic biology and biotechnological strategies. IMPORTANCE A timely and dynamic response to strong temperature fluctuations is paramount for organismal biology. At the same time, inducible promoters are a powerful tool for fungal biotechnological and synthetic biology endeavors. In this work, we analyzed the activity of several N. crassa heat shock protein (hsp) promoters at a wide range of temperatures, observing that hsp30 exhibits remarkable sensitivity and a dynamic range of expression as we charted the response of this promoter to subtle increases in temperature, and also as we built and analyzed synthetic promoters based on hsp30 cis elements. As proof of concept, we tested the ability of hsp30 to provide tight control of a central process, cellulose degradation. While this study provides an unprecedented description of the regulation of the N. crassa hsp genes, it also contributes a noteworthy addition to the molecular toolset of transcriptional controllers in filamentous fungi.


Subject(s)
Neurospora crassa , Neurospora crassa/genetics , Neurospora crassa/metabolism , Temperature , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Promoter Regions, Genetic
2.
Fungal Genet Biol ; 162: 103729, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35944835

ABSTRACT

γ-Tubulin ring complexes (γ-TuRC) mediate nucleation and anchorage of microtubules (MTs) to microtubule organizing centers (MTOCs). In fungi, the spindle pole body (SPB) is the functional equivalent of the centrosome, which is the main MTOC. In addition, non-centrosomal MTOCs (ncMTOCs) contribute to MT formation in some fungi like Schizosaccharomyces pombe and Aspergillus nidulans. In A. nidulans, MTOCs are anchored at septa (sMTOC) and share components of the outer plaque of the SPB. Here we show that the Neurospora crassa SPB is embedded in the nuclear envelope, with the γ-TuRC targeting proteins PCP-1Pcp1/PcpA located at the inner plaque and APS-2Mto1/ApsB located at the outer plaque of the SPB. PCP-1 was a specific component of nuclear MTOCs, while APS-2 was also present at the septal pore. Although γ-tubulin was only detected at the nucleus, spontaneous MT nucleation occurred in the apical and subapical cytoplasm during recovery from benomyl-induced MT depolymerization experiments. There was no evidence for MT nucleation at septa. However, without benomyl treatment MT plus-ends were organized in the septal pore through MTB-3EB1. Those septal MT plus ends polymerized MTs from septa in interphase cells Thus we conclude that the SPB is the only MT nucleation site in N. crassa, but the septal pore aids the MT network arrangement through the anchorage of the MT plus-ends through a pseudo-MTOC.


Subject(s)
Carrier Proteins , Fungal Proteins , Microtubule-Associated Proteins , Neurospora crassa , Benomyl/metabolism , Carrier Proteins/metabolism , Fungal Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Neurospora crassa/genetics , Neurospora crassa/metabolism , Spindle Pole Bodies/metabolism , Tubulin/genetics
3.
Fungal Genet Biol ; 157: 103634, 2021 12.
Article in English | MEDLINE | ID: mdl-34634482

ABSTRACT

Agmatinase is a metallohydrolase involved in the hydrolysis of agmatine to produce urea and putrescine. Although its role in organisms is still under study, there are no reports of this family of enzymes in filamentous fungi. Recently, a protein showing agmatinase activity was reported in Neurospora crassa. Therefore, the aim of this work is to determine if the protein (AGM-1) found in the filamentous fungus N. crassa is a true agmatinase. The protein AGM-1was purified directly from N. crassa cultures, and its enzymatic characterization was carried out. The catalytic parameters such as optimum pH, thermostability, transformation kinetics, and activity in the presence of a cofactor were determined. The results show that AGM-1 can use manganese as a cofactor for its enzymatic activity, showing a transformation rate constant (kcat) of 77 s-1 and an affinity constant (KM) of 50.5 mM. The protein loses 50% of its activity when incubated 15 min at 30 °C and reaches maximal enzymatic activity at a pH range of 8-8.5. Our results indicate that the AGM-1 from N. crassa shows similar characteristics to true agmatinases already reported in other organisms. Thus, our findings strongly support that the protein annotated as hypothetical agmatinase in N. crassa is a true agmatinase.


