Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 147: 28-36, 2019 03 15.
Article in English | MEDLINE | ID: mdl-29857941

ABSTRACT

Parkinson's disease (PD) is a disorder affecting dopamine neurons for which there is no cure. Glial cell line-derived neurotrophic factor (GDNF) and the closely related protein neurturin are two trophic factors with demonstrated neuroprotective and neurorestorative properties on dopamine neurons in multiple animal species. However, GDNF and neurturin Phase-2 clinical trials have failed to demonstrate a significant level of improvement over placebo controls. Insufficient drug distribution in the brain parenchyma has been proposed as a major contributing factor for the lack of clinical efficacy in the Phase-2 trial patients. To address this issue, a novel mammalian cell-derived variant form of GDNF (GDNFv) was designed to promote better tissue distribution by reducing its heparin binding to the extracellular matrix and key amino acids were substituted to enhance its chemical stability. Administration of this fully glycosylated GDNFv in the normal rat striatum increased dopamine turnover and produced significantly greater brain distribution than E. coli-produced wildtype GDNF (GDNFwt). Intrastriatal GDNFv also protected midbrain dopamine neuron function in 6-hydroxydopamine-lesioned rats. Studies conducted in normal adult rhesus macaques support that GDNFv was well tolerated in all animals and demonstrated a greater volume of distribution than GDNFwt in the brain following intrastriatal infusion. Importantly, favorable physiological activity of potential therapeutic value was maintained in this variant trophic factor with significant target activation in GDNFv recipients as indicated by dopamine turnover modulation. These data suggest that GDNFv may be a promising drug candidate for the treatment of PD. Additional studies are needed in non-human primates with dopamine depletion. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.


Subject(s)
Brain/metabolism , Dopamine/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Neurturin/pharmacology , Animals , Brain/drug effects , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacokinetics , Humans , Macaca mulatta , Neurturin/pharmacokinetics , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Rats , Rats, Sprague-Dawley , Tissue Distribution
2.
J Cereb Blood Flow Metab ; 35(4): 611-22, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25586140

ABSTRACT

The blood-brain barrier (BBB) constitutes a major obstacle in brain drug delivery. Focused ultrasound (FUS) in conjunction with microbubbles has been shown to open the BBB noninvasively, locally, and transiently to allow large molecules diffusion. Neurturin (NTN), a member of the glial-derived neurotrophic factor (GDNF) family, has been demonstrated to have neuroprotective and regenerative effects on dopaminergic neurons in vivo using invasive drug delivery methods. The brain's ascending nigrostriatal pathway is severely damaged in Parkinson's disease (PD), and therefore the substantia nigra (SN) and striatal caudoputamen (CP) were selected as the target areas. The objective of the study was to investigate whether safe and efficient NTN delivery can be achieved through FUS-induced BBB opening via intravenous administration, and thus trigger the neuroregeneration cascade in the nigrostriatal pathway. After the optimization of FUS parameters and target locations in the murine brain, NTN bioavailability and downstream signaling were detected and characterized through immunostaining. FUS significantly enhanced the delivery of NTN compared with the direct injection technique, whereas triggering of the signaling cascade was detected downstream to the neuronal nuclei. These findings thus indicate the potential of the FUS method to mediate transport of proteins through the blood-brain barrier in a PD animal model.


Subject(s)
Blood-Brain Barrier/metabolism , Drug Delivery Systems/instrumentation , Neuroprotective Agents/administration & dosage , Neurturin/administration & dosage , Sonication/instrumentation , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Equipment Design , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Neurturin/pharmacokinetics , Neurturin/pharmacology , Parkinson Disease/drug therapy , Rats, Sprague-Dawley , Signal Transduction/drug effects
3.
Neuropharmacology ; 58(7): 1114-21, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20153340

ABSTRACT

Convection-enhanced delivery (CED) of GDNF and NTN was employed to determine the tissue clearance of these factors from the rat striatum and the response of the dopaminergic system to a single infusion. Two doses of GDNF (15 and 3 microg) and NTN (10 microg and 2 microg) were infused into the rat striatum. Animals were euthanized 3, 7, 14, 21, and 28 days post-infusion. Brains were processed for ELISA, HPLC, and immunohistochemistry (IHC). Both doses of the infused GDNF resulted in a sharp increase in striatal GDNF levels followed by a rapid decrease between day 3 and 7. Interestingly, IHC revealed GDNF in the septum and the base of the brain 14 days after GDNF administration. Dopamine (DA) turnover was significantly increased in a dose-dependent manner for more than 7 days after a single GDNF infusion. NTN persisted in the brain for at least two weeks longer than GDNF. It also had more persistent effects on DA turnover, probably due to its precipitation in the brain at neutral pH after infusion. Our data suggest that daily or continuous dosing may not be necessary for delivering growth factors into the CNS.


Subject(s)
Brain/metabolism , Dopamine/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/pharmacokinetics , Neurturin/pharmacology , Neurturin/pharmacokinetics , Animals , Brain/drug effects , Chromatography, High Pressure Liquid , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Immunohistochemistry , Male , Neurturin/administration & dosage , Neurturin/metabolism , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...