Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.467
Filter
1.
Neuropharmacology ; 255: 110019, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38810926

ABSTRACT

The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol consumption in two drinking paradigms: limited access "Drinking in the Dark" and intermittent access. Quinine was added to the drinking bottles in the DID experiment to test aversion-resistant, "compulsive" drinking. Nicotine and sucrose drinking were also assessed so comparisons could be made with other rewarding substances. Cholinergic MOR deletion did not influence consumption or preference for ethanol (EtOH) in either drinking task. Differences were observed in aversion-resistance in males with Cre + mice tolerating lower concentrations of quinine than Cre-. In contrast to EtOH, preference for nicotine was reduced following cholinergic MOR deletion while sucrose consumption and preference was increased in Cre+ (vs. Cre-) females. Locomotor activity was also greater in females following the deletion. These results suggest that cholinergic MORs participate in preference for rewarding substances. Further, while they are not required for consumption of alcohol alone, cholinergic MORs may influence the tendency to drink despite negative consequences.


Subject(s)
Alcohol Drinking , Mice, Knockout , Quinine , Receptors, Opioid, mu , Reward , Animals , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Male , Female , Mice , Quinine/pharmacology , Quinine/administration & dosage , Alcohol Drinking/genetics , Alcohol Drinking/psychology , Nicotine/pharmacology , Ethanol/pharmacology , Ethanol/administration & dosage , Cholinergic Neurons/drug effects , Cholinergic Neurons/physiology , Cholinergic Neurons/metabolism , Self Administration , Sucrose/administration & dosage , Avoidance Learning/drug effects , Avoidance Learning/physiology , Interneurons/drug effects , Interneurons/physiology , Interneurons/metabolism
2.
Article in English | MEDLINE | ID: mdl-38795824

ABSTRACT

As one of the leading causes of death and serious illnesses, tobacco smoking remains a significant issue in modern societies. Many individuals smoke during adolescence, a trend that has been exacerbated by the prevalence of vaping among young people. In this context, studying the behavioral effects induced by nicotine administration in male and female rats, during the adolescent period, assumes great importance because it can help to better understand the dynamics underlying tobacco use in the two sexes. For this purpose, we employed 4 groups of rats, 2 male and 2 female groups, chronically treated with saline or nicotine 3 mg/kg i.p. for 30 days, spanning from postnatal day 30 to postnatal day 60. Utilizing quantitative analyses and T-pattern detection and analysis, our findings revealed a complex and multifaceted behavioral reorganization in adolescent rats subjected to chronic nicotine administration. Specifically, we observed an increase of anxiety in males and a reduction in females. The distinctive structural changes, induced by chronic nicotine in both sexes, have significant implications, from a translational perspective, for studies on nicotine dependence disorders.


Subject(s)
Nicotine , Animals , Nicotine/pharmacology , Nicotine/adverse effects , Female , Male , Rats , Sex Characteristics , Nicotinic Agonists/pharmacology , Behavior, Animal/drug effects , Anxiety/chemically induced , Rats, Wistar , Sex Factors
3.
Neuropharmacology ; 255: 110001, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38750804

ABSTRACT

Emerging evidence suggests an important role of astrocytes in mediating behavioral and molecular effects of commonly misused drugs. Passive exposure to nicotine alters molecular, morphological, and functional properties of astrocytes. However, a potential involvement of astrocytes in nicotine reinforcement remains largely unexplored. The overall hypothesis tested in the current study is that astrocytes play a critical role in nicotine reinforcement. Protein levels of the astrocyte marker glial fibrillary acidic protein (GFAP) were examined in key mesocorticolimbic regions following chronic nicotine intravenous self-administration. Fluorocitrate, a metabolic inhibitor of astrocytes, was tested for its effects on behaviors related to nicotine reinforcement and relapse. Effects of fluorocitrate on extracellular neurotransmitter levels, including glutamate, GABA, and dopamine, were determined with microdialysis. Chronic nicotine intravenous self-administration increased GFAP expression in the nucleus accumbens core (NACcr), but not other key mesocorticolimbic regions, compared to saline intravenous self-administration. Both intra-ventricular and intra-NACcr microinjection of fluorocitrate decreased nicotine self-administration. Intra-NACcr fluorocitrate microinjection also inhibited cue-induced reinstatement of nicotine seeking. Local perfusion of fluorocitrate decreased extracellular glutamate levels, elevated extracellular dopamine levels, but did not alter extracellular GABA levels in the NACcr. Fluorocitrate did not alter basal locomotor activity. These results indicate that nicotine reinforcement upregulates the astrocyte marker GFAP expression in the NACcr, metabolic inhibition of astrocytes attenuates nicotine reinforcement and relapse, and metabolic inhibition of astrocytes disrupts extracellular dopamine and glutamate transmission. Overall, these findings suggest that astrocytes play an important role in nicotine reinforcement and relapse, potentially through regulation of extracellular glutamate and dopamine neurotransmission.


