Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.334
Filter
1.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38836815

ABSTRACT

BACKGROUND: Smoking is a risk factor for liver cirrhosis; however, the underlying mechanisms remain largely unexplored. The α7 nicotinic acetylcholine receptor (α7nAChR) has recently been detected in nonimmune cells possessing immunoregulatory functions. We aimed to verify whether nicotine promotes liver fibrosis via α7nAChR. METHODS: We used osmotic pumps to administer nicotine and carbon tetrachloride to induce liver fibrosis in wild-type and α7nAChR-deficient mice. The severity of fibrosis was evaluated using Masson trichrome staining, hydroxyproline assays, and real-time PCR for profibrotic genes. Furthermore, we evaluated the cell proliferative capacity and COL1A1 mRNA expression in human HSCs line LX-2 and primary rat HSCs treated with nicotine and an α7nAChR antagonist, methyllycaconitine citrate. RESULTS: Nicotine exacerbated carbon tetrachloride-induced liver fibrosis in mice (+42.4% in hydroxyproline assay). This effect of nicotine was abolished in α7nAChR-deficient mice, indicating nicotine promotes liver fibrosis via α7nAChR. To confirm the direct involvement of α7nAChRs in liver fibrosis, we investigated the effects of genetic suppression of α7nAChR expression on carbon tetrachloride-induced liver fibrosis without nicotine treatment. Profibrotic gene expression at 1.5 weeks was significantly suppressed in α7nAChR-deficient mice (-83.8% in Acta2, -80.6% in Col1a1, -66.8% in Tgfb1), and collagen content was decreased at 4 weeks (-22.3% in hydroxyproline assay). The in vitro analysis showed α7nAChR expression in activated but not in quiescent HSCs. Treatment of LX-2 cells with nicotine increased COL1A1 expression (+116%) and cell proliferation (+10.9%). These effects were attenuated by methyllycaconitine citrate, indicating the profibrotic effects of nicotine via α7nAChR. CONCLUSIONS: Nicotine aggravates liver fibrosis induced by other factors by activating α7nAChR on HSCs, thereby increasing their collagen-producing capacity. We suggest the profibrotic effect of nicotine is mediated through α7nAChRs.


Subject(s)
Carbon Tetrachloride , Collagen Type I, alpha 1 Chain , Collagen Type I , Hepatic Stellate Cells , Liver Cirrhosis , Nicotine , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Nicotine/adverse effects , Mice , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Humans , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain/metabolism , Rats , Male , Cell Proliferation/drug effects , Aconitine/pharmacology , Aconitine/analogs & derivatives , Cell Line , Mice, Inbred C57BL , Transforming Growth Factor beta1/metabolism , Mice, Knockout , Nicotinic Agonists/pharmacology
2.
Neuropharmacology ; 255: 110001, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38750804

ABSTRACT

Emerging evidence suggests an important role of astrocytes in mediating behavioral and molecular effects of commonly misused drugs. Passive exposure to nicotine alters molecular, morphological, and functional properties of astrocytes. However, a potential involvement of astrocytes in nicotine reinforcement remains largely unexplored. The overall hypothesis tested in the current study is that astrocytes play a critical role in nicotine reinforcement. Protein levels of the astrocyte marker glial fibrillary acidic protein (GFAP) were examined in key mesocorticolimbic regions following chronic nicotine intravenous self-administration. Fluorocitrate, a metabolic inhibitor of astrocytes, was tested for its effects on behaviors related to nicotine reinforcement and relapse. Effects of fluorocitrate on extracellular neurotransmitter levels, including glutamate, GABA, and dopamine, were determined with microdialysis. Chronic nicotine intravenous self-administration increased GFAP expression in the nucleus accumbens core (NACcr), but not other key mesocorticolimbic regions, compared to saline intravenous self-administration. Both intra-ventricular and intra-NACcr microinjection of fluorocitrate decreased nicotine self-administration. Intra-NACcr fluorocitrate microinjection also inhibited cue-induced reinstatement of nicotine seeking. Local perfusion of fluorocitrate decreased extracellular glutamate levels, elevated extracellular dopamine levels, but did not alter extracellular GABA levels in the NACcr. Fluorocitrate did not alter basal locomotor activity. These results indicate that nicotine reinforcement upregulates the astrocyte marker GFAP expression in the NACcr, metabolic inhibition of astrocytes attenuates nicotine reinforcement and relapse, and metabolic inhibition of astrocytes disrupts extracellular dopamine and glutamate transmission. Overall, these findings suggest that astrocytes play an important role in nicotine reinforcement and relapse, potentially through regulation of extracellular glutamate and dopamine neurotransmission.