Subject(s)
Agmatine , Neurospora crassa , Catalysis , Neurospora crassa/genetics , Ureohydrolases
4.
Biochimie ; 191: 11-26, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34375717

ABSTRACT

The RVB proteins, composed of the conservative paralogs, RVB1 and RVB2, belong to the AAA+ (ATPases Associated with various cellular Activities) protein superfamily and are present in archaea and eukaryotes. The most distinct structural features are their ability to interact with each other forming the RVB1/2 complex and their participation in several macromolecular protein complexes leading them to be involved in many biological processes. We report here the biochemical and biophysical characterization of the Neurospora crassa RVB-1/RVB-2 complex. Chromatographic analyses revealed that the complex (APO) predominantly exists as a dimer in solution although hexamers were also observed. Nucleotides influence the oligomerization state, while ATP favors hexamers formation, ADP favors the formation of multimeric states, likely dodecamers, and the Molecular Dynamics (MD) simulations revealed the contribution of certain amino acid residues in the nucleotide stabilization. The complex binds to dsDNA fragments and exhibits ATPase activity, which is strongly enhanced in the presence of DNA. In addition, both GFP-fused proteins are predominantly nuclear, and their nuclear localization signals (NLS) interact with importin-α (NcIMPα). Our findings show that some properties are specific of the fungus proteins despite of their high identity to orthologous proteins. They are essential proteins in N. crassa, and the phenotypic defects exhibited by the heterokaryotic strains, mainly related to growth and development, indicate N. crassa as a promising organism to investigate additional biological and structural aspects of these proteins.


Subject(s)
DNA, Fungal/metabolism , Fungal Proteins/metabolism , Multienzyme Complexes/metabolism , Neurospora crassa/enzymology , Protein Multimerization , DNA, Fungal/genetics , Fungal Proteins/genetics , Multienzyme Complexes/genetics , Neurospora crassa/genetics
5.
Int J Mol Sci ; 22(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34445244

ABSTRACT

Optogenetic switches allow light-controlled gene expression with reversible and spatiotemporal resolution. In Saccharomyces cerevisiae, optogenetic tools hold great potential for a variety of metabolic engineering and biotechnology applications. In this work, we report on the modular optimization of the fungal light-oxygen-voltage (FUN-LOV) system, an optogenetic switch based on photoreceptors from the fungus Neurospora crassa. We also describe new switch variants obtained by replacing the Gal4 DNA-binding domain (DBD) of FUN-LOV with nine different DBDs from yeast transcription factors of the zinc cluster family. Among the tested modules, the variant carrying the Hap1p DBD, which we call "HAP-LOV", displayed higher levels of luciferase expression upon induction compared to FUN-LOV. Further, the combination of the Hap1p DBD with either p65 or VP16 activation domains also resulted in higher levels of reporter expression compared to the original switch. Finally, we assessed the effects of the plasmid copy number and promoter strength controlling the expression of the FUN-LOV and HAP-LOV components, and observed that when low-copy plasmids and strong promoters were used, a stronger response was achieved in both systems. Altogether, we describe a new set of blue-light optogenetic switches carrying different protein modules, which expands the available suite of optogenetic tools in yeast and can additionally be applied to other systems.


Subject(s)
Fungal Proteins , Microorganisms, Genetically-Modified , Neurospora crassa/genetics , Optogenetics , Photoreceptors, Microbial , Saccharomyces cerevisiae , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Neurospora crassa/metabolism , Photoreceptors, Microbial/biosynthesis , Photoreceptors, Microbial/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
6.
Fungal Genet Biol ; 132: 103264, 2019 11.
Article in English | MEDLINE | ID: mdl-31465847

