Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.224
Filter
1.
Bull Exp Biol Med ; 176(5): 666-671, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38727956

ABSTRACT

This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.


Subject(s)
Brain-Derived Neurotrophic Factor , Neurotrophin 3 , Olfactory Bulb , Remyelination , Animals , Rats , Neurotrophin 3/metabolism , Humans , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Remyelination/physiology , Olfactory Bulb/cytology , Cell Proliferation , Spinal Cord/metabolism , Myelin Sheath/metabolism , Myelin Sheath/physiology , Cells, Cultured , Cell Movement , Cysts/pathology , Female , Central Nervous System Cysts/surgery , Central Nervous System Cysts/pathology
2.
J Speech Lang Hear Res ; 67(6): 1976-1983, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38687186

ABSTRACT

BACKGROUND: Age-related hearing loss (ARHL) is a general term used to describe the sensorineural type of hearing loss occurring in both ears in older adults. Neurotrophins are the most promising candidates for supporting the auditory nerve by increasing neuronal survival. This study aimed to help elucidate the pathophysiology of ARHL by determining whether any relationship exists between brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) levels in serum samples from patients diagnosed with ARHL. MATERIALS AND METHOD: Seventy-seven individuals, a study group of 41 patients diagnosed with ARHL, and a control group of 36 participants without hearing loss were evaluated. Serum samples were collected and used to measure serum BDNF and NT-3 levels with the new Nepenthe enzyme-linked immunosorbent assay method. RESULTS: Median pure-tone average results in the 2000, 4000, and 6000 Hz ranges were 52.5 (44.3-67.3) dB HL in the ARHL group and 13.5 (11.1-17.1) dB HL in the control group. The difference was statistically significant (p = .001). Although NT-3 and BDNF levels were both lower in ARHL patients than in participants without hearing loss, only the BDNF levels were significantly (p = .002) lower. Mean left and right ear word recognition scores were also lower in ARHL patients than in control groups. The ARHL group was further divided into two subgroups based on word recognition scores to evaluate significant differences in BDNF and NT-3 levels. No statistically significant difference was observed in BDNF and NT-3 levels between these subgroups. However, there was a significant difference in word recognition scores. CONCLUSIONS: Low BDNF levels in the ARHL group suggest that BDNF may play a role in the pathogenesis of ARHL. Patients with low (ARHL1) and high (ARHL2) word recognition scores were compared for the first time in the literature in terms of BDNF and NT-3 levels. However, the results were not statistically significant. This article is a preliminary study and was written to provide guidance for our next comprehensive project.


Subject(s)
Auditory Threshold , Brain-Derived Neurotrophic Factor , Neurotrophin 3 , Humans , Brain-Derived Neurotrophic Factor/blood , Neurotrophin 3/blood , Male , Female , Aged , Middle Aged , Auditory Threshold/physiology , Presbycusis/blood , Presbycusis/physiopathology , Presbycusis/diagnosis , Audiometry, Pure-Tone , Aged, 80 and over , Case-Control Studies
3.
EMBO Rep ; 25(5): 2375-2390, 2024 May.
Article in English | MEDLINE | ID: mdl-38594391

ABSTRACT

Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.


Subject(s)
Chemokine CCL2 , Ganglia, Spinal , Neuralgia , Neurons , Neurotrophin 3 , Paclitaxel , Receptor, trkC , Animals , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Neuralgia/chemically induced , Neuralgia/metabolism , Neuralgia/genetics , Paclitaxel/adverse effects , Paclitaxel/pharmacology , Neurotrophin 3/metabolism , Neurotrophin 3/genetics , Male , Mice , Neurons/metabolism , Neurons/drug effects , Female , Receptor, trkC/metabolism , Receptor, trkC/genetics , Antineoplastic Agents/adverse effects , RNA, Messenger/metabolism , RNA, Messenger/genetics
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473977

ABSTRACT

Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.