Subject(s)
Astrocytes , Citrates , Dopamine , Glutamic Acid , Nicotine , Nucleus Accumbens , Rats, Wistar , Self Administration , Animals , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Nicotine/pharmacology , Nicotine/administration & dosage , Male , Glutamic Acid/metabolism , Dopamine/metabolism , Citrates/pharmacology , Citrates/administration & dosage , Rats , Glial Fibrillary Acidic Protein/metabolism , Nicotinic Agonists/pharmacology , Nicotinic Agonists/administration & dosage , Microdialysis , Reinforcement, Psychology , gamma-Aminobutyric Acid/metabolism
3.
Article in English | MEDLINE | ID: mdl-38795824

ABSTRACT

As one of the leading causes of death and serious illnesses, tobacco smoking remains a significant issue in modern societies. Many individuals smoke during adolescence, a trend that has been exacerbated by the prevalence of vaping among young people. In this context, studying the behavioral effects induced by nicotine administration in male and female rats, during the adolescent period, assumes great importance because it can help to better understand the dynamics underlying tobacco use in the two sexes. For this purpose, we employed 4 groups of rats, 2 male and 2 female groups, chronically treated with saline or nicotine 3 mg/kg i.p. for 30 days, spanning from postnatal day 30 to postnatal day 60. Utilizing quantitative analyses and T-pattern detection and analysis, our findings revealed a complex and multifaceted behavioral reorganization in adolescent rats subjected to chronic nicotine administration. Specifically, we observed an increase of anxiety in males and a reduction in females. The distinctive structural changes, induced by chronic nicotine in both sexes, have significant implications, from a translational perspective, for studies on nicotine dependence disorders.


Subject(s)
Nicotine , Animals , Nicotine/pharmacology , Nicotine/adverse effects , Female , Male , Rats , Sex Characteristics , Nicotinic Agonists/pharmacology , Behavior, Animal/drug effects , Anxiety/chemically induced , Rats, Wistar , Sex Factors
4.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38613458

ABSTRACT

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Dopamine , Ibogaine , Ibogaine/analogs & derivatives , Nicotine , Receptors, Nicotinic , Animals , Dopamine/metabolism , Male , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Nicotine/pharmacology , Ibogaine/pharmacology , Mice , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Mice, Inbred C57BL , Nicotinic Antagonists/pharmacology , Oocytes/drug effects , Nicotinic Agonists/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Self Administration , Xenopus laevis , Interneurons/drug effects , Interneurons/metabolism , Dose-Response Relationship, Drug , Motor Activity/drug effects
5.
Neuropharmacology ; 253: 109959, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38648925

ABSTRACT

Nicotine use produces psychoactive effects, and chronic use is associated with physiological and psychological symptoms of addiction. However, chronic nicotine use is known to decrease food intake and body weight gain, suggesting that nicotine also affects central metabolic and appetite regulation. We recently showed that acute nicotine self-administration in nicotine-dependent animals produces a short-term increase in food intake, contrary to its long-term decrease of feeding behavior. As feeding behavior is regulated by complex neural signaling mechanisms, this study aimed to test the hypothesis that nicotine intake in animals exposed to chronic nicotine may increase activation of pro-feeding regions and decrease activation of pro-satiety regions to produce the acute increase in feeding behavior. FOS immunohistochemistry revealed that acute nicotine intake in nicotine self-administering animals increased activation of the pro-feeding arcuate and lateral hypothalamic nuclei and decreased activation of the pro-satiety parabrachial nucleus. Regional correlational analysis also showed that acute nicotine changes the functional connectivity of the hunger/satiety network. Further dissection of the role of the arcuate nucleus using electrophysiology found that putative POMC neurons in animals given chronic nicotine exhibited decreased firing following acute nicotine application. These brain-wide central signaling changes may contribute to the acute increase in feeding behavior we see in rats after acute nicotine and provide new areas of focus for studying both nicotine addiction and metabolic regulation.