ABSTRACT

Agmatinase is known as a metalloenzyme which hydrolyzes agmatine to produce urea and putrescine, being crucial in the alternative pathway to produce polyamines. In this study, an agmatinase-like protein (AGM-1) (NCU 01348) in the filamentous fungus Neurospora crassa is reported. Purified AGM-1 from N. crassa displays enzymatic activity hydrolyzing agmatine; therefore, it can be considered as an agmatinase-like protein. However, its role in the alternative pathway to produce polyamines apparently is not its main function since only a slight reduction of polyamines concentration was detected in the Δagm-1 het strain. Moreover, the null mutant Δagm-1 (homokaryon strain) was unable to grow and the deficiency of agm-1 in the heterokaryon strain provoked a decrease in elongation rate, conidia and biomass production, despite of having de constitutive pathway via the ornithine decarboxylase (ODC). Additionally, mature hyphae of the Δagm-1 het strain presented unusual apical branching and a disorganized Spitzenkörper (Spk). Trying to reveal the role of AGM-1in N. crassa, the protein was tagged with GFP and interestingly the dynamics and intracellular localization of AGM-1 closely resembles the F-actin population. This finding was further examined in order to elucidate if AGM-1is in a close association with F-actin. Since polyamines, among them agmatine, have been reported to act as stabilizers of actin filaments, we evaluated in vitro G-actin polymerization in the presence of agmatine and the effect of purified AGM-1 from N. crassa on these polymerized actin filaments. It was found that polymerization of actin filaments increases in the presence of agmatine and the addition of purified AGM-1 from N. crassa depolymerizes these actin filaments. Also, it was determined that an intact substrate binding site of the enzyme is necessary for the localization pattern of the native AGM-1. These results suggest that in N. crassa AGM-1 has a close association with the F-actin population via its substrate agmatine, playing an essential role during cell development.


Subject(s)
Agmatine/metabolism , Fungal Proteins/metabolism , Neurospora crassa/enzymology , Ureohydrolases/metabolism , Actin Cytoskeleton/metabolism , Actins/genetics , Actins/metabolism , Fungal Proteins/genetics , Hydrolysis , Hyphae/metabolism , Neurospora crassa/genetics , Neurospora crassa/physiology , Ureohydrolases/genetics
7.
Fungal Genet Biol ; 128: 49-59, 2019 07.
Article in English | MEDLINE | ID: mdl-30959095

ABSTRACT

In fungal hyphae multiple protein complexes assemble at sites of apical growth to maintain cell polarity. The polarisome, which in Saccharomyces cerevisiae consists of Spa2, Pea2, Bud6 and Bni1 is described as a small network of functionally related proteins that regulate polarized growth. In yeast Msb3 and Msb4 are considered polarisome components since both proteins interact directly with Spa2 and are involved in Bni1-nucleated actin assembly in vivo. Additionally they regulate exocytosis through their GAP activity towards Sec4 and perhaps other Rab GTPases. In filamentous fungi the role of these proteins has not been investigated, and in the genome of Neurospora crassa only the gene gyp-3 (NCU04514) was found to correlate with MSB3 and MSB4 of S. cerevisiae. Therefore in this work the role of GYP-3 and its relationship with the polarisome in N. crassa was analyzed. The results show that GYP-3 is required for normal colony development and cell morphology since the Δgyp-3 strain displayed a substantial reduction in colony diameter and hyphae showed a distorted morphology expressed as a general pattern of bulging areas in the distal region and hyphae were thinner at the active growing zone. The lack of GYP-3 had no effects on the localization of the polarisome components SPA-2 and BNI-1. Likewise, GYP-3 was not necessary for the normal localization of the F-actin population, however the dynamics of the Spitzenkörper (Spk) and the actin population at the apical region seemed to be destabilized. Additionally, the lack of GYP-3 strongly affects the localization and dynamics of SEC-4; which no longer accumulates at the tip of hyphae. The results presented here strongly suggest that GYP-3 is not part of the polarisome; however it requires the scaffold protein SPA-2 for arriving at the tip of hyphae. Although GYP-3 is not essential for cell survival, it has an important role in maintaining normal cell growth and morphology in N. crassa.