Subject(s)
Killifishes , Nerve Growth Factors , Receptors, Nerve Growth Factor , Humans , Receptors, Nerve Growth Factor/metabolism , Nerve Growth Factors/metabolism , Receptor Protein-Tyrosine Kinases/physiology , Retina/metabolism , Receptor, trkA , Neurotrophin 3 , Brain-Derived Neurotrophic Factor
5.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 56-61, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38372112

ABSTRACT

The present study aimed to study the repair effect of neurotrophic factor III (NT-3) on spinal injury model rats and its mechanism. Wistar rats with spinal injury were established by accelerated compression stroke after the operation and divided into control group, model group, and NT-3 intervention group. The motor function of rats in each group was evaluated at different postoperative time points (3, 7, 14 d). HE staining was used to detect the changes in tissue structure and morphology of the injured spinal column in each group. The changes of SOD, MDA and GSH in serum of rats were detected. The concentrations of inflammatory cytokines IL-1ß, IL-6, IL-17 and TNF-α in serum were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was used to detect the expression changes of anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (Bax) in injured spinal tissue of rats in each group. Compared with model group, motor function score of NT-3 intervention group increased gradually, and had statistical significance at 7 and 14 days (5.29±1.62 vs 9.33±2.16, 5.92±1.44 vs 14.56±2.45, T =7.386, 9.294, P =0.004, 0.000). The levels of SOD and GSH in serum of NT-3 intervention group were significantly increased (t=9.117, 12.207, P=0.000, 0.000), while the level of MDA was significantly decreased (t=5.089, P=0.011). Serum levels of inflammatory cytokines IL-1ß, IL-6, IL-17 and TNF-α in NT-3 intervention group were significantly decreased (T =6.157, 7.958, 6.339, 6.288, P=0.008, 0.005, 0.005, 0.007). In the NT-3 treatment group, Bax protein was significantly decreased (0.24±0.05 vs 0.89±0.12, T =8.579, P=0.001), and the relative expression of Bcl-2 protein was significantly increased (0.75±0.06 vs 0.13±0.05, T =9.367, P=0.001). Neurotrophic factor III can promote spinal injury repair in spinal injury model rats, and play a role by enhancing antioxidant stress ability, inhibiting inflammatory factors, promoting Bcl-2 and decreasing Bax expression.


Subject(s)
Interleukin-17 , Neurotrophin 3 , Spinal Injuries , Animals , Rats , bcl-2-Associated X Protein , Cytokines , Interleukin-1beta , Interleukin-6 , Nerve Growth Factors , Proto-Oncogene Proteins c-bcl-2 , Rats, Sprague-Dawley , Rats, Wistar , Superoxide Dismutase , Thromboplastin , Tumor Necrosis Factor-alpha/metabolism
6.
Behav Brain Res ; 461: 114857, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38211776

ABSTRACT

Memory consolidation is an essential process of long-term memory formation. Neurotrophins have been suggested as key regulators of activity dependent changes in the synaptic efficacy and morphology, which are considered the downstream mechanisms of memory consolidation. The neurotrophin 3 (NT-3), a member of the neurotrophin family, and its high affinity receptor TrkC, are widely expressed in the insular cortex (IC), a region with a critical role in the consolidation of the conditioned taste aversion (CTA) paradigm, in which an animal associates a novel taste with nausea. Nevertheless, the role of this neurotrophin in the cognitive processes that the IC mediates remains unexamined. To answer whether NT-3 is involved in memory consolidation at the IC, adult male Wistar rats were administered with NT-3 or NT-3 in combination with the Trk receptors inhibitor K252a into the IC, immediately after CTA acquisition under two different conditions: a strong-CTA (0.2 M lithium chloride i.p.) or a weak-CTA (0.1 M lithium chloride i.p.). Our results show that NT-3 strengthens the memory trace of CTA, transforming a weak conditioning into a strong one, in a Trk-dependent manner. The present evidence suggests that NT-3 has a key role in the consolidation process of an aversive memory in a neocortical region.