Subject(s)
Brain , Nicotine , Animals , Nicotine/pharmacology , Male , Brain/drug effects , Brain/metabolism , Rats , Rats, Sprague-Dawley , Nicotinic Agonists/pharmacology , Feeding Behavior/drug effects , Pro-Opiomelanocortin/metabolism , Eating/drug effects , Eating/physiology , Self Administration , Neurons/drug effects , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Anorexia/chemically induced
6.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674000

ABSTRACT

Stimulation of the alpha 7 nicotinic acetylcholine receptor (α7nAChR) has shown beneficial effects in several acute inflammatory disease models. This study aims to examine whether treatment with the selective α7nAChR agonist PHA 568487 can dampen inflammation and thereby improve cardiac function after myocardial infarction in mice. The possible anti-inflammatory properties of α7nAChR agonist PHA 568487 were tested in vivo using the air pouch model and in a permanent occlusion model of acute myocardial infarction in mice. Hematologic parameters and cytokine levels were determined. Infarct size and cardiac function were assessed via echocardiography 24 h and one week after the infarction. Treatment with α7nAChR agonist PHA 568487 decreased 12 (CCL27, CXCL5, IL6, CXCL10, CXCL11, CXCL1, CCL2, MIP1a, MIP2, CXCL16, CXCL12 and CCL25) out of 33 cytokines in the air pouch model of acute inflammation. However, α7nAChR agonist PHA 568487 did not alter infarct size, ejection fraction, cardiac output or stroke volume at 24 h or at 7 days after the myocardial infarction compared with control mice. In conclusion, despite promising immunomodulatory effects in the acute inflammatory air pouch model, α7nAChR agonist PHA 568487 did not affect infarct size or cardiac function after a permanent occlusion model of acute myocardial infarction in mice. Consequently, this study does not strengthen the hypothesis that stimulation of the α7nAChR is a future treatment strategy for acute myocardial infarction when reperfusion is lacking. However, whether other agonists of the α7nAChR can have different effects remains to be investigated.


Subject(s)
Disease Models, Animal , Inflammation , Myocardial Infarction , alpha7 Nicotinic Acetylcholine Receptor , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Mice , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Male , Cytokines/metabolism , Nicotinic Agonists/pharmacology , Nicotinic Agonists/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Mice, Inbred C57BL , Quinuclidines/pharmacology , Quinuclidines/therapeutic use , Benzylamines/pharmacology , Benzylamines/therapeutic use , Benzylidene Compounds/pharmacology
7.
Behav Brain Res ; 467: 115019, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677331

ABSTRACT

Nicotine smoking contributes to many preventable disabilities, diseases and deaths. Targeting nicotine reward and withdrawal is a basis for the majority of smoking cessation pharmacotherapies. Due to the emergence of interest in 5-HT2A receptor modulators for numerous psychiatric disorders, we investigated the effect of nelotanserin, a 5-HT2A receptor inverse agonist, on nicotine reward and withdrawal in ICR mice. In nicotine-dependent mice, nelotanserin dose-dependently reduced somatic signs of nicotine withdrawal and thermal hyperalgesia as measured in the hot plate test. However, nelotanserin had no effect on anxiety-like behavior and failed to reduce nicotine reward as measured in the conditioned place preference test. Our results suggest that inverse agonism of the 5-HT2A receptor may be a feasible novel mechanism for smoking cessation by reducing both physical withdrawal and thermal hyperalgesia associated with nicotine abstinence but may require complementary pharmacotherapies targeting affective and reward-associated decrements to improve cessation outcomes.


Subject(s)
Mice, Inbred ICR , Nicotine , Reward , Serotonin 5-HT2 Receptor Agonists , Substance Withdrawal Syndrome , Animals , Substance Withdrawal Syndrome/drug therapy , Nicotine/pharmacology , Nicotine/administration & dosage , Male , Serotonin 5-HT2 Receptor Agonists/pharmacology , Mice , Dose-Response Relationship, Drug , Tobacco Use Disorder/drug therapy , Hyperalgesia/drug therapy , Hyperalgesia/chemically induced , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Anxiety/drug therapy , Nicotinic Agonists/pharmacology , Nicotinic Agonists/administration & dosage
8.
Acta Pharmacol Sin ; 45(6): 1160-1174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438581

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4ß2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-ß-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.