Subject(s)
Cell Polarity/genetics , Fungal Proteins/genetics , Morphogenesis , Neurospora crassa/growth & development , Neurospora crassa/genetics , Actins/metabolism , Cytoskeletal Proteins , Hyphae/genetics , Hyphae/growth & development
8.
Fungal Genet Biol ; 125: 13-27, 2019 04.
Article in English | MEDLINE | ID: mdl-30615944

ABSTRACT

In filamentous fungi, polarized growth is the result of vesicle secretion at the hyphal apex. Motor proteins mediate vesicle transport to target destinations on the plasma membrane via actin and microtubule cytoskeletons. Myosins are motor proteins associated with actin filaments. Specifically, class V myosins are responsible for cargo transport in eukaryotes. We studied the dynamics and localization of myosin V in wild type hyphae of Neurospora crassa and in hyphae that lacked MYO-5. In wild type hyphae, MYO-5-GFP was localized concentrated in the hyphal apex and colocalized with Spitzenkörper. Photobleaching studies showed that MYO-5-GFP was transported to the apex from subapical hyphal regions. The deletion of the class V myosin resulted in a reduced rate of hyphal growth, apical hyperbranching, and intermittent loss of hyphal polarity. MYO-5 did not participate in breaking the symmetrical growth during germination but contributed in the apical organization upon establishment of polarized growth. In the Δmyo-5 mutant, actin was organized into thick cables in the apical and subapical hyphal regions, and the number of endocytic patches was reduced. The microvesicles-chitosomes observed with CHS-1-GFP were distributed as a cloud occupying the apical dome and not in the Spitzenkörper as the WT strain. The mitochondrial movement was not associated with MYO-5, but tubular vacuole position is MYO-5-dependent. These results suggest that MYO-5 plays a role in maintaining apical organization and the integrity of the Spitzenkörper and is required for normal hyphal growth, polarity, septation, conidiation, and proper conidial germination.


Subject(s)
Actin Cytoskeleton/genetics , Hyphae/genetics , Myosin Type V/genetics , Neurospora crassa/genetics , Cell Membrane/genetics , Cell Polarity/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/genetics , Green Fluorescent Proteins/genetics , Hyphae/growth & development , Neurospora crassa/growth & development
9.
Fungal Genet Biol ; 118: 32-36, 2018 09.
Article in English | MEDLINE | ID: mdl-30017938

ABSTRACT

The present study examines the notion that polarized exocytosis in the tips of growing hyphae creates an excess of plasma membrane and thus the need for its removal by endocytosis. To measure endocytosis experimentally, we developed a photobleaching (FRAP) procedure to count endocytic events in hyphae of Neurospora crassa carrying a fluorescent tag on the actin-binding protein fimbrin (FIM-1-GFP). Given 40 nm as the average diameter of endocytic vesicles, we calculated that about 12.5% of the plasma membrane discharged in the apex becomes endocytosed in the subapex. According to our calculations, the GFP-tagged hyphae of N. crassa, measured under the constrained conditions of confocal microscopic examination, needed about 8800 vesicles/min to extend their plasma membrane or about 9800/min, if we include predicted demands for cell wall growth and extracellular secretion. Our findings support the notion that exocytosis and endocytosis operate in tandem with the latter serving as a compensatory process to remove any excess of plasma membrane generated by the intense exocytosis in the hyphal tips. Presumably, this tandem arrangement evolved to support the hallmark features of fungi namely rapid cell extension and abundant secretion of hydrolytic enzymes.


Subject(s)
Endocytosis/genetics , Exocytosis/genetics , Hyphae/genetics , Membrane Glycoproteins/genetics , Microfilament Proteins/genetics , Actin Cytoskeleton/genetics , Cell Membrane/genetics , Cell Wall/genetics , Fungal Proteins/genetics , Green Fluorescent Proteins/genetics , Hyphae/growth & development , Neurospora crassa/genetics , Photobleaching
10.
Fungal Biol ; 122(6): 570-582, 2018 06.
Article in English | MEDLINE | ID: mdl-29801802