Subject(s)
Cerebral Cortex , Insular Cortex , Rats , Animals , Male , Rats, Wistar , Taste , Lithium Chloride/pharmacology , Neurotrophin 3 , Avoidance Learning
7.
Neuro Endocrinol Lett ; 44(7): 439-443, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37874553

ABSTRACT

BACKGROUND: Neurotrophins (NTs) encompass a group of closely associated proteins regulating various aspects of neuronal growth and survival. The potential association between work-related factors and the levels of circulating NTs has not been extensively examined. In this preliminary investigation, we evaluated plasma concentrations of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) in a cohort of healthy individuals from three distinct professional categories, each with unique work environments and lifestyle factors. METHODS: The study involved 60 men from three professional fields: airline pilots, construction laborers, and fitness trainers (20 participants per category) recruited during routine occupational health appointments. Plasma levels of NTs were measured using commercially available immunoassays and compared in the three professional groups. RESULTS: Among the professions studied, fitness instructors displayed the highest concentrations of BDNF and NGF, with airline pilots ranking second, and construction workers showing the lowest levels. Significantly decreased NT-3 levels were observed in airline pilots compared to fitness instructors and construction workers, but no differences were found between the latter two occupations. NT-4 levels were similar across all three occupational groups. CONCLUSIONS: Our pilot results suggest that plasma concentrations of NTs, which are involved in various aspects of neuronal and cognitive functioning, may display significant differences among healthy individuals depending on their occupation. These observations warrant additional research to explore potential implications for the field of occupational medicine.


Subject(s)
Brain-Derived Neurotrophic Factor , Construction Industry , Male , Humans , Brain-Derived Neurotrophic Factor/metabolism , Nerve Growth Factor/metabolism , Neurotrophin 3 , Neurons/metabolism , Occupations
8.
J Transl Med ; 21(1): 733, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848983

ABSTRACT

BACKGROUND: Maintaining the repair phenotype of denervated Schwann cells in the injured distal nerve is crucial for promoting peripheral nerve regeneration. However, when chronically denervated, the capacity of Schwann cells to support repair and regeneration deteriorates, leading to peripheral nerve regeneration and poor functional recovery. Herein, we investigated whether neurotrophin-3 (NT-3) could sustain the reparative phenotype of Schwann cells and promote peripheral nerve regeneration after chronic denervation and aimed to uncover its potential molecular mechanisms. METHODS: Western blot was employed to investigate the relationship between the expression of c-Jun and the reparative phenotype of Schwann cells. The inducible expression of c-Jun by NT-3 was examined both in vitro and in vivo with western blot and immunofluorescence staining. A chronic denervation model was established to study the role of NT-3 in peripheral nerve regeneration. The number of regenerated distal axons, myelination of regenerated axons, reinnervation of neuromuscular junctions, and muscle fiber diameters of target muscles were used to evaluate peripheral nerve regeneration by immunofluorescence staining, transmission electron microscopy (TEM), and hematoxylin and eosin (H&E) staining. Adeno-associated virus (AAV) 2/9 carrying shRNA, small molecule inhibitors, and siRNA were employed to investigate whether NT-3 could signal through the TrkC/ERK pathway to maintain c-Jun expression and promote peripheral nerve regeneration after chronic denervation. RESULTS: After peripheral nerve injury, c-Jun expression progressively increased until week 5 and then began to decrease in the distal nerve following denervation. NT-3 upregulated the expression of c-Jun in denervated Schwann cells, both in vitro and in vivo. NT-3 promoted peripheral nerve regeneration after chronic denervation, mainly by upregulating or maintaining a high level of c-Jun rather than NT-3 itself. The TrkC receptor was consistently presented on denervated Schwann cells and served as NT-3 receptors following chronic denervation. NT-3 mainly upregulated c-Jun through the TrkC/ERK pathway. CONCLUSION: NT-3 promotes peripheral nerve regeneration by maintaining the repair phenotype of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway. It provides a potential target for the clinical treatment of peripheral nerve injury after chronic denervation.


Subject(s)
Nerve Regeneration , Neurotrophin 3 , Peripheral Nerve Injuries , Schwann Cells , Humans , Axons/metabolism , Denervation , MAP Kinase Signaling System , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Neurotrophin 3/genetics , Neurotrophin 3/metabolism , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/therapy , Receptor Protein-Tyrosine Kinases/metabolism , Schwann Cells/metabolism
9.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298444