Subject(s)
GABAergic Neurons , Hyperalgesia , Mice, Inbred C57BL , Receptors, Nicotinic , Animals , Receptors, Nicotinic/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Male , Hyperalgesia/metabolism , Hyperalgesia/drug therapy , Mice , Pars Reticulata/metabolism , Pars Reticulata/drug effects , Nicotine/pharmacology , Analgesics/pharmacology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Capsaicin/pharmacology , Acetylcholine/metabolism , Optogenetics , Pain Threshold/drug effects
9.
J Neurosci ; 44(12)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38331584

ABSTRACT

Cholinergic regulation of hippocampal theta oscillations has long been proposed to be a potential mechanism underlying hippocampus-dependent memory encoding processes. However, cholinergic transmission has been traditionally associated with type II theta under urethane anesthesia. The mechanisms and behavioral significance of cholinergic regulation of type I theta in freely exploring animals is much less clear. In this study, we examined the potential behavioral significance of cholinergic regulation of theta oscillations in the object location task in male mice that involves training and testing trials and provides an ideal behavioral task to study the underlying memory encoding and retrieval processes, respectively. Cholinergic regulation of hippocampal theta oscillations and the behavioral outcomes was examined by either intrahippocampal infusion of cholinergic receptor antagonists or knocking out cholinergic receptors in excitatory neurons or interneurons. We found that both muscarinic acetylcholine receptors (mAChRs) and α7 nicotinic AChRs (α7 nAChRs) regulated memory encoding by engaging excitatory neurons and interneurons, respectively. There is a transient upregulated theta oscillation at the beginning of individual object exploration events that only occurred in the training trials, but not in the testing trials. This transient upregulated theta is also the only theta component that significantly differed between training and testing trials and was sensitive to mAChR and α7 nAChR antagonists. Thus, our study has revealed a transient cholinergic-sensitive theta component that is specifically associated with memory encoding, but not memory retrieval, in the object location task, providing direct experimental evidence supporting a role for cholinergic-regulated theta oscillations in hippocampus-dependent memory encoding processes.


Subject(s)
Receptors, Nicotinic , alpha7 Nicotinic Acetylcholine Receptor , Mice , Animals , Male , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Hippocampus/physiology , Receptors, Nicotinic/metabolism , Neurons/physiology , Nicotinic Agonists/pharmacology , Theta Rhythm/physiology
10.
Toxins (Basel) ; 16(2)2024 02 02.
Article in English | MEDLINE | ID: mdl-38393158

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer, with a poor prognosis. GBM cells, which develop in the environment of neural tissue, often exploit neurotransmitters and their receptors to promote their own growth and invasion. Nicotinic acetylcholine receptors (nAChRs), which play a crucial role in central nervous system signal transmission, are widely represented in the brain, and GBM cells express several subtypes of nAChRs that are suggested to transmit signals from neurons, promoting tumor invasion and growth. Analysis of published GBM transcriptomes revealed spatial heterogeneity in nAChR subtype expression, and functional nAChRs of α1*, α7, and α9 subtypes are demonstrated in our work on several patient-derived GBM microsphere cultures and on the U87MG GBM cell line using subtype-selective neurotoxins and fluorescent calcium mobilization assay. The U87MG cell line shows reactions to nicotinic agonists similar to those of GBM patient-derived culture. Selective α1*, α7, and α9 nAChR neurotoxins stimulated cell growth in the presence of nicotinic agonists. Several cultivating conditions with varying growth factor content have been proposed and tested. The use of selective neurotoxins confirmed that cell cultures obtained from patients are representative GBM models, but the use of media containing fetal bovine serum can lead to alterations in nAChR expression and functioning.


Subject(s)
Glioblastoma , Receptors, Nicotinic , Humans , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Nicotinic Agonists/pharmacology , Proteins/metabolism , Peptides/pharmacology , Cell Line , Cell Proliferation , Nicotinic Antagonists/pharmacology
11.
Cells ; 13(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38334629

ABSTRACT

Acetylcholine signaling is attenuated in early Alzheimer's disease (AD) and other dementias. A significant reduction in the expression of nicotinic acetylcholine receptors (nAChRs) in the brain of AD patients has also been reported in several molecular biological and in situ labeling studies. The modulation of the functional deficit of the cholinergic system as a pharmacological target could therefore have a clinical benefit, which is not to be neglected. This systematic review was conducted to identify clinical trials, which evaluated the safety and efficacy of nicotinic acetylcholine receptor agonists using Clinicaltrial (CT) and EudraCT databases. Structured searches identified 39 trials, which used 15 different drugs designed to increase the function of the nAChRs. Most of the identified clinical trials were phase II trials, with some of them classified as ongoing for several years. The systematic screening of the literature led to the selection of 14 studies out of the 8261 bibliographic records retrieved. Six trials reported detailed data on adverse events associated with the intervention, while twelve trials reported data on efficacy measures, such as attention, behavior and cognition. Overall, smost of the physical side effects of cholinergic agonists were reported to be well tolerated. Some trials also reported improvements in attention. However, the efficacy of these drugs in other cognitive and behavioral outcomes remains highly controversial.


