Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.931
Filter
1.
Onderstepoort J Vet Res ; 91(1): e1-e7, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38708767

ABSTRACT

Newcastle disease (ND) is endemic in Angola. Several outbreaks of ND occurred in small backyard flocks and village chickens with high mortality in the southern provinces of the country, Cunene, Namibe and Huíla, in 2016 and 2018. In those years, 15 virulent ND virus (NDV) strains were isolated and grouped within subgenotype 2 of genotype VII (subgenotype VII.2). We now present a study on the thermostability of the isolates, aiming at the selection of the most thermostable strains that, after being genetically modified to reduce their virulence, can be adapted to the production of vaccines less dependent on cold chain and more adequate to protect native chickens against ND. Heat-inactivation kinetics of haemagglutinin (Ha) activity and infectivity (I) of the isolates were determined by incubating aliquots of virus at 56 °C for different time intervals. The two isolates from Namibe province showed a decrease in infectivity of 2 log10 in ≤ 10 min, therefore belonging to the I-phenotype, but while the NB1 isolate from 2016 maintained the Ha activity up to 30 min and was classified as thermostable virus (I-Ha+), the Ha activity of the 2018 NB2 isolate decreased by 2 log2 in 30 min, being classified as a thermolabile virus (I-Ha-). Of the 13 NDV isolates from Huíla province, 10 isolates were classified as thermostable, eight with phenotype I+Ha+ and 2 with phenotype I-Ha+. The other three isolates from this province were classified as thermolabile viruses (I-Ha-).Contribution: This study will contribute to the control and/or eradication of Newcastle disease virus in Angola. The thermostable viral strains isolated from chickens in the country can be genetically manipulated by reverse genetic technology in order to reduce their virulence and use them as a vaccine in the remote areas of Angola.


Subject(s)
Chickens , Newcastle Disease , Newcastle disease virus , Poultry Diseases , Newcastle disease virus/pathogenicity , Newcastle disease virus/genetics , Newcastle disease virus/classification , Animals , Newcastle Disease/virology , Newcastle Disease/epidemiology , Angola/epidemiology , Virulence , Poultry Diseases/virology , Poultry Diseases/epidemiology , Hot Temperature
2.
Sci Rep ; 14(1): 10741, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730036

ABSTRACT

The majority of pigeon paramyxovirus type 1 (PPMV-1) strains are generally non-pathogenic to chickens; however, they can induce severe illness and high mortality rates in pigeons, leading to substantial economic repercussions. The genomes of 11 PPMV-1 isolates from deceased pigeons on meat pigeon farms during passive monitoring from 2009 to 2012 were sequenced and analyzed using polymerase chain reaction and phylogenetic analysis. The complete genome lengths of 11 isolates were approximately 15,192 nucleotides, displaying a consistent gene order of 3'-NP-P-M-F-HN-L-5'. ALL isolates exhibited the characteristic motif of 112RRQKRF117 at the fusion protein cleavage site, which is characteristic of velogenic Newcastle disease virus. Moreover, multiple mutations have been identified within the functional domains of the F and HN proteins, encompassing the fusion peptide, heptad repeat region, transmembrane domains, and neutralizing epitopes. Phylogenetic analysis based on sequences of the F gene unveiled that all isolates clustered within genotype VI in class II. Further classification identified at least two distinct sub-genotypes, with seven isolates classified as sub-genotype VI.2.1.1.2.2, whereas the others were classified as sub-genotype VI.2.1.1.2.1. This study suggests that both sub-genotypes were implicated in severe disease manifestation among meat pigeons, with sub-genotype VI.2.1.1.2.2 displaying an increasing prevalence among Shanghai's meat pigeon population since 2011. These results emphasize the value of developing pigeon-specific vaccines and molecular diagnostic tools for monitoring and proactively managing potential PPMV-1 outbreaks.