ABSTRACT

Here, we report that the Neurospora crassa FLB-3 protein, the ortholog of the Aspergillus nidulans FlbC transcription factor, is required for developmental control. Deletion of flb-3 leads to changes in hyphae morphology and affects sexual and asexual development. We identified, as putative FLB-3 targets, the N. crassa aba-1, wet-1 and vos-1 genes, orthologs of the ones involved in A. nidulans asexual development and that work downstream of FlbC (abaA, wetA and vosA). In N. crassa, these three genes require FLB-3 for proper expression; however, they appear not to be required for normal development, as demonstrated by gene expression analyses during vegetative growth and asexual development. Moreover, mutant strains in the three genes conidiate well and produce viable conidia. We also determined FLB-3 DNA-binding preferences via protein-binding microarrays (PBMs) and demonstrated by chromatin immunoprecipitation (ChIP) that FLB-3 binds the aba-1, wet-1 and vos-1 promoters. Our data support an important role for FLB-3 in N. crassa development and highlight differences between the regulatory pathways controlled by this transcription factor in different fungal species.


Subject(s)
Fungal Proteins/physiology , Neurospora crassa/growth & development , Transcription Factors/physiology , Fungal Proteins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Fungal , Hyphae/genetics , Hyphae/growth & development , Neurospora crassa/genetics , Spores, Fungal/genetics , Spores, Fungal/growth & development , Transcription Factors/genetics
11.
PLoS One ; 13(4): e0195871, 2018.
Article in English | MEDLINE | ID: mdl-29668735

ABSTRACT

Advances in the understanding of molecular systems depend on specific tools like the disruption of genes to produce strains with the desired characteristics. The disruption of any mutagen sensitive (mus) genes in the model fungus Neurospora crassa, i.e. mus-51, mus-52, or mus-53, orthologous to the human genes KU70, KU80, and LIG4, respectively, provides efficient tools for gene targeting. Accordingly, we used RNA-sequencing and reverse transcription-quantitative polymerase chain reaction amplification techniques to evaluate the effects of mus-52 deletion in N. crassa gene transcriptional modulation, and thus, infer its influence regarding metabolic response to extracellular availability of inorganic phosphate (Pi). Notably, the absence of MUS-52 affected the transcription of a vast number of genes, highlighting the expression of those coding for transcription factors, kinases, circadian clocks, oxi-reduction balance, and membrane- and nucleolus-related proteins. These findings may provide insights toward the KU molecular mechanisms, which have been related to telomere maintenance, apoptosis, DNA replication, and gene transcription regulation, as well as associated human conditions including immune system disorders, cancer, and aging.


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/metabolism , Mutation , Neurospora crassa/genetics , Neurospora crassa/metabolism , Computational Biology/methods , Energy Metabolism/genetics , Extracellular Space/metabolism , Gene Expression Profiling , Gene Ontology , Humans , Molecular Sequence Annotation , Phosphates/metabolism , Reproducibility of Results , Transcription, Genetic
12.
Fungal Genet Biol ; 117: 30-42, 2018 08.
Article in English | MEDLINE | ID: mdl-29601947

ABSTRACT

In Neurospora crassa hyphae the localization of all seven chitin synthases (CHSs) at the Spitzenkörper (SPK) and at developing septa has been well analyzed. Hitherto, the mechanisms of CHSs traffic and sorting from synthesis to delivery sites remain largely unexplored. In Saccharomyces cerevisiae exit of Chs3p from the endoplasmic reticulum (ER) requires chaperone Chs7p. Here, we analyzed the role of CSE-7, N. crassa Chs7p orthologue, in the biogenesis of CHS-4 (orthologue of Chs3p). In a N. crassa Δcse-7 mutant, CHS-4-GFP no longer accumulated at the SPK and septa. Instead, fluorescence was retained in hyphal subapical regions in an extensive network of elongated cisternae (NEC) referred to previously as tubular vacuoles. In a complemented strain expressing a copy of cse-7 the localization of CHS-4-GFP at the SPK and septa was restored, providing evidence that CSE-7 is necessary for the localization of CHS-4 at hyphal tips and septa. CSE-7 was revealed at delimited regions of the ER at the immediacies of nuclei, at the NEC, and remarkably also at septa and the SPK. The organization of the NEC was dependent on the cytoskeleton. SEC-63, an extensively used ER marker, and NCA-1, a SERCA-type ATPase previously localized at the nuclear envelope, were used as markers to discern the nature of the membranes containing CSE-7. Both SEC-63 and NCA-1 were found at the nuclear envelope, but also at regions of the NEC. However, at the NEC only NCA-1 co-localized extensively with CSE-7. Observations by transmission electron microscopy revealed abundant rough ER sheets and distinct electron translucent smooth flattened cisternae, which could correspond collectively to the NEC, thorough the subapical cytoplasm. This study identifies CSE-7 as the putative ER receptor for its cognate cargo, the polytopic membrane protein CHS-4, and elucidates the complexity of the ER system in filamentous fungi.