Subject(s)
Astrocytes , Citrates , Dopamine , Glutamic Acid , Nicotine , Nucleus Accumbens , Rats, Wistar , Self Administration , Animals , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Nicotine/pharmacology , Nicotine/administration & dosage , Male , Glutamic Acid/metabolism , Dopamine/metabolism , Citrates/pharmacology , Citrates/administration & dosage , Rats , Glial Fibrillary Acidic Protein/metabolism , Nicotinic Agonists/pharmacology , Nicotinic Agonists/administration & dosage , Microdialysis , Reinforcement, Psychology , gamma-Aminobutyric Acid/metabolism
4.
Int Immunopharmacol ; 135: 112223, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38772295

ABSTRACT

Although smoking is a significant risk factor for osteomyelitis, there is limited experimental evidence that nicotine, a key tobacco constituent, is associated with this condition, leaving its mechanistic implications uncharacterized. This study revealed that nicotine promotes Staphylococcus aureus-induced osteomyelitis by increasing Nrf2 and Slc7a11 expression in vivo and in vitro. Inhibition of Slc7a11 using Erastin augmented bacterial phagocytosis/killing capabilities and fortified antimicrobial responses in an osteomyelitis model. Moreover, untargeted metabolomic analysis demonstrated that Erastin mitigated the effects of nicotine on S. aureus-induced osteomyelitis by altering glutamate/glutathione metabolism. These findings suggest that nicotine aggravates S. aureus-induced osteomyelitis by activating the Nrf2/Slc7a11 signaling pathway and that Slc7a11 inhibition can counteract the detrimental health effects of nicotine.


Subject(s)
Amino Acid Transport System y+ , NF-E2-Related Factor 2 , Nicotine , Osteomyelitis , Signal Transduction , Staphylococcal Infections , Staphylococcus aureus , Animals , NF-E2-Related Factor 2/metabolism , Staphylococcus aureus/drug effects , Nicotine/pharmacology , Signal Transduction/drug effects , Staphylococcal Infections/drug therapy , Osteomyelitis/microbiology , Osteomyelitis/drug therapy , Osteomyelitis/metabolism , Mice , Amino Acid Transport System y+/metabolism , Mice, Inbred C57BL , Humans , Male , Phagocytosis/drug effects , Disease Models, Animal
5.
ACS Appl Bio Mater ; 7(4): 2346-2353, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38556982

ABSTRACT

In this study, we designed and synthesized metalloporphyrin derivatives (with Ni and Zn) specifically intended for the fluorescence detection of nicotine in aqueous solutions. Our results showcased a notable selectivity for nicotine over other naturally occurring food toxins, exhibiting an exceptional sensitivity with a limit of detection as low as 7.2 nM. Through mechanistic investigations (1H NMR, FT-IR, etc.), we elucidated the binding mechanism, revealing the specific interaction between the pyridine ring of nicotine and the metal center, while the N atom pyrrolidine unit engaged in the hydrogen bonding with the side chain of the porphyrin ring. Notably, we observed that the nature of the metal center dictated the extent of interaction with nicotine; particularly, Zn-porphyrin demonstrated a superior response compared to Ni-porphyrin. Furthermore, we performed the quantitative estimation of nicotine in commercially available tobacco products. Additionally, we conducted the antibacterial (Staphylococcus aureus and Escherichia coli) and antifungal (Candida albicans) activities of the porphyrin derivatives.


Subject(s)
Metalloporphyrins , Porphyrins , Metalloporphyrins/pharmacology , Nicotine/pharmacology , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metals , Porphyrins/pharmacology , Porphyrins/chemistry , Escherichia coli
6.
J Transl Med ; 22(1): 350, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609979