Subject(s)
Columbidae , Genome, Viral , Newcastle Disease , Newcastle disease virus , Phylogeny , Animals , Columbidae/virology , China/epidemiology , Newcastle disease virus/genetics , Newcastle disease virus/isolation & purification , Newcastle disease virus/classification , Newcastle Disease/virology , Newcastle Disease/epidemiology , Genotype , Farms , Meat/virology
3.
Viruses ; 16(5)2024 05 16.
Article in English | MEDLINE | ID: mdl-38793675

ABSTRACT

The emergence of new virulent genotypes and the continued genetic drift of Newcastle disease virus (NDV) implies that distinct genotypes of NDV are simultaneously evolving in different geographic locations across the globe, including throughout Africa, where NDV is an important veterinary pathogen. Expanding the genomic diversity of NDV increases the possibility of diagnostic and vaccine failures. In this review, we systematically analyzed the genetic diversity of NDV genotypes in Africa using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Information published between 1999 and 2022 were used to obtain the genetic background of different genotypes of NDV and their geographic distributions in Africa. The following genotypes were reported in Africa: I, II, III, IV, V, VI, VII, VIII, XI, XIII, XIV, XVII, XVIII, XX, and XXI. A new putative genotype has been detected in the Democratic Republic of the Congo. However, of 54 African countries, only 26 countries regularly report information on NDV outbreaks, suggesting that this number may be vastly underestimated. With eight different genotypes, Nigeria is the country with the greatest genotypic diversity of NDV among African countries. Genotype VII is the most prevalent group of NDV in Africa, which was reported in 15 countries. A phylogeographic analysis of NDV sequences revealed transboundary transmission of the virus in Eastern Africa, Western and Central Africa, and in Southern Africa. A regional and continental collaboration is recommended for improved NDV risk management in Africa.


Subject(s)
Genetic Variation , Genotype , Newcastle Disease , Newcastle disease virus , Phylogeny , Newcastle disease virus/genetics , Newcastle disease virus/classification , Newcastle disease virus/isolation & purification , Newcastle Disease/virology , Newcastle Disease/epidemiology , Africa/epidemiology , Animals , Genome, Viral , Vaccination/veterinary , Chickens/virology , Viral Vaccines/genetics , Viral Vaccines/immunology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Phylogeography
4.
Vet Res ; 55(1): 58, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715081

ABSTRACT

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Subject(s)
Apoptosis , HN Protein , NF-kappa B , Newcastle Disease , Newcastle disease virus , Newcastle disease virus/physiology , Newcastle disease virus/genetics , Newcastle disease virus/pathogenicity , Animals , HN Protein/genetics , HN Protein/metabolism , Newcastle Disease/virology , NF-kappa B/metabolism , Poultry Diseases/virology , Chickens , Chick Embryo
5.
Vaccine ; 42(15): 3410-3419, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38641498

ABSTRACT

The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs. The ex vivo H9-specific stimulation of splenic and pulmonary T cells in the vaccinated group demonstrated the ability of vaccination to induce systemic and local cellular responses. The clinical protection against a challenge using a LPAIV H9N2 strain of the G1 lineage isolated in Morocco in 2016 was associated with a shorter duration of shedding along with reduced viral genome load in the upper respiratory tract and reduced cloacal shedding compared to unvaccinated controls.


Subject(s)
Antibodies, Viral , Chickens , Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Influenza in Birds , Virus Shedding , Animals , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/genetics , Chickens/immunology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Virus Shedding/immunology , Specific Pathogen-Free Organisms , Newcastle disease virus/immunology , Newcastle disease virus/genetics , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Poultry Diseases/virology , Immunity, Cellular , Herpesvirus 1, Meleagrid/immunology , Herpesvirus 1, Meleagrid/genetics , Vaccination/methods , Immunity, Humoral , Genetic Vectors/immunology , Immunogenicity, Vaccine , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics
6.
J Virol ; 98(5): e0001624, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563732

ABSTRACT

Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.


Subject(s)
Calcineurin , Calcium , Immunity, Innate , Interferon Type I , Newcastle disease virus , Protein Serine-Threonine Kinases , Virus Replication , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Newcastle disease virus/immunology , Animals , Calcineurin/metabolism , Humans , Calcium/metabolism , Interferon Type I/metabolism , Interferon Type I/immunology , Phosphorylation , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle Disease/metabolism , Calcium Signaling , Cell Line , HEK293 Cells
7.
Viruses ; 16(4)2024 04 10.
Article in English | MEDLINE | ID: mdl-38675926

ABSTRACT

The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V-NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V-NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses.