ABSTRACT

Neurotrophins (NTFs) are structurally related neurotrophic factors essential for differentiation, survival, neurite outgrowth, and the plasticity of neurons. Abnormalities associated with neurotrophin-signaling (NTF-signaling) were associated with neuropathies, neurodegenerative disorders, and age-associated cognitive decline. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) has the highest expression and is expressed in mammals by specific cells throughout the brain, with particularly high expression in the hippocampus and cerebral cortex. Whole genome sequencing efforts showed that NTF signaling evolved before the evolution of Vertebrates; thus, the shared ancestor of Protostomes, Cyclostomes, and Deuterostomes must have possessed a single ortholog of neurotrophins. After the first round of whole genome duplication that occurred in the last common ancestor of Vertebrates, the presence of two neurotrophins in Agnatha was hypothesized, while the monophyletic group of cartilaginous fishes, or Chondrichthyans, was situated immediately after the second whole genome duplication round that occurred in the last common ancestor of Gnathostomes. Chondrichthyans represent the outgroup of all other living jawed vertebrates (Gnathostomes) and the sister group of Osteichthyans (comprehensive of Actinopterygians and Sarcopterygians). We were able to first identify the second neurotrophin in Agnatha. Secondly, we expanded our analysis to include the Chondrichthyans, with their strategic phylogenetic position as the most basal extant Gnathostome taxon. Results from the phylogenetic analysis confirmed the presence of four neurotrophins in the Chondrichthyans, namely the orthologs of the four mammalian neurotrophins BDNF, NGF, NT-3, and NT-4. We then proceeded to study the expression of BDNF in the adult brain of the Chondrichthyan Scyliorhinus canicula. Our results showed that BDNF is highly expressed in the S. canicula brain and that its expression is highest in the Telencephalon, while the Mesencephalic and Diencephalic areas showed expression of BDNF in isolated and well-defined cell groups. NGF was expressed at much lower levels that could be detected by PCR but not by in situ hybridization. Our results warrant further investigations in Chondrichthyans to characterize the putative ancestral function of neurotrophins in Vertebrates.


Subject(s)
Brain-Derived Neurotrophic Factor , Elasmobranchii , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Phylogeny , Vertebrates/genetics , Vertebrates/metabolism , Brain/metabolism , Neurons/metabolism , Fishes/metabolism , Neurotrophin 3/metabolism , Mammals/metabolism
10.
Sci Signal ; 16(787): eadf6696, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253090

ABSTRACT

Organ size is maintained by the controlled proliferation of distinct cell populations. In the mouse liver, hepatocytes in the midlobular zone that are positive for cyclin D1 (CCND1) repopulate the parenchyma at a constant rate to preserve liver mass. Here, we investigated how hepatocyte proliferation is supported by hepatic stellate cells (HSCs), pericytes that are in close proximity to hepatocytes. We used T cells to ablate nearly all HSCs in the murine liver, enabling the unbiased characterization of HSC functions. In the normal liver, complete loss of HSCs persisted for up to 10 weeks and caused a gradual reduction in liver mass and in the number of CCND1+ hepatocytes. We identified neurotrophin-3 (Ntf-3) as an HSC-produced factor that induced the proliferation of midlobular hepatocytes through the activation of tropomyosin receptor kinase B (TrkB). Treating HSC-depleted mice with Ntf-3 restored CCND1+ hepatocytes in the midlobular region and increased liver mass. These findings establish that HSCs form the mitogenic niche for midlobular hepatocytes and identify Ntf-3 as a hepatocyte growth factor.


Subject(s)
Hepatic Stellate Cells , Liver , Neurotrophin 3 , Animals , Mice , Cell Proliferation , Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Liver/metabolism , Neurotrophin 3/metabolism
11.
Sci Rep ; 13(1): 4571, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941445