ABSTRACT

BACKGROUND: Olfactory dysfunction occurs frequently in Parkinson's disease (PD). In this study, we aimed to explore the potential biomarkers and underlying molecular pathways of nicotine for the treatment of olfactory dysfunction in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. METHODS: MPTP was introduced into C57BL/6 male mice to generate a PD model. Regarding in vivo experiments, we performed behavioral tests to estimate the protective effects of nicotine in MPTP-induced PD mice. RNA sequencing and traditional molecular methods were used to identify molecules, pathways, and biological processes in the olfactory bulb of PD mouse models. Then, in vitro experiments were conducted to evaluate whether nicotine can activate the prok2R/Akt/FoxO3a signaling pathway in both HEK293T cell lines and primary olfactory neurons treated with 1-methyl-4-phenylpyridinium (MPP+). Next, prok2R overexpression (prok2R+) and knockdown (prok2R-) were introduced with lentivirus, and the Akt/FoxO3a signaling pathway was further explored. Finally, the damaging effects of MPP+ were evaluated in prok2R overexpression (prok2R+) HEK293T cell lines. RESULTS: Nicotine intervention significantly alleviated olfactory and motor dysfunctions in mice with PD. The prok2R/Akt/FoxO3a signaling pathway was activated after nicotine treatment. Consequently, apoptosis of olfactory sensory neurons was significantly reduced. Furthermore, prok2R+ and prok2R- HEK293T cell lines exhibited upregulation and downregulation of the Akt/FoxO3a signaling pathway, respectively. Additionally, prok2R+ HEK293T cells were resistant to MPP+-induced apoptosis. CONCLUSIONS: This study showed the effectiveness and underlying mechanisms of nicotine in improving hyposmia in PD mice. These improvements were correlated with reduced apoptosis of olfactory sensory neurons via activated prok2R/Akt/FoxO3a axis. These results explained the potential protective functions of nicotine in PD patients.


Subject(s)
Olfaction Disorders , Parkinson Disease , Humans , Animals , Male , Mice , Mice, Inbred C57BL , HEK293 Cells , Nicotine/pharmacology , Parkinson Disease/complications , Proto-Oncogene Proteins c-akt , Olfaction Disorders/complications , Olfaction Disorders/drug therapy
7.
Acta Neurobiol Exp (Wars) ; 84(1): 59-69, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38587323

ABSTRACT

Nicotine is a psychostimulant that induces neurochemical and behavioral changes upon chronic administration, leading to neurodegenerative conditions associated with smoking. As of now, no preventive or therapeutic strategies are known to counteract nicotine­induced neurodegeneration. In this study, we explore the neuroprotective effects of crocin, a bioactive agent commonly found in saffron - a spice derived from the flower of Crocus sativus - using a rat model. The dose­dependent effects of crocin were evaluated in nicotine­induced neurodegeneration and compared with a control group. Neurobehavioral changes, assessed through the elevated plus maze, the open field test, the forced swim test, and the Morris water maze, as well as oxidative stress in the hippocampus, were evaluated. Interestingly, nicotine administration resulted in depression, anxiety, and abnormal motor and cognitive functions, while crocin treatment protected the rat brain from these abnormalities. The beneficial effects of crocin were associated with reduced oxidative stress biomarkers such as malondialdehyde, along with increases in superoxide dismutase, glutathione peroxidase, and glutathione reductase activities. These results demonstrate that crocin can mitigate nicotine­induced neurodegeneration by reducing oxidative stress, potentially offering a protective measure against neurodegenerative effects in smokers.


Subject(s)
Crocus , Rats , Animals , Crocus/chemistry , Crocus/metabolism , Nicotine/pharmacology , Carotenoids/pharmacology , Carotenoids/therapeutic use , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism
8.
J Asian Nat Prod Res ; 26(5): 616-635, 2024 May.
Article in English | MEDLINE | ID: mdl-38655696

ABSTRACT

Ulcerative colitis (UC) is a chronic recurrent inflammatory disease affecting the rectum and colon. Numerous epidemiological studies have identified smoking as a protective factor for UC. Dysbiosis of intestinal microbiota and release of inflammatory factors are well-established characteristics associated with UC. Therefore, we have observed that nicotine exhibits the potential to ameliorate colitis symptoms in UC mice. Additionally, it exerts a regulatory effect on colonic microbiota dysbiosis by promoting the growth of beneficial bacteria while suppressing harmful bacteria. Combined in vivo and in vitro investigations demonstrate that nicotine primarily impedes the assembly of NLRP3, subsequently inhibiting downstream IL-1ß secretion.