Subject(s)
Newcastle disease virus , Viral Proteins , Virus Replication , Newcastle disease virus/genetics , Newcastle disease virus/physiology , Newcastle disease virus/metabolism , Animals , Viral Proteins/metabolism , Viral Proteins/genetics , Nucleoproteins/metabolism , Nucleoproteins/genetics , Newcastle Disease/virology , Newcastle Disease/metabolism , Cell Line , Gene Expression Regulation, Viral , RNA, Viral/genetics , RNA, Viral/metabolism , Chickens , Virulence , Protein Binding , Mutation
8.
Open Vet J ; 14(1): 398-406, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633149

ABSTRACT

Background: The use of traditional medicine against viral diseases in animal production has been practiced worldwide. Herbal extracts possess organic substances that would improve chicken body performance. Aim: The current study was designed to evaluate the effect of either thyme or ginseng oil in regard to their immune-modulatory, antiviral, and growth promoter properties. Methods: Two hundred and forty-one-day-old broiler chicks were allocated into eight equal groups as the following: group 1; nonvaccinated and nontreated and group 2; Newcastle disease virus (NDV) vaccinated and nontreated. Birds of groups 3 and 4 were treated with thyme oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 5 and 6 were treated with ginseng oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 7 and 8 were treated with a combination of ginseng oil (100 mg/l of drinking water) and thyme oil (100 mg/l of drinking water) for 12 hours/day. On the 35th day of life, birds in all the experimental groups were given 0.1 ml of a virulent genotype VIId NDV strain suspension containing 106.3 EID50/ml intramuscularly. Results: Administration of ginseng and thyme oils each alone or simultaneously to birds either vaccinated or nonvaccinated elicited a significant improvement in body performance parameters. Administration of thyme and ginseng each alone or concurrently to vaccinated birds (Gp 4, 6, and 8) induced a higher hemagglutination inhibition (HI) titer of 6, 7.3, and 6.3 log2 at 21 days of age, 6.7, 7.6, and 7 log2, at 28 days of age and 7, 8, and 6.8 log2 at 35 days of age, respectively. Challenge with vNDV genotype VII led to an increase in the NDV-specific HI-Ab titers 10 days post challenge in all the experimental groups. In addition, thyme, ginseng oils, or a combination of them improved the protection from mortality in vaccinated birds; by 100%, 100%, and 90%, respectively, compared with 80% protection from mortality in vaccinated-only birds post-NDV challenge. Moreover, NDV-vaccinated birds treated either with thyme; ginseng or their combination showed negative detection of the virus in both tracheal and cloacal swabs and nonvaccinated groups that received oils showed improvement in vNDV shedding in tracheal and cloacal swabs. Conclusion: It could be concluded that the administration of thyme and ginseng essential oils to broilers can improve productive performance parameters, stimulate humoral immunity against, and protect from vNDV infection.


Subject(s)
Drinking Water , Newcastle Disease , Panax , Plant Oils , Thymol , Thymus Plant , Animals , Newcastle disease virus/genetics , Chickens , Antibodies, Viral , Oils
9.
Open Vet J ; 14(1): 12-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633151

ABSTRACT

Newcastle disease (ND) is a tremendously contagious avian infection with extensive monetary ramifications for the chicken zone. To reduce the effect of ND on the Saudi rooster enterprise, our analysis emphasizes the necessity of genotype-particular vaccinations, elevated surveillance, public recognition campaigns, and stepped-forward biosecurity. Data show that one-of-a-kind bird species, outdoor flocks, and nearby differences in susceptibility are all vulnerable. The pathogenesis consists of tropism in the respiratory and gastrointestinal structures and some genotypes boom virulence. Laboratory diagnostics use reverse transcription-polymerase chain reaction, sequencing, and serotyping among different strategies. Vital records are supplied through immune responses and serological trying out. Vaccination campaigns, biosecurity protocols, and emergency preparedness are all covered in prevention and manipulation techniques. Notably, co-circulating genotypes and disparities in immunization regulations worry Saudi Arabia. The effect of ND in Saudi Arabia is tested in this paper, with precise attention paid to immunological reaction, pathogenesis, susceptibility elements, laboratory analysis, and preventative and manipulation measures. Saudi Arabia can shield its bird region and beef up its defences against Newcastle's ailment, enforcing those hints into its policies.