Subject(s)
Alzheimer Disease , Receptors, Nicotinic , Humans , Alzheimer Disease/metabolism , Receptors, Nicotinic/metabolism , Brain/metabolism , Nicotinic Agonists/pharmacology , Nicotinic Agonists/therapeutic use , Nicotinic Agonists/metabolism , Cognition
12.
Inflammation ; 47(3): 958-974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38227123

ABSTRACT

Pulmonary emphysema is a primary component of chronic obstructive pulmonary disease (COPD), a life-threatening disorder characterized by lung inflammation and restricted airflow, primarily resulting from the destruction of small airways and alveolar walls. Cumulative evidence suggests that nicotinic receptors, especially the α7 subtype (α7nAChR), is required for anti-inflammatory cholinergic responses. We postulated that the stimulation of α7nAChR could offer therapeutic benefits in the context of pulmonary emphysema. To investigate this, we assessed the potential protective effects of PNU-282987, a selective α7nAChR agonist, using an experimental emphysema model. Male mice (C57BL/6) were submitted to a nasal instillation of porcine pancreatic elastase (PPE) (50 µl, 0.667 IU) to induce emphysema. Treatment with PNU-282987 (2.0 mg/kg, ip) was performed pre and post-emphysema induction by measuring anti-inflammatory effects (inflammatory cells, cytokines) as well as anti-remodeling and anti-oxidant effects. Elastase-induced emphysema led to an increase in the number of α7nAChR-positive cells in the lungs. Notably, both groups treated with PNU-282987 (prior to and following emphysema induction) exhibited a significant decrease in the number of α7nAChR-positive cells. Furthermore, both groups treated with PNU-282987 demonstrated decreased levels of macrophages, IL-6, IL-1ß, collagen, and elastic fiber deposition. Additionally, both groups exhibited reduced STAT3 phosphorylation and lower levels of SOCS3. Of particular note, in the post-treated group, PNU-282987 successfully attenuated alveolar enlargement, decreased IL-17 and TNF-α levels, and reduced the recruitment of polymorphonuclear cells to the lung parenchyma. Significantly, it is worth noting that MLA, an antagonist of α7nAChR, counteracted the protective effects of PNU-282987 in relation to certain crucial inflammatory parameters. In summary, these findings unequivocally demonstrate the protective abilities of α7nAChR against elastase-induced emphysema, strongly supporting α7nAChR as a pivotal therapeutic target for ameliorating pulmonary emphysema.


Subject(s)
Benzamides , Bridged Bicyclo Compounds , Mice, Inbred C57BL , Nicotinic Agonists , Pancreatic Elastase , Pulmonary Emphysema , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Pulmonary Emphysema/drug therapy , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/prevention & control , Mice , Benzamides/pharmacology , Benzamides/therapeutic use , Male , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds/therapeutic use , Nicotinic Agonists/pharmacology , Nicotinic Agonists/therapeutic use , Lung/pathology , Lung/drug effects , Lung/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
13.
Nat Commun ; 15(1): 601, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238329

ABSTRACT

Epilepsy is a prevalent disorder involving neuronal network hyperexcitability, yet existing therapeutic strategies often fail to provide optimal patient outcomes. Chemogenetic approaches, where exogenous receptors are expressed in defined brain areas and specifically activated by selective agonists, are appealing methods to constrain overactive neuronal activity. We developed BARNI (Bradanicline- and Acetylcholine-activated Receptor for Neuronal Inhibition), an engineered channel comprised of the α7 nicotinic acetylcholine receptor ligand-binding domain coupled to an α1 glycine receptor anion pore domain. Here we demonstrate that BARNI activation by the clinical stage α7 nicotinic acetylcholine receptor-selective agonist bradanicline effectively suppressed targeted neuronal activity, and controlled both acute and chronic seizures in male mice. Our results provide evidence for the use of an inhibitory acetylcholine-based engineered channel activatable by both exogenous and endogenous agonists as a potential therapeutic approach to treating epilepsy.