Subject(s)
Dextran Sulfate , Gastrointestinal Microbiome , NLR Family, Pyrin Domain-Containing 3 Protein , Nicotine , Animals , Gastrointestinal Microbiome/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nicotine/pharmacology , Mice , Colitis/drug therapy , Colitis/chemically induced , Mice, Inbred C57BL , Interleukin-1beta/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Molecular Structure , Male , Dysbiosis/drug therapy , Humans
9.
Drug Alcohol Depend ; 259: 111276, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38676968

ABSTRACT

BACKGROUND: As nicotine dependence represents a longstanding major public health issue, new nicotine cessation pharmacotherapies are needed. Administration of N-oleoyl glycine (OlGly), an endogenous lipid signaling molecule, prevents nicotine-induced conditioned place preference (CPP) through a peroxisome proliferator-activated receptor-alpha (PPARα) dependent mechanism, and also ameliorated withdrawal signs in nicotine-dependent mice. Pharmacological evidence suggests that the methylated analog of OlGly, N-oleoyl alanine (OlAla), has an increased duration of action and may offer translational benefit. Accordingly, OlAla was assessed in nicotine CPP and dependence assays as well as its pharmacokinetics compared to OlGly. METHODS: ICR female and male mice were tested in nicotine-induced CPP with and without the PPARα antagonist GW6471. OlAla was also assessed in nicotine-dependent mice following removal of nicotine minipumps: somatic withdrawal signs, thermal hyper-nociception and altered affective behavior (i.e., light/dark box). Finally, plasma and brain were collected after administration of OlGly or OlAla and analyzed by high-performance liquid chromatography tandem mass spectrometry. RESULTS: OlAla prevented nicotine-induced CPP, but this effect was not blocked by GW6471. OlAla attenuated somatic and affective nicotine withdrawal signs, but not thermal hyper-nociception in nicotine-dependent mice undergoing withdrawal. OlAla and OlGly showed similar time-courses in plasma and brain. CONCLUSIONS: The observation that both molecules showed similar pharmacokinetics argues against the notion that OlAla offers increased metabolic stability. Moreover, while these structurally similar lipids show efficacy in mouse models of reward and dependence, they reduce nicotine reward through distinct mechanisms.


Subject(s)
Mice, Inbred ICR , Nicotine , Reward , Substance Withdrawal Syndrome , Tobacco Use Disorder , Animals , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/drug therapy , Mice , Male , Nicotine/pharmacology , Female , Tobacco Use Disorder/metabolism , PPAR alpha/metabolism , Alanine/pharmacology , Alanine/analogs & derivatives , Oleic Acids/pharmacology , Glycine/pharmacology , Glycine/analogs & derivatives , Aminopyridines/pharmacology , Brain/metabolism , Brain/drug effects , Oxazoles , Tyrosine/analogs & derivatives
10.
Mar Drugs ; 22(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38667764

ABSTRACT

Nicotine binds to nicotinic acetylcholine receptors (nAChRs) that are overexpressed in different cancer cells, promoting tumor growth and resistance to chemotherapy. In this study, we aimed to investigate the potential of APS7-2 and APS8-2, synthetic analogs of a marine sponge toxin, to inhibit nicotine-mediated effects on A549 human lung cancer cells. Our electrophysiological measurements confirmed that APS7-2 and APS8-2 act as α7 nAChR antagonists. APS8-2 showed no cytotoxicity in A549 cells, while APS7-2 showed concentration-dependent cytotoxicity in A549 cells. The different cytotoxic responses of APS7-2 and APS8-2 emphasize the importance of the chemical structure in determining their cytotoxicity on cancer cells. Nicotine-mediated effects include increased cell viability and proliferation, elevated intracellular calcium levels, and reduced cisplatin-induced cytotoxicity and reactive oxygen species production (ROS) in A549 cells. These effects of nicotine were effectively attenuated by APS8-2, whereas APS7-2 was less effective. Our results suggest that APS8-2 is a promising new therapeutic agent in the chemotherapy of lung cancer.


Subject(s)
Antineoplastic Agents , Cell Survival , Lung Neoplasms , Nicotine , Reactive Oxygen Species , alpha7 Nicotinic Acetylcholine Receptor , Humans , alpha7 Nicotinic Acetylcholine Receptor/metabolism , A549 Cells , Nicotine/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Animals , Nicotinic Antagonists/pharmacology , Cell Proliferation/drug effects , Cisplatin/pharmacology , Calcium/metabolism , Porifera/chemistry
11.
Neuropharmacology ; 253: 109959, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38648925