Subject(s)
Cattle Diseases , Newcastle Disease , Poultry Diseases , Cattle , Animals , Male , Poultry , Chickens , Saudi Arabia , Newcastle disease virus/genetics , Poultry Diseases/epidemiology , Newcastle Disease/epidemiology
10.
Open Vet J ; 14(1): 32-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633185

ABSTRACT

Background: Despite the strict preventive immunization used in Egypt, Newcastle disease remained a prospective risk to the commercial and backyard chicken industries. The severe economic losses caused by the Newcastle disease virus (NDV) highlight the importance of the trials for the improvement and development of vaccines and vaccination programs. Aim: In the present study, we evaluated the effectiveness of two vaccination schemes for protection against the velogenic NDV (vNDV) challenge. Methods: Four groups (A-D) of commercial broiler chickens were used. Two groups (G-A and G-B) were vaccinated with priming live HB1 GII simultaneously with inactivated GVII vaccines at 5 days of age, then boosted with live LaSota GII vaccine in group A and live recombinant NDV GVII vaccine in group B on day 16. Groups A to C were challenged with NDV/Chicken/Egypt/ALEX/ZU-NM99/2019 strain (106 Embryo infective dose 50/0.1 ml) at 28 days of age. Results: Two vaccination schemes achieved 93.3% clinical protection against NDV with body gain enhancement; whereas, 80% of the unvaccinated-challenged birds died. On day 28, the mean HI antibody titers were 4.3 ± 0.33 and 5.3 ± 0.33 log2 in groups A and B, respectively. As well as both programs remarkably reduced virus shedding. The two vaccination schemes displayed close protection efficacy against the vNDV challenge. Conclusion: Therefore, using the combination of a live attenuated vaccine with an inactivated genetically matched strain vaccine and then boosting it with one of the available live vaccines could be considered one of the most effective programs against current field vNDV infection in Egypt.


Subject(s)
Newcastle Disease , Viral Vaccines , Animals , Newcastle disease virus/genetics , Chickens , Egypt , Prospective Studies , Vaccination/veterinary , Viral Vaccines/genetics , Vaccines, Synthetic/genetics , Genotype
11.
Int J Mol Sci ; 25(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38473888

ABSTRACT

Heat stress results in significant economic losses to the poultry industry. Genetics plays an important role in chickens adapting to the warm environment. Physiological parameters such as hematochemical parameters change in response to heat stress in chickens. To explore the genetics of heat stress resilience in chickens, a genome-wide association study (GWAS) was conducted using Hy-Line Brown layer chicks subjected to either high ambient temperature or combined high temperature and Newcastle disease virus infection. Hematochemical parameters were measured during three treatment phases: acute heat stress, chronic heat stress, and chronic heat stress combined with NDV infection. Significant changes in blood parameters were recorded for 11 parameters (sodium (Na+, potassium (K+), ionized calcium (iCa2+), glucose (Glu), pH, carbon dioxide partial pressure (PCO2), oxygen partial pressure (PO2), total carbon dioxide (TCO2), bicarbonate (HCO3), base excess (BE), and oxygen saturation (sO2)) across the three treatments. The GWAS revealed 39 significant SNPs (p < 0.05) for seven parameters, located on Gallus gallus chromosomes (GGA) 1, 3, 4, 6, 11, and 12. The significant genomic regions were further investigated to examine if the genes within the regions were associated with the corresponding traits under heat stress. A candidate gene list including genes in the identified genomic regions that were also differentially expressed in chicken tissues under heat stress was generated. Understanding the correlation between genetic variants and resilience to heat stress is an important step towards improving heat tolerance in poultry.