Subject(s)
Chitin Synthase/genetics , Hyphae/genetics , Membrane Proteins/genetics , Molecular Chaperones/genetics , Neurospora crassa/genetics , Saccharomyces cerevisiae Proteins/genetics , Cell Nucleus/genetics , Cytoplasm/genetics , Endoplasmic Reticulum/genetics , Fungal Proteins/genetics , Green Fluorescent Proteins/genetics , Hyphae/growth & development , Microtubules/genetics , Neurospora crassa/growth & development , Protein Transport/genetics , Saccharomyces cerevisiae/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
13.
Curr Genet ; 64(3): 529-534, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29119270

ABSTRACT

Microorganisms have the ability to adapt and respond to different environmental conditions, whether they are stressful or not. Although the detection and/or responding mechanisms are often unknown, a large number of proteins may participate in signal transduction pathways involved in environmental stimulus to induce physiological and cellular events. Here, we examine the important role in cell homeostasis that extracellular pH plays in different fungi, and summarize the recent data reported in distinct organisms, by comparing them to the well-characterized mechanisms firstly described in Aspergillus and yeast. While most of the knowledge regarding the cellular processes triggered by the pH signaling pathway is based on the work in these two organisms, new data have been emerging in a diverse group of filamentous fungi, namely the involvement of this signaling pathway in metabolism and fungal pathogenicity. In this review, we present the major aspects of the pH signaling pathway in different model organisms, focusing on the protein components and the biological processes influenced by this pathway. In particular, we discuss novel cellular processes regulated by this pathway in the fungus Neurospora crassa. The diversity of functional processes that are affected under pH stress highlights how broadly this condition impacts on basic cellular processes in fungi and reveals how divergent fungal species are.


Subject(s)
Neurospora crassa/metabolism , Signal Transduction , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Genes, Fungal , Hydrogen-Ion Concentration , Neurospora crassa/genetics
14.
Biochem J ; 474(24): 4091-4104, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29054975

ABSTRACT

The Neurospora crassa NIT-2 transcription factor belongs to the GATA transcription factor family and plays a fundamental role in the regulation of nitrogen metabolism. Because NIT-2 acts by accessing DNA inside the nucleus, understanding the nuclear import process of NIT-2 is necessary to characterize its function. Thus, in the present study, NIT-2 nuclear transport was investigated using a combination of biochemical, cellular, and biophysical methods. A complemented strain that produced an sfGFP-NIT-2 fusion protein was constructed, and nuclear localization assessments were made under conditions that favored protein translocation to the nucleus. Nuclear translocation was also investigated using HeLa cells, which showed that the putative NIT-2 nuclear localization sequence (NLS; 915TISSKRQRRHSKS927) was recognized by importin-α and that subsequent transport occurred via the classical import pathway. The interaction between the N. crassa importin-α (NcImpα) and the NIT-2 NLS was quantified with calorimetric assays, leading to the observation that the peptide bound to two sites with different affinities, which is typical of a monopartite NLS sequence. The crystal structure of the NcImpα/NIT-2 NLS complex was solved and revealed that the NIT-2 peptide binds to NcImpα with the major NLS-binding site playing a primary role. This result contrasts other recent studies that suggested a major role for the minor NLS-binding site in importin-α from the α2 family, indicating that both sites can be used for different cargo proteins according to specific metabolic requirements.