ABSTRACT

Nicotine use produces psychoactive effects, and chronic use is associated with physiological and psychological symptoms of addiction. However, chronic nicotine use is known to decrease food intake and body weight gain, suggesting that nicotine also affects central metabolic and appetite regulation. We recently showed that acute nicotine self-administration in nicotine-dependent animals produces a short-term increase in food intake, contrary to its long-term decrease of feeding behavior. As feeding behavior is regulated by complex neural signaling mechanisms, this study aimed to test the hypothesis that nicotine intake in animals exposed to chronic nicotine may increase activation of pro-feeding regions and decrease activation of pro-satiety regions to produce the acute increase in feeding behavior. FOS immunohistochemistry revealed that acute nicotine intake in nicotine self-administering animals increased activation of the pro-feeding arcuate and lateral hypothalamic nuclei and decreased activation of the pro-satiety parabrachial nucleus. Regional correlational analysis also showed that acute nicotine changes the functional connectivity of the hunger/satiety network. Further dissection of the role of the arcuate nucleus using electrophysiology found that putative POMC neurons in animals given chronic nicotine exhibited decreased firing following acute nicotine application. These brain-wide central signaling changes may contribute to the acute increase in feeding behavior we see in rats after acute nicotine and provide new areas of focus for studying both nicotine addiction and metabolic regulation.


Subject(s)
Brain , Nicotine , Animals , Nicotine/pharmacology , Male , Brain/drug effects , Brain/metabolism , Rats , Rats, Sprague-Dawley , Nicotinic Agonists/pharmacology , Feeding Behavior/drug effects , Pro-Opiomelanocortin/metabolism , Eating/drug effects , Eating/physiology , Self Administration , Neurons/drug effects , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Anorexia/chemically induced
12.
Behav Brain Res ; 467: 115019, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677331

ABSTRACT

Nicotine smoking contributes to many preventable disabilities, diseases and deaths. Targeting nicotine reward and withdrawal is a basis for the majority of smoking cessation pharmacotherapies. Due to the emergence of interest in 5-HT2A receptor modulators for numerous psychiatric disorders, we investigated the effect of nelotanserin, a 5-HT2A receptor inverse agonist, on nicotine reward and withdrawal in ICR mice. In nicotine-dependent mice, nelotanserin dose-dependently reduced somatic signs of nicotine withdrawal and thermal hyperalgesia as measured in the hot plate test. However, nelotanserin had no effect on anxiety-like behavior and failed to reduce nicotine reward as measured in the conditioned place preference test. Our results suggest that inverse agonism of the 5-HT2A receptor may be a feasible novel mechanism for smoking cessation by reducing both physical withdrawal and thermal hyperalgesia associated with nicotine abstinence but may require complementary pharmacotherapies targeting affective and reward-associated decrements to improve cessation outcomes.


Subject(s)
Mice, Inbred ICR , Nicotine , Reward , Serotonin 5-HT2 Receptor Agonists , Substance Withdrawal Syndrome , Animals , Substance Withdrawal Syndrome/drug therapy , Nicotine/pharmacology , Nicotine/administration & dosage , Male , Serotonin 5-HT2 Receptor Agonists/pharmacology , Mice , Dose-Response Relationship, Drug , Tobacco Use Disorder/drug therapy , Hyperalgesia/drug therapy , Hyperalgesia/chemically induced , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Anxiety/drug therapy , Nicotinic Agonists/pharmacology , Nicotinic Agonists/administration & dosage
13.
Physiol Behav ; 281: 114565, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38663460

ABSTRACT

Nicotine use disorder (NUD) remains a leading cause of preventable death in the U.S. Unfortunately, current FDA-approved pharmacotherapies for smoking cessation have limited efficacy and are associated with high rates of relapse. One major barrier to long-term smoking abstinence is body weight gain during withdrawal. Nicotine withdrawal-induced body weight gain can also lead to development of chronic disease states like obesity and type II diabetes mellitus. Therefore, it is critical to identify novel pharmacotherapies for NUD that decrease relapse and nicotine withdrawal symptoms including body weight gain. Recent studies demonstrate that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate voluntary nicotine taking and seeking and prevent withdrawal-induced hyperphagia and body weight gain. Emerging evidence also suggests that GLP-1R agonists improve cognitive deficits, as well as depressive- and anxiety-like behaviors, which contribute to smoking relapse during withdrawal. While further studies are necessary to fully characterize the effects of GLP-1R agonists on NUD and understand the mechanisms by which GLP-1R agonists decrease nicotine withdrawal-mediated behaviors, the current literature supports GLP-1R-based approaches to treating NUD.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Tobacco Use Disorder , Glucagon-Like Peptide-1 Receptor/agonists , Humans , Tobacco Use Disorder/drug therapy , Animals , Substance Withdrawal Syndrome/drug therapy , Smoking Cessation/methods , Nicotine/pharmacology
14.
Ecotoxicol Environ Saf ; 277: 116371, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663196