Subject(s)
Chickens , Newcastle Disease , Animals , Chickens/genetics , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Carbon Dioxide , Heat-Shock Response , Newcastle Disease/genetics , Genomics , Newcastle disease virus/genetics
12.
J Zhejiang Univ Sci B ; 25(3): 254-270, 2024 Mar 15.
Article in English, Chinese | MEDLINE | ID: mdl-38453639

ABSTRACT

As a potential vectored vaccine, Newcastle disease virus (NDV) has been subject to various studies for vaccine development, while relatively little research has outlined the immunomodulatory effect of the virus in antigen presentation. To elucidate the key inhibitory factor in regulating the interaction of infected dendritic cells (DCs) and T cells, DCs were pretreated with the NDV vaccine strain LaSota as an inhibitor and stimulated with lipopolysaccharide (LPS) for further detection by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunoblotting, and quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed that NDV infection resulted in the inhibition of interleukin (IL)-12p40 in DCs through a p38 mitogen-activated protein kinase (MAPK)|-dependent manner, thus inhibiting the synthesis of IL-12p70, leading to the reduction in T cell proliferation and the secretion of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-6 induced by DCs. Consequently, downregulated cytokines accelerated the infection and viral transmission from DCs to T cells. Furthermore, several other strains of NDV also exhibited inhibitory activity. The current study reveals that NDV can modulate the intensity of the innate|‒|adaptive immune cell crosstalk critically toward viral invasion improvement, highlighting a novel mechanism of virus-induced immunosuppression and providing new perspectives on the improvement of NDV-vectored vaccine.


Subject(s)
Newcastle disease virus , Vaccines , Animals , Newcastle disease virus/physiology , Interleukin-12/pharmacology , Antigen Presentation , Vaccines/pharmacology , Dendritic Cells
13.
Vet Med Sci ; 10(3): e1428, 2024 05.
Article in English | MEDLINE | ID: mdl-38519843

ABSTRACT

BACKGROUND: The study aimed to evaluate the immunological response of layer chickens to live Newcastle disease virus vaccine using a newly developed vaccine schedule administered via the ocular route, as well as assess the persistence of passive antibodies in layer chickens and the effectiveness of protection against strains of the virus. METHODS: A total of 140-day-old Lohmann Brown chicks were randomly divided into seven groups, 20 chicks each. Groups 1-3 received a single eye instillation of the vaccine at ages 5, 26 and 54 days, respectively, whereas groups 4-6 received a double eye instillation. Group 7 served as non-vaccinated control group. Ten days after immunization, samples were taken from hens that had received the vaccine at ages 15, 36 and 64, as well as from control chickens that had not received the vaccine at ages 5, 15, 21 and 31. RESULTS: A total of 10 serum samples from all chickens exhibited protective antibodies, and booster doses resulted in the highest haemagglutination inhibition titre. No significant change in antibody production was observed among layer hens (p > 0.05). The study found that the La Sota (GMT ± SD: 6.71 ± 4.96), La Sota (GMT ± SD: 8.00 ± 0.00) and thermostable I2 (GMT ± SD: 7.60 ± 6.02), vaccination schedules provided the maximum immune response in single eye instillation, whereas the HB1 (GMT ± SD: 7.11 ± 4.77), La Sota (GMT ± SD: 7.83 ± 5.76) and La Sota (GMT ± SD: 7.60 ± 6.02), combination was the second-best vaccination schedule in double eye instillation. Furthermore, maternally-derived antibodies were maintained up to 31 days of age, indicating the level of passive immunity prior to vaccination. Characteristic lesions, such as edematous and diphtheria mucosal membranes of the trachea, along with petechial and necrotic haemorrhages of the proventriculus, were observed during the necropsy of the birds that died from the challenged virus. CONCLUSION: This study suggests that subsequent live virus vaccine by ocular route immunization is required to effectively protect against velogenic viscerotropic Newcastle disease infection. The results also highlight the importance of developing effective vaccination schedules and routes to enhance immunity against ND in layer chickens.


Subject(s)
Newcastle disease virus , Viral Vaccines , Animals , Female , Chickens , Antibodies, Viral , Vaccination/veterinary , Antibody Formation , Vaccines, Attenuated
14.
Poult Sci ; 103(5): 103609, 2024 May.
Article in English | MEDLINE | ID: mdl-38547541