ABSTRACT

The purpose of this study was to determine whether altered serum and/or muscle concentrations of brain-derived neurotrophic factor (BDNF) can modify the electrophysiological properties of spinal motoneurons (MNs). This study was conducted in wild-type and Bdnf heterozygous knockout rats (HET, SD-BDNF). Rats were divided into four groups: control, knockout, control trained, and knockout trained. The latter two groups underwent moderate-intensity endurance training to increase BDNF levels in serum and/or hindlimb muscles. BDNF and other neurotrophic factors (NFs), including glial cell-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), nerve growth factor (NGF), and neurotrophin-4 (NT-4) were assessed in serum and three hindlimb muscles: the tibialis anterior (TA), medial gastrocnemius (MG), and soleus (Sol). The concentrations of tropomyosin kinase receptor B (Trk-B), interleukin-15 (IL-15), and myoglobin (MYO/MB) were also evaluated in these muscles. The electrophysiological properties of lumbar MNs were studied in vivo using whole-cell current-clamp recordings. Bdnf knockout rats had reduced levels of all studied NFs in serum but not in hindlimb muscles. Interestingly, decreased serum NF levels did not influence the electrophysiological properties of spinal MNs. Additionally, endurance training did not change the serum concentrations of any of the NFs tested but significantly increased BDNF and GDNF levels in the TA and MG muscles in both trained groups. Furthermore, the excitability of fast MNs was reduced in both groups of trained rats. Thus, changes in muscle (but not serum) concentrations of BDNF and GDNF may be critical factors that modify the excitability of spinal MNs after intense physical activity.


Subject(s)
Brain-Derived Neurotrophic Factor , Glial Cell Line-Derived Neurotrophic Factor , Rats , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Neurotrophin 3/metabolism , Motor Neurons/metabolism , Muscle, Skeletal/metabolism
12.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768339

ABSTRACT

Neurotrophins promote neurite outgrowth of auditory neurons and may help closing the gap to cochlear implant (CI) electrodes to enhance electrical hearing. The best concentrations and mix of neurotrophins for this nerve regrowth are unknown. Whether electrical stimulation (ES) during outgrowth is beneficial or may direct axons is another open question. Auditory neuron explant cultures of distinct cochlear turns of 6-7 days old mice were cultured for four days. We tested different concentrations and combinations of BDNF and NT-3 and quantified the numbers and lengths of neurites with an advanced automated analysis. A custom-made 24-well electrical stimulator based on two bulk CIs served to test different ES strategies. Quantification of receptors trkB, trkC, p75NTR, and histological analysis helped to analyze effects. We found 25 ng/mL BDNF to perform best, especially in basal neurons, a negative influence of NT-3 in combined BDNF/NT-3 scenarios, and tonotopic changes in trk and p75NTR receptor stainings. ES largely impeded neurite outgrowth and glia ensheathment in an amplitude-dependent way. Apical neurons showed slight benefits in neurite numbers and length with ES at 10 and 500 µA. We recommend BDNF as a potent drug to enhance the man-machine interface, but CIs should be better activated after nerve regrowth.


Subject(s)
Brain-Derived Neurotrophic Factor , Cochlear Implants , Mice , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Receptors, Nerve Growth Factor , Neurites , Cochlear Nerve , Electric Stimulation , Neuronal Outgrowth , Neurotrophin 3
13.
J Neurosci ; 43(9): 1492-1508, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36653191

ABSTRACT

NG2 is a structurally unique transmembrane chondroitin sulfate proteoglycan (CSPG). Its role in damaged spinal cord is dual. NG2 is considered one of key inhibitory factors restricting axonal growth following spinal injury. Additionally, we have recently detected its novel function as a blocker of axonal conduction. Some studies, however, indicate the importance of NG2 presence in the formation of synaptic contacts. We hypothesized that the optimal treatment would be neutralization of inhibitory functions of NG2 without its physical removal. Acute intraspinal injections of anti-NG2 monoclonal antibodies reportedly prevented an acute block of axonal conduction by exogenous NG2. For prolonged delivery of NG2 function neutralizing antibody, we have developed a novel gene therapy: adeno-associated vector (AAV) construct expressing recombinant single-chain variable fragment anti-NG2 antibody (AAV-NG2Ab). We examined effects of AAV-NG2Ab alone or in combination with neurotrophin NT-3 in adult female rats with thoracic T10 contusion injuries. A battery of behavioral tests was used to evaluate locomotor function. In vivo single-cell electrophysiology was used to evaluate synaptic transmission. Lower urinary tract function was assessed during the survival period using metabolic chambers. Terminal cystometry, with acquisition of external urethral sphincter activity and bladder pressure, was used to evaluate bladder function. Both the AAV-NG2Ab and AAV-NG2Ab combined with AAV-NT3 treatment groups demonstrated significant improvements in transmission, locomotion, and bladder function compared with the control (AAV-GFP) group. These functional improvements associated with improved remyelination and plasticity of 5-HT fibers. The best results were observed in the group that received combinational AAV-NG2Ab+AAV-NT3 treatment.SIGNIFICANCE STATEMENT We recently demonstrated beneficial, but transient, effects of neutralization of the NG2 proteoglycan using monoclonal antibodies delivered intrathecally via osmotic mini-pumps after spinal cord injury. Currently, we have developed a novel gene therapy tool for prolonged and clinically relevant delivery of a recombinant single-chain variable fragment anti-NG2 antibody: AAV-rh10 serotype expressing scFv-NG2 (AAV-NG2Ab). Here, we examined effects of AAV-NG2Ab combined with transgene delivery of Neurotrophin-3 (AAV-NT3) in adult rats with thoracic contusion injuries. The AAV-NG2Ab and AAV-NG2Ab+AAV-NT3 treatment groups demonstrated significant improvements of locomotor function and lower urinary tract function. Beneficial effects of this novel gene therapy on locomotion and bladder function associated with improved transmission to motoneurons and plasticity of axons in damaged spinal cord.