ABSTRACT

Nicotine, a naturally occurring alkaloid found in tobacco, is a potent neurotoxin extensively used to control Nilaparvata lugens (Stål), a destructive insect pest of rice crops. The insect gut harbors a wide array of resident microorganisms that profoundly influence several biological processes, including host immunity. Maintaining an optimal gut microbiota and immune homeostasis requires a complex network of reciprocal regulatory interactions. However, the underlying molecular mechanisms driving these symbiotic exchanges, particularly between specific gut microbe and immunity, remain largely unknown in insects. Our previous investigations identified and isolated a nicotine-degrading Burkholderia cepacia strain (BsNLG8) with antifungal properties. Building on those findings, we found that nicotine intake significantly increased the abundance of a symbiotic bacteria BsNLG8, induced a stronger bacteriostatic effect in hemolymph, and enhanced the nicotine tolerance of N. lugens. Additionally, nicotine-induced antimicrobial peptides (AMPs) exhibited significant antibacterial effects against Staphylococcus aureus. We adopted RNA-seq to explore the underlying immunological mechanisms in nicotine-stressed N. lugens. Bioinformatic analyses identified numerous differentially expressed immune genes, including recognition/immune activation (GRPs and Toll) and AMPs (i.e., Defensin, Lugensin, lysozyme). Temporal expression profiling (12, 24, and 48 hours) of immune genes revealed pattern recognition proteins and immune effectors as primary responders to nicotine-induced stress. Defensin A, a broad-spectrum immunomodulatory cationic peptide, exhibited significantly high expression. RNA interference-mediated silencing of Defensin A reduced the survival, enhanced nicotine sensitivity of N. lugens to nicotine, and decreased the abundance of BsNLG8. The reintroduction of BsNLG8 improved the expression of immune genes, aiding nicotine resistance of N. lugens. Our findings indicate a potential reciprocal immunomodulatory interaction between Defensin A and BsNLG8 under nicotine stress. Moreover, this study offers novel and valuable insights for future research into enhancing nicotine-based pest management programs and developing alternative biocontrol methods involving the implication of insect symbionts.


Subject(s)
Burkholderia cepacia , Gastrointestinal Microbiome , Hemiptera , Nicotine , Animals , Nicotine/toxicity , Nicotine/pharmacology , Hemiptera/drug effects , Gastrointestinal Microbiome/drug effects , Burkholderia cepacia/drug effects , Defensins/genetics , Stress, Physiological/drug effects , Symbiosis
15.
Behav Pharmacol ; 35(4): 172-184, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38651685

ABSTRACT

Research has largely focused on how attentional bias to smoking-related cues and impulsivity independently influence the development and maintenance of cigarette smoking, with limited exploration of the relationship between these mechanisms. The current experiments systematically assessed relationships between multiple dimensions of impulsivity and attentional bias, at different stages of attention, in smokers varying in nicotine dependency and deprivation. Nonsmokers (NS; n  = 26), light-satiated smokers (LS; n  = 25), heavy-satiated smokers (HS; n  = 23) and heavy 12-hour nicotine-deprived smokers (HD; n  = 30) completed the Barratt Impulsivity Scale, delayed discounting task, stop-signal task, information sampling task and a visual dot-probe assessing initial orientation (200 ms) and sustained attention (2000 ms) toward smoking-related cues. Sustained attention to smoking-related cues was present in both HS and LS, while initial orientation bias was only evident in HS. HS and LS also had greater levels of trait motor and nonplanning impulsivity and heightened impulsive choice on the delay discounting task compared with NS, while heightened trait attentional impulsivity was only found in HS. In contrast, in HD, nicotine withdrawal was associated with no attentional bias but heightened reflection impulsivity, poorer inhibitory control and significantly lower levels of impulsive choice relative to satiated smokers. Trait and behavioral impulsivity were not related to the extent of attentional bias to smoking-related cues at any stage of attention, level of nicotine dependency or state of deprivation. Findings have both clinical and theoretical implications, highlighting the unique and independent roles impulsivity and attentional bias may play at different stages of the nicotine addiction cycle.