Subject(s)
Active Transport, Cell Nucleus/physiology , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Neurospora crassa/metabolism , Transcription Factors/metabolism , alpha Karyopherins/metabolism , Amino Acid Sequence , Binding Sites/physiology , Cells, Cultured , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , HeLa Cells , Humans , Neurospora crassa/genetics , Protein Structure, Secondary , Spores, Fungal , Transcription Factors/chemistry , Transcription Factors/genetics , X-Ray Diffraction , alpha Karyopherins/chemistry , alpha Karyopherins/genetics
15.
BMC Genomics ; 18(1): 457, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28599643

ABSTRACT

BACKGROUND: Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. RESULTS: We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. CONCLUSIONS: We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the reserve carbohydrate glycogen and trehalose. We also demonstrated that calcium stress affects the reserve carbohydrate levels and the response to calcium stress may require PAC-3. Considering that the reserve carbohydrate metabolism may be subjected to different signaling pathways control, our data contribute to the understanding of the N. crassa responses under pH and calcium stresses.


Subject(s)
Calcium/metabolism , Glycogen/metabolism , Neurospora crassa/cytology , Neurospora crassa/metabolism , Signal Transduction , Trehalose/metabolism , Gene Expression Regulation, Plant , Hydrogen-Ion Concentration , Neurospora crassa/genetics , Transcription Factors/metabolism
16.
Microb Cell Fact ; 15(1): 144, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27538689

ABSTRACT

BACKGROUND: Pectin-rich wastes, such as citrus pulp and sugar beet pulp, are produced in considerable amounts by the juice and sugar industry and could be used as raw materials for biorefineries. One possible process in such biorefineries is the hydrolysis of these wastes and the subsequent production of ethanol. However, the ethanol-producing organism of choice, Saccharomyces cerevisiae, is not able to catabolize D-galacturonic acid, which represents a considerable amount of the sugars in the hydrolysate, namely, 18 % (w/w) from citrus pulp and 16 % (w/w) sugar beet pulp. RESULTS: In the current work, we describe the construction of a strain of S. cerevisiae in which the five genes of the fungal reductive pathway for D-galacturonic acid catabolism were integrated into the yeast chromosomes: gaaA, gaaC and gaaD from Aspergillus niger and lgd1 from Trichoderma reesei, and the recently described D-galacturonic acid transporter protein, gat1, from Neurospora crassa. This strain metabolized D-galacturonic acid in a medium containing D-fructose as co-substrate. CONCLUSION: This work is the first demonstration of the expression of a functional heterologous pathway for D-galacturonic acid catabolism in Saccharomyces cerevisiae. It is a preliminary step for engineering a yeast strain for the fermentation of pectin-rich substrates to ethanol.


Subject(s)
Hexuronic Acids/metabolism , Metabolic Networks and Pathways/genetics , Pectins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Aspergillus niger/genetics , Beta vulgaris , Citrus , Ethanol/metabolism , Fermentation , Fructose/metabolism , Hydrolysis , Metabolic Engineering/methods , Neurospora crassa/genetics , Trichoderma/genetics
17.
PLoS One ; 11(8): e0161659, 2016.
Article in English | MEDLINE | ID: mdl-27557053

ABSTRACT

Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism.