ABSTRACT

Vaccination is one of the most effective strategies for preventing infectious diseases but individual vaccine responses are highly heterogeneous. Host genetics and gut microbiota composition are 2 likely drivers of this heterogeneity. We studied 94 animals belonging to 4 lines of laying hens: a White Leghorn experimental line genetically selected for a high antibody response against the Newcastle Disease Virus (NDV) vaccine (ND3) and its unselected control line (CTR), and 2 commercial lines (White Leghorn [LEG] and Rhode Island Red [RIR]). Animals were reared in the same conditions from hatching to 42 d of age, and animals from different genetic lines were mixed. Animals were vaccinated at 22 d of age and their humoral vaccine response against NDV was assessed by hemagglutination inhibition assay and ELISA from blood samples collected at 15, 19, and 21 d after vaccination. The immune parameters studied were the 3 immunoglobulins subtypes A, M, and Y and the blood cell composition was assessed by flow cytometry. The composition of the cecal microbiota was assessed at the end of the experiment by analyzing amplified 16S rRNA gene sequences to obtain amplicon sequence variants (ASV). The 4 lines showed significantly different levels of NDV vaccine response at the 3 measured points, with, logically, a higher response of the genetically selected ND3 line, and intermediate and low responses for the unselected CTR control line and for the 2 commercial lines, respectively. The ND3 line displayed also a higher proportion of immunoglobulins (IgA, IgM, and IgY). The RIR line showed the most different blood cell composition. The 4 lines showed significantly different microbiota characteristics: composition, abundances at all taxonomic levels, and correlations between genera and vaccine response. The tested genetic lines differ for immune parameters and gut microbiota composition and functions. These phenotypic differences can be attributed to genetic differences between lines. Causal relationships between both types of parameters are discussed and will be investigated in further studies.


Subject(s)
Cecum , Chickens , Gastrointestinal Microbiome , Newcastle disease virus , Viral Vaccines , Animals , Chickens/immunology , Chickens/genetics , Chickens/microbiology , Female , Newcastle disease virus/immunology , Viral Vaccines/immunology , Cecum/microbiology , Cecum/immunology , Poultry Diseases/microbiology , Poultry Diseases/immunology , Newcastle Disease/immunology , Vaccination/veterinary , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
15.
Viruses ; 16(3)2024 02 28.
Article in English | MEDLINE | ID: mdl-38543739

ABSTRACT

The absence of tumor-infiltrating lymphocytes negatively impacts the response to chemotherapy and prognosis in all subtypes of breast cancer. Therapies that stimulate a proinflammatory environment may help improve the response to standard treatments and also to immunotherapies such as checkpoint inhibitors. Newcastle disease virus (NDV) shows oncolytic activity, as well as immune modulating potential, in the treatment of breast cancer in vitro and in vivo; however, its potential to enhance tumor-infiltrating immune cells in breast cancer has yet to be evaluated. Since spontaneous canine mammary tumors represent a translational model of human breast cancer, we conducted this proof-of-concept study, which could provide a rationale for further investigating NDV-MLS as immunotherapy for mammary cancer. Six female companion dogs with spontaneous mammary cancer received a single intravenous and intratumoral injection of oncolytic NDV-MLS. Immune cell infiltrates were evaluated by histology and immunohistochemistry in the stromal, intratumoral, and peritumoral compartments on day 6 after viral administration. Increasing numbers of immune cells were documented post-viral treatment, mainly in the peritumoral compartment, where plasma cells and CD3+ and CD3-/CD79- lymphocytes predominated. Viral administration was well tolerated, with no significant adverse events. These findings support additional research on the use of NDV-MLS immunotherapy for mammary cancer.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Animals , Female , Dogs , Newcastle disease virus/physiology , Pets , Oncolytic Viruses/physiology , Immunotherapy , Cell Line, Tumor , Neoplasms/therapy
16.
BMC Vet Res ; 20(1): 76, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413949