Subject(s)
Attentional Bias , Cues , Delay Discounting , Impulsive Behavior , Tobacco Use Disorder , Humans , Impulsive Behavior/physiology , Male , Female , Adult , Tobacco Use Disorder/psychology , Tobacco Use Disorder/physiopathology , Attentional Bias/physiology , Young Adult , Delay Discounting/physiology , Cigarette Smoking/psychology , Smokers/psychology , Attention/physiology , Substance Withdrawal Syndrome/psychology , Substance Withdrawal Syndrome/physiopathology , Nicotine/pharmacology , Smoking/psychology , Choice Behavior/physiology
16.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38613458

ABSTRACT

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Dopamine , Ibogaine , Ibogaine/analogs & derivatives , Nicotine , Receptors, Nicotinic , Animals , Dopamine/metabolism , Male , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Nicotine/pharmacology , Ibogaine/pharmacology , Mice , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Mice, Inbred C57BL , Nicotinic Antagonists/pharmacology , Oocytes/drug effects , Nicotinic Agonists/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Self Administration , Xenopus laevis , Interneurons/drug effects , Interneurons/metabolism , Dose-Response Relationship, Drug , Motor Activity/drug effects
17.
Pharmacol Biochem Behav ; 240: 173771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670466

ABSTRACT

In the United States, the societal costs associated with drug use surpass $500 billion annually. The rewarding and reinforcing properties that drive the use of these addictive substances are typically examined concerning the neurobiological effects responsible for their abuse potential. In this review, terms such as "abuse potential," "drug," and "addictive properties" are used due to their relevance to the methodological, theoretical, and conceptual framework for understanding the phenomenon of drug-taking behavior and the associated body of preclinical and clinical literature. The use of these terms is not intended to cast aspersions on individuals with substance use disorders (SUD). Understanding what motivates substance use has been a focus of SUD research for decades. Much of this corpus of work has focused on the shared effects of each drug class to increase dopaminergic transmission within the central reward pathways of the brain, or the "reward center." However, the precise influence of each drug class on dopamine signaling, and the extent thereof, differs considerably. Furthermore, the aforementioned substances have effects on several neurobiological targets that mediate and modulate their addictive properties. The current manuscript sought to review the influence of drug class on the rewarding effects of each of the major pharmacological classes of addictive drugs (i.e., psychostimulants, opioids, nicotine, alcohol, and cannabinoids). Our review suggests that even subtle differences in drug effects can result in significant variability in the subjective experience of the drug, altering rewarding and other reinforcing effects. Additionally, this review will argue that reward (i.e., the attractive and motivational property of a stimulus) alone is not sufficient to explain the abuse liability of these substances. Instead, abuse potential is best examined as a function of both positive and negative reinforcing drug effects (i.e., stimuli that the subject will work to attain and stimuli that the subject will work to end or avoid, respectively). Though reward is central to drug use, the factors that motivate and maintain drug taking are varied and complex, with much to be elucidated.


Subject(s)
Reward , Substance-Related Disorders , Humans , Substance-Related Disorders/psychology , Animals , Behavior, Addictive/psychology , Dopamine/metabolism , Brain/drug effects , Brain/metabolism , Cannabinoids/pharmacology , Motivation , Nicotine/pharmacology , Reinforcement, Psychology , Analgesics, Opioid/pharmacology , Cocaine/pharmacology
18.
Behav Pharmacol ; 35(2-3): 132-146, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38451025

ABSTRACT

The nicotine acetylcholinergic receptor (nAchR) in the central nucleus of the amygdala (CeA) is known to modulate anxiety traits as well as ethanol-induced behavioral effects. Therefore, the present study investigated the role of CeA nAChR in the tolerance to ethanol anxiolysis and withdrawal-induced anxiety-related effects in rats on elevated plus maze (EPM). To develop ethanol dependence, rats were given free access to an ethanol-containing liquid diet for 10 days. To assess the development of tolerance, separate groups of rats were challenged with ethanol (2 g/kg, i.p.) on days 1, 3, 5, 7 and 10 during the period of ethanol exposure, followed by an EPM assessment. Moreover, expression of ethanol withdrawal was induced after switching ethanol-dependent rats to a liquid diet on day 11, and withdrawal-induced anxiety-like behavior was noted at different post-withdrawal time points using the EPM test. The ethanol-dependent rats were pretreated with intra-CeA (i.CeA) (bilateral) injections of nicotine (0.25 µg/rat) or mecamylamine (MEC) (5 ng/rat) before the challenge dose of ethanol on subthreshold tolerance on the 5th day or on peak tolerance day, that is, 7th or 10th, and before assessment of postwithdrawal anxiety on the 11th day on EPM. Bilateral i.CeA preadministration of nicotine before the challenge dose of ethanol on days 5, 7 and 10 exhibited enhanced tolerance, while injection of MEC, completely mitigated the tolerance to the ethanol-induced antianxiety effect. On the other hand, ethanol-withdrawn rats pretreated i.CeA with nicotine exacerbated while pretreatment with MEC, alleviated the ethanol withdrawal-induced anxiety on all time points. Thus, the present investigation indicates that stimulation of nAChR in CeA negatively modulates the ethanol-induced chronic behavioral effects on anxiety in rats. It is proposed that nAChR antagonists might be useful in the treatment of alcohol use disorder and ethanol withdrawal-related anxiety-like behavior.