Subject(s)
Epilepsy , Receptors, Nicotinic , Mice , Male , Humans , Animals , Receptors, Cholinergic , alpha7 Nicotinic Acetylcholine Receptor/genetics , Receptors, Nicotinic/genetics , Nicotinic Agonists/pharmacology , Acetylcholine/pharmacology , Seizures/genetics
14.
Biochimie ; 216: 108-119, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37871826

ABSTRACT

Evidence to date indicates that activation of nicotinic acetylcholine receptors (nAChRs) can reduce cardiac injury from ischemia and subsequent reperfusion. The use of nAChR agonists in various animal models leads to a reduction in reperfusion injury. Earlier this effect was shown for the agonists of α7 nAChR subtype. In this work, we demonstrated the expression of mRNA encoding α4, α6 and ß2 nAChR subunits in the left ventricle of rat heart. In a rat model of myocardial ischemia, we studied the effect of α4ß2 nAChR agonists cytisine and varenicline, medicines used for the treatment of nicotine addiction, and found them to significantly reduce myocardium ischemia-reperfusion injury, varenicline manifesting a higher protection. Dihydro-ß-erythroidine, antagonist of α4ß2 nAChR, as well as methyllycaconitine, antagonist of α7 and α6ß2-containing nAChR, prevented protective effect of varenicline. This together with the presence of α4, α6 and ß2 subunit mRNA in the left ventricule of rat heart raises the possibility that the varenicline effect is mediated by α4ß2 as well as by α7 and/or α6ß2-containing receptors. Our results point to a new way for the use of cytisine and varenicline as cardioprotective agents.


Subject(s)
Alkaloids , Myocardial Ischemia , Receptors, Nicotinic , Reperfusion Injury , Rats , Animals , Varenicline/pharmacology , Nicotinic Antagonists/therapeutic use , Nicotinic Agonists/pharmacology , Nicotinic Agonists/therapeutic use , Alkaloids/pharmacology , Alkaloids/therapeutic use , Receptors, Nicotinic/genetics , Reperfusion , Myocardial Ischemia/drug therapy , Reperfusion Injury/drug therapy , RNA, Messenger/genetics
15.
Pharmacol Biochem Behav ; 235: 173702, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154590

ABSTRACT

Smoking is the leading cause of preventable death worldwide, with <7 % of smoking cessation attempts being met with success. Nicotine, the main addictive agent in cigarettes, enhances the reinforcing value of other environmental rewards. Under some circumstances, this reward enhancement maintains nicotine consumption. Varenicline (i.e., cessation aid Chantix™) also has reward-enhancement effects via nicotinic acetylcholine receptor agonism (nAChRs) - albeit less robust than nicotine. Cotinine is the major metabolite of nicotine. Recent studies suggest that cotinine is a positive allosteric modulator (PAM) and/or a weak agonist at nAChRs. Thus, cotinine may enhance the behavioral effects of nAChR compounds such as varenicline and/or exert some behavioral effects alone. We used 20 (10M, 10F) Sprague-Dawley rats to assess reward-enhancement within-subjects by examining responding maintained by a reinforcing visual stimulus on a Variable Ratio 2 schedule of reinforcement. To assess the reward-enhancing effects of cotinine, rats received one injection of cotinine (saline, 0.1, 0.3, 1.0, 3.0, 6.0 mg/kg) before each 1 h session. To assess cotinine and varenicline interactions, rats received an injection of cotinine (saline, 0.1, 1.0, or 6.0 mg/kg) and of varenicline (saline, 0.1, 0.3, 1.0, or 3.0 mg/kg) before the session. While we replicated prior work identifying reward-enhancement by 0.1, 0.3, and 1.0 mg/kg varenicline, cotinine alone did not produce reward-enhancement nor augment the reward-enhancing effects of varenicline. Future studies may consider examining the reward-enhancing effects of cotinine with other reinforcers or co-administered with other smoking cessation aids such as bupropion.