Subject(s)
Hydrogen-Ion Concentration , Neurospora crassa/genetics , Neurospora crassa/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Genetic Complementation Test , Melanins/biosynthesis , Monophenol Monooxygenase , Mutation , Phenotype , Promoter Regions, Genetic , Protein Transport , Proteolysis , alpha Karyopherins/metabolism
18.
J Biol Chem ; 291(36): 18620-31, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27402847

ABSTRACT

To accomplish its crucial role, mitochondria require proteins that are produced in the cytosol, delivered by cytosolic Hsp90, and translocated to its interior by the translocase outer membrane (TOM) complex. Hsp90 is a dimeric molecular chaperone and its function is modulated by its interaction with a large variety of co-chaperones expressed within the cell. An important family of co-chaperones is characterized by the presence of one TPR (tetratricopeptide repeat) domain, which binds to the C-terminal MEEVD motif of Hsp90. These include Tom70, an important component of the TOM complex. Despite a wealth of studies conducted on the relevance of Tom70·Hsp90 complex formation, there is a dearth of information regarding the exact molecular mode of interaction. To help fill this void, we have employed a combined experimental strategy consisting of cross-linking/mass spectrometry to investigate binding of the C-terminal Hsp90 domain to the cytosolic domain of Tom70. This approach has identified a novel region of contact between C-Hsp90 and Tom70, a finding that is confirmed by probing the corresponding peptides derived from cross-linking experiments via isothermal titration calorimetry and mitochondrial import assays. The data generated in this study are combined to input constraints for a molecular model of the Hsp90/Tom70 interaction, which has been validated by small angle x-ray scattering, hydrogen/deuterium exchange, and mass spectrometry. The resultant model suggests that only one of the MEEVD motifs within dimeric Hsp90 contacts Tom70. Collectively, our findings provide significant insight on the mechanisms by which preproteins interact with Hsp90 and are translocated via Tom70 to the mitochondria.


Subject(s)
Carrier Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mitochondrial Proteins/metabolism , Neurospora crassa/metabolism , Protozoan Proteins/metabolism , Amino Acid Motifs , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cattle , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Neurospora crassa/chemistry , Neurospora crassa/genetics , Protein Domains , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
19.
Genetics ; 204(1): 163-76, 2016 09.
Article in English | MEDLINE | ID: mdl-27449058

ABSTRACT

Neurospora crassa is a model organism for the study of circadian clocks, molecular machineries that confer ∼24-hr rhythms to different processes at the cellular and organismal levels. The FREQUENCY (FRQ) protein is a central component of the Neurospora core clock, a transcription/translation negative feedback loop that controls genome-wide rhythmic gene expression. A genetic screen aimed at determining new components involved in the latter process identified regulation of conidiation 1 (rco-1), the ortholog of the Saccharomyces cerevisiae Tup1 corepressor, as affecting period length. By employing bioluminescent transcriptional and translational fusion reporters, we evaluated frq and FRQ expression levels in the rco-1 mutant background observing that, in contrast to prior reports, frq and FRQ expression are robustly rhythmic in the absence of RCO-1, although both amplitude and period length of the core clock are affected. Moreover, we detected a defect in metabolic compensation, such that high-glucose concentrations in the medium result in a significant decrease in period when RCO-1 is absent. Proteins physically interacting with RCO-1 were identified through co-immunoprecipitation and mass spectrometry; these include several components involved in chromatin remodeling and transcription, some of which, when absent, lead to a slight change in period. In the aggregate, these results indicate a dual role for RCO-1: although it is not essential for core-clock function, it regulates proper period and amplitude of core-clock dynamics and is also required for the rhythmic regulation of several clock-controlled genes.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Neurospora crassa/genetics , Neurospora crassa/metabolism , Repressor Proteins/biosynthesis , Repressor Proteins/genetics , Circadian Clocks/physiology , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Phosphorylation , Repressor Proteins/metabolism
20.
G3 (Bethesda) ; 6(5): 1327-43, 2016 05 03.
Article in English | MEDLINE | ID: mdl-26994287

ABSTRACT

When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms.


Subject(s)
Binding Sites , Carbohydrate Metabolism , Neurospora crassa/genetics , Neurospora crassa/metabolism , Nucleotide Motifs , Response Elements , Stress, Physiological , Transcription Factors/metabolism , Amino Acid Sequence , Chromatin Immunoprecipitation , Environment , Gene Deletion , Gene Expression Regulation, Fungal , High-Throughput Nucleotide Sequencing , Phenotype , Promoter Regions, Genetic , Protein Binding , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL