Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Neurobiol Dis ; 144: 105046, 2020 10.
Article in English | MEDLINE | ID: mdl-32798728

ABSTRACT

Lysosomal Storage Diseases (LSD) are genetic diseases causing systemic and nervous system dysfunction. The glia-derived lipid binding protein Apolipoprotein D (ApoD) is required for lysosomal functional integrity in glial and neuronal cells, ensuring cell survival upon oxidative stress or injury. Here we test whether ApoD counteracts the pathogenic consequences of a LSD, Niemann Pick-type-A disease (NPA), where mutations in the acid sphingomyelinase gene result in sphingomyelin accumulation, lysosomal permeabilization and early-onset neurodegeneration. We performed a multivariable analysis of behavioral, cellular and molecular outputs in 12 and 24 week-old male and female NPA model mice, combined with ApoD loss-of-function mutation. Lack of ApoD in NPA mice accelerates cerebellar-dependent motor deficits, enhancing loss of Purkinje neurons. We studied ApoD expression in brain sections from a NPA patient and age-matched control, and the functional consequences of ApoD supplementation in primary human fibroblasts from two independent NPA patients and two control subjects. Cell viability, lipid peroxidation, and lysosomal functional integrity (pH, Cathepsin B activity, Galectin-3 exclusion) were examined. ApoD is endogenously overexpressed in NPA patients and NPA mouse brains and targeted to lysosomes of NPA patient cells, including Purkinje neurons and cultured fibroblasts. The accelerated lysosomal targeting of ApoD by oxidative stress is hindered in NPA fibroblasts, contributing to NPA lysosomes vulnerability. Exogenously added ApoD reduces NPA-prompted lysosomal permeabilization and alkalinization, reverts lipid peroxides accumulation, and significantly increases NPA cell survival. ApoD administered simultaneously to sphingomyelin overload results in complete rescue of cell survival. Our results reveal that ApoD protection of lysosomal integrity counteracts NPA pathology. ApoD supplementation could significantly delay not only the progression of NPA disease, but also of other LSDs through its beneficial effects in lysosomal functional maintenance.


Subject(s)
Apolipoproteins D/genetics , Lysosomes/metabolism , Motor Activity/genetics , Niemann-Pick Disease, Type A/physiopathology , Animals , Apolipoproteins D/pharmacology , Behavior, Animal , Cell Survival/drug effects , Cell Survival/genetics , Child, Preschool , Disease Progression , Humans , Mice , Mice, Knockout , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type A/metabolism , Open Field Test , Oxidative Stress/drug effects , Oxidative Stress/genetics , Paraquat , Permeability , Rotarod Performance Test , Sphingomyelin Phosphodiesterase/genetics
2.
Mol Genet Metab ; 130(1): 16-26, 2020 05.
Article in English | MEDLINE | ID: mdl-32088119

ABSTRACT

Acid Sphingomyelinase Deficiency (ASMD), or Niemann-Pick type A/B disease, is a rare lipid storage disorder leading to accumulation of sphingomyelin and its precursors primarily in macrophages. The disease has a broad phenotypic spectrum ranging from a fatal infantile form with severe neurological involvement (the infantile neurovisceral type) to a primarily visceral form with different degrees of pulmonary, liver, spleen and skeletal involvement (the chronic visceral type). With the upcoming possibility of treatment with enzyme replacement therapy, the need for biomarkers that predict or reflect disease progression has increased. Biomarkers should be validated for their use as surrogate markers of clinically relevant endpoints. In this review, clinically important endpoints as well as biochemical and imaging markers of ASMD are discussed and potential new biomarkers are identified. We suggest as the most promising biomarkers that may function as surrogate endpoints in the future: diffusion capacity measured by spirometry, spleen volume, platelet count, low-density lipoprotein cholesterol, liver fibrosis measured with a fibroscan, lysosphingomyelin and walked distance in six minutes. Currently, no biomarkers have been validated. Several plasma markers of lipid-laden cells, fibrosis or inflammation are of high potential as biomarkers and deserve further study. Based upon current guidelines for biomarkers, recommendations for the validation process are provided.