Subject(s)
Contusions , Single-Chain Antibodies , Spinal Cord Injuries , Urinary Tract , Animals , Female , Rats , Contusions/therapy , Locomotion , Nerve Growth Factors , Recovery of Function/genetics , Spinal Cord , Synaptic Transmission , Neurotrophin 3
14.
Biol Trace Elem Res ; 201(2): 689-697, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35349008

ABSTRACT

BACKGROUND: Epilepsy is one of the most common neurological disorders, and it places a significant economic strain on the healthcare system around the world. Although the exact mechanism of epilepsy has yet to be illustrated, various pathogenic cascades involving neurotransmitters and trace elements have been reported. We aimed to investigate the serum levels of growth-associated protein-43 (GAP-43) and neurotrophin-3 (NT-3) among cohort of Egyptian children with epilepsy and correlate these biomarkers with their zinc levels. METHODS: This case-control study included 50 pediatric patients with epilepsy who were comparable with 50 controls. Neurological assessment and electroencephalogram (EEG) were done to all included children. Biochemical measurements of serum GAP-43 and NT-3 using enzyme linked immunosorbent assays (ELISA), and total antioxidant capacity (TAC) and zinc using colorimetric assays, were performed to all participants. RESULTS: There was significantly frequent positive parental consanguinity among cases with significantly frequent generalized onset seizures (94%) than simple partial seizure (6%). There were significantly lower serum GAP-43 and zinc levels with significantly higher TAC among cases vs. the controls, p˂0.05 for all. There was no significant difference in the serum levels of NT-3 among epileptic children vs. the controls, p = 0.269. Serum Zn was positively correlated with GAP-43 level among epileptic children (r = 0.381, p = 0.006). Serum GAP-43 in diagnosing childhood epilepsy at cut-off point ≤ 0.6 ng/mL showed 78% sensitivity, 62% specificity, positive predictive value (PPV) = 50.6%, negative predictive value (NPP) = 84.9% with AUC = 0.574. CONCLUSION: GAP-43 can be considered a sensitive good negative biomarker in childhood epilepsy which correlated positively with the zinc status.


Subject(s)
Epilepsy , GAP-43 Protein , Neurotrophin 3 , Zinc , Child , Humans , Case-Control Studies , Epilepsy/diagnosis , GAP-43 Protein/blood , Trace Elements , Neurotrophin 3/blood , Egypt
15.
Exp Neurol ; 360: 114278, 2023 02.
Article in English | MEDLINE | ID: mdl-36455639

ABSTRACT

Intramuscular injection of an Adeno-associated viral vector serotype 1 (AAV1) encoding Neurotrophin-3 (NT3) into hindlimb muscles 24 h after a severe T9 spinal level contusion in rats has been shown to induce lumbar spinal neuroplasticity, partially restore locomotive function and reduce spasms during swimming. Here we investigate whether a targeted delivery of NT3 to lumbar and thoracic motor neurons 48 h following a severe contusive injury aids locomotive recovery in rats. AAV1-NT3 was injected bilaterally into the tibialis anterior, gastrocnemius and rectus abdominus muscles 48-h following trauma, persistently elevating serum levels of the neurotrophin. NT3 modestly improved trunk stability, accuracy of stepping during skilled locomotion, and alternation of the hindlimbs during swimming, but it had no effect on gross locomotor function in the open field. The number of vGlut1+ boutons, likely arising from proprioceptive afferents, on gastrocnemius α-motor neurons was increased after injury but normalised following NT3 treatment, suggestive of a mechanism in which functional benefits may be mediated through proprioceptive feedback. Ex vivo MRI revealed substantial loss of grey and white matter at the lesion epicentre but no effect of delayed NT3 treatment to induce neuroprotection. Lower body spasms and hyperreflexia of an intrinsic paw muscle were not reliably induced in this severe injury model suggesting a more complex anatomical or physiological cause to their induction. We have shown that delayed intramuscular AAV-NT3 treatment can promote recovery in skilled stepping and coordinated swimming, supporting a role for NT3 as a therapeutic strategy for spinal injuries potentially through modulation of somatosensory feedback.


Subject(s)
Contusions , Spinal Cord Injuries , Rats , Animals , Neurotrophin 3 , Nerve Growth Factors/pharmacology , Hindlimb , Spasm , Recovery of Function , Spinal Cord/pathology
16.
Int J Biol Sci ; 18(15): 5963-5977, 2022.
Article in English | MEDLINE | ID: mdl-36263167

ABSTRACT

Although liver cancer is a malignant tumor with the highest mortality across the world, its pathogenesis and therapeutic targets remain unclear. Apoptosis, a natural cell death mechanism, is an important target of anticancer therapy. The discovery of effective apoptotic regulators can lead to the identification of novel therapeutic targets for treating cancer. Neurotrophin 3 (NTF3) is a member of the nerve growth factor (NGF) family that is involved in the progression of various cancers, including medulloblastoma, primitive neuroectodermal brain tumors, and breast cancer. NTF3 is under-expressed in human hepatocellular carcinoma (HCC), albeit its specific effects and the action mechanism have not been elucidated. Here, we confirmed that NTF3 expression was significantly low in HCC with reference to the GSEA database. By collecting patient data from our center and performing qRT-PCR analysis, we found that NTF3 expression was significantly downregulated in 74 patients with HCC. Low NTF3 expression was associated with a shorter overall survival (OS), recurrence-free survival (RFS), progression-free survival (PFS), and disease-specific survival (DSS). Both in vivo and in vitro experiments revealed that NTF3 considerably inhibited the progression of HCC cells. We found that the ligand NTF3 is regulated by c-Jun and binds to the p75 neurotrophin receptor (p75NTR) and then activates the JNK and P38 MAPK pathways to induce apoptosis. Entinostat (the target of HDAC1/HDAC3) can activate the NTF3/p75NTR pathway. These results indicate that NTF3 is a tumor suppressor, and that its low expression can help in predict poor clinical outcomes in HCC. Therefore, NTF3 can be used as a potential treatment molecule for HCC.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Liver Neoplasms , Neurotrophin 3 , Humans , Apoptosis/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Ligands , Liver Neoplasms/metabolism , Nerve Growth Factor , Neurotrophin 3/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Receptor, Nerve Growth Factor/metabolism , Signal Transduction
17.
Int J Mol Sci ; 23(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35887075

ABSTRACT

Neurotrophins are a family of secreted proteins expressed in the peripheral nervous system and the central nervous system that support neuronal survival, synaptic plasticity, and neurogenesis. Brain-derived neurotrophic factor (BDNF) and its high affinity receptor TrkB are highly expressed in the cortical and hippocampal areas and play an essential role in learning and memory. The decline of cognitive function with aging is a major risk factor for cognitive diseases such as Alzheimer's disease. Therefore, an alteration of BDNF/TrkB signaling with aging and/or pathological conditions has been indicated as a potential mechanism of cognitive decline. In this review, we summarize the cellular function of neurotrophin signaling and review the current evidence indicating a pathological role of neurotrophin signaling, especially of BDNF/TrkB signaling, in the cognitive decline in aging and age-related cognitive diseases. We also review the therapeutic approach for cognitive decline by the upregulation of the endogenous BDNF/TrkB-system.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Brain-Derived Neurotrophic Factor/metabolism , Cognition , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Humans , Neurotrophin 3/metabolism , Receptor, trkB/metabolism , Signal Transduction/physiology
18.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563321