ABSTRACT

BACKGROUND: Newcastle Disease Virus (NDV) causes severe economic losses in the poultry industry worldwide. Hence, this study aimed to discover a novel bioactive antiviral agent for controlling NDV. Streptomyces misakiensis was isolated from Egyptian soil and its secondary metabolites were identified using infrared spectroscopy (IR), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The inhibitory activity of bioactive metabolite against NDV were examined. Three experimental groups of 10-day-old specific pathogen-free embryonated chicken eggs (SPF-ECEs), including the bioactive metabolite control group, NDV control positive group, and α-sitosterol and NDV mixture-treated group were inoculated. RESULTS: α-sitosterol (Ethyl-6-methylheptan-2-yl]-10,13-dimethyl-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol), a secondary metabolite of S. misakiensis, completely inhibited hemagglutination (HA) activity of the NDV strain. The HA activity of the NDV strain was 8 log2 and 9 log2 for 0.5 and 0.75% RBCs, respectively. The NDV HA activity for the two concentrations of RBCs was significantly (P < 0.0001) inhibited after α-sitosterol treatment. There was a significant (P < 0.0001) decrease in the log 2 of HA activity, with values of - 0.500 (75%, chicken RBCs) before inoculation in SPF-ECEs and - 1.161 (50%, RBCs) and - 1.403 (75%, RBCs) following SPF-ECE inoculation. Compared to ECEs inoculated with NDV alone, the α-sitosterol-treated group showed improvement in histological lesion ratings for chorioallantoic membranes (CAM) and hepatic tissues. The CAM of the α-sitosterol- inoculated SPF-ECEs was preserved. The epithelial and stromal layers were noticeably thicker with extensive hemorrhages, clogged vasculatures, and certain inflammatory cells in the stroma layer in the NDV group. However, mild edema and inflammatory cell infiltration were observed in the CAM of the treated group. ECEs inoculated with α-sitosterol alone showed normal histology of the hepatic acini, central veins, and portal triads. Severe degenerative alterations, including steatosis, clogged sinusoids, and central veins, were observed in ECEs inoculated with NDV. Mild hepatic degenerative alterations, with perivascular round cell infiltration, were observed in the treated group. CONCLUSION: To the best of our knowledge, this is the first study to highlight that the potentially bioactive secondary metabolite, α-sitosterol, belonging to the terpene family, has the potential to be a biological weapon against virulent NDV. It could be used for the development of innovative antiviral drugs to control NDV after further clinical investigation.


Subject(s)
Newcastle Disease , Poultry Diseases , Streptomycetaceae , Animals , Newcastle disease virus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Sitosterols/pharmacology , Sitosterols/therapeutic use , Chickens , Newcastle Disease/drug therapy , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control
17.
PLoS Negl Trop Dis ; 18(2): e0011639, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38408125

ABSTRACT

Vaccination of the reservoir species is a key component in the global fight against rabies. For wildlife reservoir species and hard to reach spillover species (e. g. ruminant farm animals), oral vaccination is the only solution. In search for a novel potent and safe oral rabies vaccine, we generated a recombinant vector virus based on lentogenic Newcastle disease virus (NDV) strain Clone 30 that expresses the glycoprotein G of rabies virus (RABV) vaccine strain SAD L16 (rNDV_GRABV). Transgene expression and virus replication was verified in avian and mammalian cells. To test immunogenicity and viral shedding, in a proof-of-concept study six goats and foxes, representing herbivore and carnivore species susceptible to rabies, each received a single dose of rNDV_GRABV (108.5 TCID50/animal) by direct oral application. For comparison, three animals received the similar dose of the empty viral vector (rNDV). All animals remained clinically inconspicuous during the trial. Viral RNA could be isolated from oral and nasal swabs until four (goats) or seven days (foxes) post vaccination, while infectious NDV could not be re-isolated. After four weeks, three out of six rNDV_GRABV vaccinated foxes developed RABV binding and virus neutralizing antibodies. Five out of six rNDV_GRABV vaccinated goats displayed RABV G specific antibodies either detected by ELISA or RFFIT. Additionally, NDV and RABV specific T cell activity was demonstrated in some of the vaccinated animals by detecting antigen specific interferon γ secretion in lymphocytes isolated from pharyngeal lymph nodes. In conclusion, the NDV vectored rabies vaccine rNDV_GRABV was safe and immunogenic after a single oral application in goats and foxes, and highlight the potential of NDV as vector for oral vaccines in mammals.