Subject(s)
Niemann-Pick Disease, Type A/blood , Niemann-Pick Disease, Type A/diagnostic imaging , Niemann-Pick Disease, Type B/blood , Niemann-Pick Disease, Type B/diagnostic imaging , Sphingolipids/metabolism , Biomarkers/blood , Biomarkers/metabolism , Bone Diseases/immunology , Bone Diseases/metabolism , Cardiovascular Diseases/blood , Cholesterol, LDL/blood , Humans , Liver Diseases/blood , Liver Diseases/diagnostic imaging , Liver Diseases/enzymology , Lung Diseases/diagnostic imaging , Lung Diseases/enzymology , Lung Diseases/metabolism , Macrophages/enzymology , Macrophages/immunology , Macrophages/metabolism , Niemann-Pick Disease, Type A/physiopathology , Niemann-Pick Disease, Type B/physiopathology , Spleen/diagnostic imaging , Spleen/growth & development , Spleen/pathology
3.
Ann Hepatol ; 18(4): 613-619, 2019.
Article in English | MEDLINE | ID: mdl-31122880

ABSTRACT

INTRODUCTION AND OBJECTIVES: Niemann-Pick disease type A (NPD-A) and B (NPD-B) are lysosomal storage diseases with a birth prevalence of 0.4-0.6/100,000. They are caused by a deficiency in acid sphingomyelinase, an enzyme encoded by SMPD1. We analyzed the phenotype and genotype of four unrelated Mexican patients, one with NPD-A and three with NPD-B. PATIENTS AND METHODS: Four female patients between 1 and 7 years of age were diagnosed with NPD-A or NPD-B by hepatosplenomegaly, among other clinical characteristics, and by determining the level of acid sphingomyelinase enzymatic activity and sequencing of the SMPD1 gene. Additionally, a 775bp amplicon of SMPD1 (from 11:6393835_6394609, including exons 5 and 6) was analyzed by capillary sequencing in a control group of 50 unrelated healthy Mexican Mestizos. RESULTS: An infrequent variant (c.1343A>G p.Tyr448Cys) was observed in two patients. One is the first NPD-A homozygous patient reported with this variant and the other a compound heterozygous NPD-B patient with the c.1829_1831delGCC p.Arg610del variant. Another compound heterozygous patient had the c.1547A>G p.His516Arg variant (not previously described in affected individuals) along with the c.1805G>A p.Arg602His variant. A new c.1263+8C>T pathogenic variant was encountered in a homozygous state in a NPD-B patient. Among the healthy control individuals there was a heterozygous carrier for the c.1550A>T (rs142787001) pathogenic variant, but none with the known pathogenic variants in the 11:6393835_6394609 region of SMPD1. CONCLUSIONS: The present study provides further NPD-A or B phenotype-genotype correlations. We detected a heterozygous carrier with a pathogenic variant in 1/50 healthy Mexican mestizos.


Subject(s)
Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type B/genetics , Sphingomyelin Phosphodiesterase/genetics , Adolescent , Adult , Child , Child, Preschool , Epistaxis/physiopathology , Female , Genetic Carrier Screening , Genotype , Growth Disorders/physiopathology , Healthy Volunteers , Hepatomegaly/physiopathology , Heterozygote , Humans , Infant , Liver/pathology , Liver/ultrastructure , Mexico , Niemann-Pick Disease, Type A/metabolism , Niemann-Pick Disease, Type A/pathology , Niemann-Pick Disease, Type A/physiopathology , Niemann-Pick Disease, Type B/metabolism , Niemann-Pick Disease, Type B/pathology , Niemann-Pick Disease, Type B/physiopathology , Phenotype , Sphingomyelin Phosphodiesterase/metabolism , Splenomegaly/physiopathology , Young Adult
4.
Skelet Muscle ; 9(1): 1, 2019 01 05.
Article in English | MEDLINE | ID: mdl-30611303

ABSTRACT

BACKGROUND: Niemann-Pick disease type A (NPDA), a disease caused by mutations in acid sphingomyelinase (ASM), involves severe neurodegeneration and early death. Intracellular lipid accumulation and plasma membrane alterations are implicated in the pathology. ASM is also linked to the mechanism of plasma membrane repair, so we investigated the impact of ASM deficiency in skeletal muscle, a tissue that undergoes frequent cycles of injury and repair in vivo. METHODS: Utilizing the NPDA/B mouse model ASM-/- and wild type (WT) littermates, we performed excitation-contraction coupling/Ca2+ mobilization and sarcolemma injury/repair assays with isolated flexor digitorum brevis fibers, proteomic analyses with quadriceps femoris, flexor digitorum brevis, and tibialis posterior muscle and in vivo tests of the contractile force (maximal isometric torque) of the quadriceps femoris muscle before and after eccentric contraction-induced muscle injury. RESULTS: ASM-/- flexor digitorum brevis fibers showed impaired excitation-contraction coupling compared to WT, a defect expressed as reduced tetanic [Ca2+]i in response to electrical stimulation and early failure in sustaining [Ca2+]i during repeated tetanic contractions. When injured mechanically by needle passage, ASM-/- flexor digitorum brevis fibers showed susceptibility to injury similar to WT, but a reduced ability to reseal the sarcolemma. Proteomic analyses revealed changes in a small group of skeletal muscle proteins as a consequence of ASM deficiency, with downregulation of calsequestrin occurring in the three different muscles analyzed. In vivo, the loss in maximal isometric torque of WT quadriceps femoris was similar immediately after and 2 min after injury. The loss in ASM-/- mice immediately after injury was similar to WT, but was markedly larger at 2 min after injury. CONCLUSIONS: Skeletal muscle fibers from ASM-/- mice have an impairment in intracellular Ca2+ handling that results in reduced Ca2+ mobilization and a more rapid decline in peak Ca2+ transients during repeated contraction-relaxation cycles. Isolated fibers show reduced ability to repair damage to the sarcolemma, and this is associated with an exaggerated deficit in force during recovery from an in vivo eccentric contraction-induced muscle injury. Our findings uncover the possibility that skeletal muscle functional defects may play a role in the pathology of NPDA/B disease.