Subject(s)
Alcoholism , Central Amygdaloid Nucleus , Receptors, Nicotinic , Male , Animals , Rats , Nicotine/pharmacology , Anxiety/drug therapy , Ethanol/pharmacology
19.
Anticancer Res ; 44(4): 1455-1464, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537980

ABSTRACT

BACKGROUND/AIM: Tobacco is a carcinogen that is closely associated with the occurrence of lung cancer and head and neck squamous cell carcinoma (HNSCC). The consumption of tobacco is also leading to alterations in different immune cell subtypes. However, the impact of different conventional and alternative smoking sources on human monocytes remains elusive. MATERIALS AND METHODS: In this study, we investigated the influence of aqueous extracts of different sources of smoking (cigarettes; heated tobacco product IQOS; e-cigarettes with and without nicotine; nicotine pouches) on different monocytic adhesion molecules, chemokine receptors and checkpoint molecule PD-L1 by flow cytometry. Cytokine expression patterns were evaluated using human cytokine arrays and the human monocyte leukemia cell line THP-1 as a model. RESULTS: Data revealed differential effects of the analyzed conventional and alternative smoking devices on monocyte adhesion molecules and cytokine secretion. The examined smoking devices can be assigned to two differential monocyte activation patterns. Monocytes stimulated with aqueous extracts of cigarettes, e-cigarette without nicotine, and heat not burn product IQOS revealed distinct alterations of surface markers and cytokines compared to the monocyte activation pattern in response to aqueous extracts of nicotine, nicotine pouches, and e-cigarette with nicotine. CONCLUSION: Our data indicate differential immunological consequences of different conventional and alternative smoking sources with and without nicotine. Further comprehensive analysis as well as in vivo investigations on peripheral blood monocyte subsets from smoking individuals using different smoking sources are required to better understand the impact on monocyte characteristics, especially with regard to the development of cancer.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Humans , Nicotine/pharmacology , Monocytes , Smoking , Cell Adhesion Molecules , Cytokines
20.
BMC Pharmacol Toxicol ; 25(1): 27, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549169

ABSTRACT

BACKGROUND: Nicotine, the main compound of smoking may exert its effects by changing the expression of microRNAs (miRNAs). This study was conducted to further investigate the molecular mechanisms of miRNA-dependent effects of nicotine in an animal model of liver fibrosis. METHODS: The bile duct ligation (BDL) approach was used to create a model of liver fibrosis. Twenty-four male Wistar rats were used in the study. The effects of nicotine administration on miRNA-124 expression, as well as alpha-smooth muscle actin (liver fibrosis marker) and chemokine ligand 2 (an inflammatory chemokine), were investigated using RT-qPCR. In addition, the mRNA and protein expression of signal transducer and activator of transcription 3 (STAT-3; as a potential target for miRNA-124) were investigated by RT-qPCR and immunofluorescence, respectively. Liver enzyme activity levels were measured using a colorimetric assay. In addition, the effects of nicotine on the process of liver fibrosis were investigated with histological studies. RESULTS: The development of liver fibrosis in BDL rats and nicotine administration led to a decrease in miRNA-124 expression. The decrease in the expression is accompanied by the increase in the expression of fibrotic and proinflammatory genes. Also, an increase in STAT-3 mRNA and protein expression was observed in the fibrotic rats that received nicotine. In addition, the significant increase in bilirubin and liver enzymes in fibrotic rats worsens with nicotine administration. The results of histological studies also confirm these results. CONCLUSION: Considering that miRNA-124 is an anti-inflammatory miRNA, it can be concluded that the decrease in its expression due to nicotine exposure leads to an increase in inflammatory processes and subsequently to an increase in liver fibrosis.


Subject(s)
Liver , MicroRNAs , Rats , Male , Animals , Nicotine/pharmacology , Rats, Wistar , Liver Cirrhosis/metabolism , Bile Ducts/surgery , Bile Ducts/metabolism , Bile Ducts/pathology , Fibrosis , MicroRNAs/genetics , MicroRNAs/metabolism , Chemokines/metabolism , Chemokines/pharmacology , RNA, Messenger/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...