Subject(s)
Nicotine , Receptors, Nicotinic , Humans , Rats , Animals , Varenicline/pharmacology , Nicotine/pharmacology , Cotinine/pharmacology , Rats, Sprague-Dawley , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/metabolism , Benzazepines/pharmacology , Quinoxalines/pharmacology
16.
Neurosci Res ; 203: 28-41, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38110001

ABSTRACT

Epidemiological studies have shown that cigarette smoking increases the risk of Alzheimer disease. However, inconsistent results have been reported regarding the effects of smoking or nicotine on brain amyloid ß (Aß) deposition. In this study, we found that stimulation of the nicotinic acetylcholine receptor (nAChR) increased Aß production in mouse brains and cultured neuronal cells. nAChR activation triggered the MEK/ERK pathway, which then phosphorylated and stabilized nuclear SP1. Upregulated SP1 acted on two recognition motifs in the BACE1 gene to induce its transcription, resulting in enhanced Aß production. Mouse brain microdialysis revealed that nAChR agonists increased Aß levels in the interstitial fluid of the cerebral cortex but caused no delay of Aß clearance. In vitro assays indicated that nicotine inhibited Aß aggregation. We also found that nicotine modified the immunoreactivity of anti-Aß antibodies, possibly through competitive inhibition and Aß conformation changes. Using anti-Aß antibody that was carefully selected to avoid these effects, we found that chronic nicotine treatment in Aß precursor protein knockin mice increased the Aß content but did not visibly change the aggregated Aß deposition in the brain. Thus, nicotine influences brain Aß deposition in the opposite direction, thereby increasing Aß production and inhibiting Aß aggregation.


Subject(s)
Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Aspartic Acid Endopeptidases , Nicotine , Receptors, Nicotinic , Sp1 Transcription Factor , Animals , Humans , Male , Mice , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Brain/drug effects , Mice, Inbred C57BL , Neurons/metabolism , Neurons/drug effects , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Phosphorylation/drug effects , Receptors, Nicotinic/metabolism , Sp1 Transcription Factor/metabolism
17.
Brain Res ; 1825: 148713, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38097126

ABSTRACT

The presence of the cholinergic system in the brain areas implicated in the precipitation of obsessive-compulsive behavior (OCB) has been reported but the exact role of the central cholinergic system therein is still unexplored. Therefore, the current study assessed the effect of cholinergic analogs on central administration on the marble-burying behavior (MBB) of mice, a behavior correlated with OCB. The result reveals that the enhancement of central cholinergic transmission in mice achieved by intracerebroventricular (i.c.v.) injection of acetylcholine (0.01 µg) (Subeffective: 0.1 and 0.5 µg), cholinesterase inhibitor, neostigmine (0.1, 0.3, 0.5 µg/mouse) and neuronal nicotinic acetylcholine receptor agonist, nicotine (0.1, 2 µg/mouse) significantly attenuated the number of marbles buried by mice in MBB test without affecting basal locomotor activity. Similarly, central injection of mAChR antagonist, atropine (0.1, 0.5, 5 µg/mouse), nAChR antagonist, mecamylamine (0.1, 0.5, 3 µg/mouse) per se also reduced the MBB in mice, indicative of anti-OCB like effect of all the tested cholinergic mAChR or nAChR agonist and antagonist. Surprisingly, i.c.v. injection of acetylcholine (0.01 µg), and neostigmine (0.1 µg) failed to elicit an anti-OCB-like effect in mice pre-treated (i.c.v.) with atropine (0.1 µg), or mecamylamine (0.1 µg). Thus, the findings of the present investigationdelineate the role of central cholinergic transmission in the compulsive-like behavior of mice probably via mAChR or nAChR stimulation.


Subject(s)
Acetylcholine , Receptors, Nicotinic , Mice , Animals , Mecamylamine/pharmacology , Acetylcholine/pharmacology , Neostigmine/pharmacology , Cholinesterase Inhibitors/pharmacology , Nicotinic Agonists/pharmacology , Atropine/pharmacology , Receptors, Nicotinic/physiology , Behavior, Animal
18.
Curr Opin Neurobiol ; 83: 102797, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37832393

ABSTRACT

Despite decades of research and anti-tobacco messaging, nicotine addiction remains an important public health problem leading to hundreds of thousands of deaths each year. While fundamental studies have identified molecular, circuit-level and behavioral mechanisms important for nicotine reinforcement and withdrawal, recent studies have identified additional pathways that are important for both nicotine seeking and aversion. In particular, although dopaminergic mechanisms are necessary for nicotine-dependent reward and drug-seeking, novel glutamate and GABA signaling mechanisms in the mesolimbic system have been identified for their contributions to reward-related behaviors. An additional area of active investigation for nicotine addiction focuses on molecular mechanisms in the habenula-interpeduncular pathway driving nicotine aversion and withdrawal. Across all these domains, sex differences in the molecular basis of nicotine-induced behaviors have emerged that identify important new directions for future research. Recent studies reviewed here highlight additional pathways that could provide therapeutic targets for smoking cessation and problematic nicotine vaping.