ABSTRACT

To date, no studies have addressed the role of neurotrophins (NTs) in Acanthamoeba spp. infections in the brain. Thus, to clarify the role of NTs in the cerebral cortex and hippocampus during experimental acanthamoebiasis in relation to the host immune status, the purpose of this study was to determine whether Acanthamoeba spp. may affect the concentration of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) in brain structures. Our results suggest that at the beginning of infection in immunocompetent hosts, BDNF and NT-3 may reflect an endogenous attempt at neuroprotection against Acanthamoeba spp. infection. We also observed a pro-inflammatory effect of NGF during acanthamoebiasis in immunosuppressed hosts. This may provide important information for understanding the development of cerebral acanthamoebiasis related to the immunological status of the host. However, the pathogenesis of brain acanthamoebiasis is still poorly understood and documented and, therefore, requires further research.


Subject(s)
Acanthamoeba , Amebiasis , Nerve Growth Factors , Acanthamoeba/drug effects , Amebiasis/drug therapy , Brain/metabolism , Brain/microbiology , Brain-Derived Neurotrophic Factor/metabolism , Humans , Nerve Growth Factor/metabolism , Nerve Growth Factors/metabolism , Neurotrophin 3/metabolism
19.
Bull Exp Biol Med ; 173(1): 114-118, 2022 May.
Article in English | MEDLINE | ID: mdl-35622252

ABSTRACT

Neurotrophin-3 enhances the effectiveness of human olfactory ensheathing cells in improving hind limb mobility in rats with post-traumatic cysts of the spinal cord. Transplantation of olfactory ensheathing cells into spinal cord cysts reduced their size; neurotrophin-3 did not modulate this effect. Combined preparation of human olfactory ensheathing cells and neurotrophin- 3 can be used in neurosurgery for the treatment of patients with spinal cord injuries.


Subject(s)
Cell- and Tissue-Based Therapy , Cysts , Neurotrophin 3 , Spinal Cord Injuries , Animals , Cell Transplantation , Cysts/therapy , Humans , Nerve Growth Factors/genetics , Nerve Regeneration , Neurotrophin 3/pharmacology , Rats , Spinal Cord , Spinal Cord Injuries/therapy
20.
J Neurochem ; 161(6): 463-477, 2022 06.
Article in English | MEDLINE | ID: mdl-35536742

ABSTRACT

In the central nervous system, most neurons co-express TrkB and TrkC, the tyrosine kinase receptors for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3). As NT3 can also activate TrkB, it has been difficult to understand how NT3 and TrkC can exert unique roles in the assembly of neuronal circuits. Using neurons differentiated from human embryonic stem cells expressing both TrkB and TrkC, we compared Trk activation by BDNF and NT3. To avoid the complications resulting from TrkB activation by NT3, we also generated neurons from stem cells engineered to lack TrkB. We found that NT3 activates TrkC at concentrations lower than those of BDNF needed to activate TrkB. Downstream of Trk activation, the changes in gene expression caused by TrkC activation were found to be similar to those resulting from TrkB activation by BDNF, including a number of genes involved in synaptic plasticity. At high NT3 concentrations, receptor selectivity was lost as a result of TrkB activation. In addition, TrkC was down-regulated, as was also the case with TrkB at high BDNF concentrations. By contrast, receptor selectivity as well as reactivation were preserved when neurons were exposed to low neurotrophin concentrations. These results indicate that the selectivity of NT3/TrkC signalling can be explained by the ability of NT3 to activate TrkC at concentrations lower than those needed to activate TrkB. They also suggest that in a therapeutic perspective, the dosage of Trk receptor agonists will need to be taken into account if prolonged receptor activation is to be achieved.


Subject(s)
Brain-Derived Neurotrophic Factor , Membrane Glycoproteins/metabolism , Receptor, trkB/metabolism , Receptor, trkC/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Down-Regulation , Humans , Neurons/metabolism , Neurotrophin 3/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, trkB/genetics , Receptor, trkC/genetics , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...