Subject(s)
Rabies Vaccines , Rabies , Animals , Antibodies, Viral , Foxes , Goats , Immunity , Immunization , Newcastle disease virus/genetics , Rabies/prevention & control , Rabies/veterinary , Vaccination/veterinary
18.
Hum Vaccin Immunother ; 20(1): 2315709, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38372198

ABSTRACT

NDV-HXP-S is a Newcastle disease virus (NDV) vectored vaccine candidate which expresses the S-antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This vaccine candidate is under evaluation in human clinical studies with and without cytosine phosphate guanine (CpG) 1018® adjuvant. Existing potency methods for NDV-HXP-S do not allow for quantification of the S-antigen when the adjuvant is present. To support evaluation of NDV-HXP-S with CpG 1018® adjuvant, an inhibition enzyme-linked immunosorbent assay (ELISA) was developed to allow for quantification and stability assessments of the vaccine. A pilot 6-month stability study was conducted on NDV-HXP-S vaccine with and without CpG 1018® adjuvant under refrigerated conditions (2°C to 8°C) and accelerated stability testing conditions (40°C). The vaccine was mixed with and without CpG 1018® adjuvant in saline and maintained S-antigen content at 2°C to 8°C for the entire 6-month period. Additionally, a pilot controlled temperature chain (CTC) stability study was conducted at the completion of the 6-month study and demonstrated the possibility for this vaccine candidate to attain CTC stability labeling.


Subject(s)
COVID-19 , Newcastle disease virus , Animals , Humans , COVID-19 Vaccines , Phosphates , COVID-19/prevention & control , SARS-CoV-2 , Adjuvants, Immunologic , Enzyme-Linked Immunosorbent Assay
19.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397030

ABSTRACT

Oncolytic Newcastle disease virus is a new type of cancer immunotherapy drug. This paper proposes a scheme for delivering oncolytic viruses using hydrogel microneedles. Gelatin methacryloyl (GelMA) was synthesized by chemical grafting, and GelMA microneedles encapsulating oncolytic Newcastle disease virus (NDV) were prepared by micro-molding and photocrosslinking. The release and expression of NDV were tested by immunofluorescence and hemagglutination experiments. The experiments proved that GelMA was successfully synthesized and had hydrogel characteristics. NDV was evenly dispersed in the allantoic fluid without agglomeration, showing a characteristic virus morphology. NDV particle size was 257.4 ± 1.4 nm, zeta potential was -13.8 ± 0.5 mV, virus titer TCID50 was 107.5/mL, and PFU was 2 × 107/mL, which had a selective killing effect on human liver cancer cells in a dose and time-dependent manner. The NDV@GelMA microneedles were arranged in an orderly cone array, with uniform height and complete needle shape. The distribution of virus-like particles was observed on the surface. GelMA microneedles could successfully penetrate 5% agarose gel and nude mouse skin. Optimal preparation conditions were freeze-drying. We successfully prepared GelMA hydrogel microneedles containing NDV, which could effectively encapsulate NDV but did not detect the release of NDV.


Subject(s)
Methacrylates , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Mice , Humans , Oncolytic Viruses/genetics , Oncolytic Viruses/metabolism , Newcastle disease virus , Gelatin/metabolism , Hydrogels/metabolism
20.
PLoS Pathog ; 20(2): e1012027, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377149

ABSTRACT

Newcastle disease virus (NDV) has been extensively studied as a promising oncolytic virus for killing tumor cells in vitro and in vivo in clinical trials. However, the viral components that regulate the oncolytic activity of NDV remain incompletely understood. In this study, we systematically compared the replication ability of different NDV genotypes in various tumor cells and identified NP protein determines the oncolytic activity of NDV. On the one hand, NDV strains with phenylalanine (F) at the 450th amino acid position of the NP protein (450th-F-NP) exhibit a loss of oncolytic activity. This phenotype is predominantly associated with genotype VII NDVs. In contrast, the NP protein with a leucine amino acid at this site in other genotypes (450th-L-NP) can facilitate the loading of viral mRNA onto ribosomes more effectively than 450th-F-NP. On the other hand, the NP protein from NDV strains that exhibit strong oncogenicity interacts with eIF4A1 within its 366-489 amino acid region, leading to the inhibition of cellular mRNA translation with a complex 5' UTR structure. Our study provide mechanistic insights into how highly oncolytic NDV strains selectively promote the translation of viral mRNA and will also facilitate the screening of oncolytic strains for oncolytic therapy.


Subject(s)
Newcastle disease virus , Oncolytic Viruses , Animals , Newcastle disease virus/genetics , Amino Acids , Leucine , Oncolytic Viruses/genetics , RNA, Messenger/genetics , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...