Subject(s)
Receptors, Nicotinic , Tobacco Use Disorder , Female , Humans , Male , Nicotine/pharmacology , Nicotine/therapeutic use , Tobacco Use Disorder/drug therapy , Dopamine/metabolism , Nicotinic Agonists/pharmacology , Nicotinic Agonists/therapeutic use , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/therapeutic use
19.
J Neurosci ; 43(48): 8259-8270, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37821229

ABSTRACT

The recent increase in the use of nicotine products by teenagers has revealed an urgent need to better understand the impact of nicotine on the adolescent brain. Here, we sought to examine the actions of extracellular ATP as a neurotransmitter and to investigate whether ATP and nicotinic signaling interact during adolescence. With the GRABATP (G-protein-coupled receptor activation-based ATP sensor), we first demonstrated that nicotine induces extracellular ATP release in the medial habenula, a brain region involved in nicotine aversion and withdrawal. Using patch-clamp electrophysiology, we then demonstrated that activation of the ATP receptors P2X or P2Y1 increases the neuronal firing of cholinergic neurons. Surprisingly, contrasting interactive effects were observed with nicotine exposure. For the P2X receptor, activation had no observable effect on acute nicotine-mediated activity, but during abstinence after 10 d of nicotine exposure, coexposure to nicotine and the P2X agonist potentiated neuronal activity in female, but not male, neurons. For P2Y1 signaling, a potentiated effect of the agonist and nicotine was observed with acute exposure, but not following extended nicotine exposure. These data reveal a complex interactive effect between nicotinic and ATP signaling in the adolescent brain and provide mechanistic insights into extracellular ATP signaling with sex-specific alterations of neuronal responses based on prior drug exposure.SIGNIFICANCE STATEMENT In these studies, it was discovered that nicotine induces extracellular ATP release in the medial habenula and subsequent activation of the ATP purinergic receptors increases habenular cholinergic neuronal firing in the adolescent brain. Interestingly, following extended nicotine exposure, nicotine was found to alter the interplay between purinergic and nicotinic signaling in a sex-specific manner. Together, these studies provide a novel understanding for the role of extracellular ATP in mediating habenular activity and reveal how nicotine exposure during adolescence alters these signaling mechanisms, which has important implications given the high incidence of e-cigarette/vape use by youth.


Subject(s)
Electronic Nicotine Delivery Systems , Habenula , Receptors, Purinergic P2 , Male , Adolescent , Female , Humans , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Synaptic Transmission , Cholinergic Neurons , Receptors, Purinergic P2/physiology , Adenosine Triphosphate/pharmacology
20.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569468

ABSTRACT

Tobacco smoking is one of the most serious health problems. Potentially lethal effects of nicotine for adults can occur with as little as 30 to 60 mg, although severe symptoms can arise with lower doses. Furthermore, the route of administration also influences the toxicity. Cytisine is one of the most popular medications in nicotinism treatment. Like nicotine, cytisine is a plant alkaloid, signaling through nicotinic acetylcholine receptors. Our study evaluated the effects of cytisine in nicotine-induced embryotoxic effects using zebrafish larvae. We examined the teratogenicity of nicotine and cytisine alone or in combination. Nicotine increased mortality and delayed hatching of zebrafish larvae in a dose-dependent manner. Cytisine did not affect mortality in a wide range of concentrations, and hatching delay was observed only at the highest concentrations, above 2 mM. Administering compounds together partially reduced the adverse teratogenic effect induced by nicotine alone. The protective effect of cytisine against the nicotine effect, observed in zebrafish, will contribute to future studies or treatments related to nicotine addiction or prenatal nicotine exposure in humans.


Subject(s)
Alkaloids , Receptors, Nicotinic , Humans , Animals , Nicotine/adverse effects , Zebrafish , Nicotinic Agonists/pharmacology , Varenicline , Benzazepines/pharmacology , Quinoxalines/pharmacology , Alkaloids/pharmacology , Alkaloids/therapeutic use , Azocines/toxicity , Quinolizines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...