Subject(s)
Excitation Contraction Coupling , Muscle, Skeletal/physiopathology , Niemann-Pick Disease, Type A/physiopathology , Niemann-Pick Disease, Type B/physiopathology , Sarcolemma/physiology , Animals , Calcium Signaling , Disease Models, Animal , Female , Male , Mice, Knockout , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Niemann-Pick Disease, Type A/metabolism , Niemann-Pick Disease, Type B/metabolism , Proteome , Recovery of Function , Sarcolemma/metabolism , Sphingomyelin Phosphodiesterase/genetics
5.
Pediatr Endocrinol Rev ; 13 Suppl 1: 674-81, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27491215

ABSTRACT

Two distinct metabolic abnormalities are included under the eponym Niemann-Pick disease (NPD). The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM). Patients with ASM deficiency are classified as having types A and B Niemann-Pick disease (NPD). Type A NPD patients exhibit hepatosplenomegaly, frequent pulmonary infections, and profound central nervous system involvement in infancy. They rarely survive beyond two years of age. Type B patients also have hepatosplenomegaly and progressive alterations of their lungs, but there are usually no central nervous system signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Recently, patients with phenotypes intermediate between types A and B NPD also have been identified. These individuals represent the expected continuum caused by inheriting different mutations in the ASM gene (SMPD1). Patients in the second category are designated as having type C NPD. Impaired intracellular trafficking of cholesterol causes type C NPD, and two distinct gene defects have been found. In this chapter only types A and B NPD will be discussed.


Subject(s)
Bone Marrow Transplantation , Enzyme Replacement Therapy , Genetic Therapy , Niemann-Pick Disease, Type A/therapy , Niemann-Pick Disease, Type B/therapy , Sphingomyelin Phosphodiesterase/therapeutic use , Age of Onset , Animals , Central Nervous System Diseases/physiopathology , Disease Models, Animal , Disease Progression , Hepatomegaly , Humans , Lung Diseases/physiopathology , Mutation , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type A/physiopathology , Niemann-Pick Disease, Type B/genetics , Niemann-Pick Disease, Type B/physiopathology , Phenotype , Sphingomyelin Phosphodiesterase/genetics , Splenomegaly
6.
Eur J Med Genet ; 59(4): 263-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26851525

ABSTRACT

BACKGROUND: Niemann-Pick disease type A (NPD-A) is a rare autosomal recessive lysosomal storage disorder caused by acid sphingomyelinase deficiency. Only a few cases have been documented in mainland China, and prenatal diagnosis has not been performed to date. In this study, the clinical and laboratory features of four Chinese patients with early-onset NPD-A were summarized. METHODS: Four patients with NPD-A were the firstborns of non-consanguineous parents from four unrelated Chinese families. Bone marrow analysis, acid sphingomyelinase assay and genetic studies were performed. SMPD1 gene studies on amniocytes were performed for the prenatal diagnosis of four fetuses from three families. RESULTS: Four patients were admitted at the age of 1-10 months due to jaundice, hepatosplenomegaly and psychomotor retardation. Liver histopathological analysis revealed glucolipid accumulation. Massive foamy histiocytes were found in the bone marrow. Acid sphingomyelinase activities of peripheral blood leukocytes were significantly decreased (4.05-21.9 nmol/h/mg protein, normal range 216.1-950.9 nmol/h/mg protein). Seven novel mutations (c.518-519insT, c.562_563insC, c.792Gdel, c.949G>A, c.1487_1499delACCGTGTGTACCA, c.1495T>C and c.1670T>C) of the SMPD1 gene were identified in four patients. Only one fetus had two mutations of the SMPD1 gene of amniocytes. The results suggested that the fetus was affected by NPD-A. The mother chose artificial abortion. The other three fetuses were not affected by NPD-A. No mutation of the SMPD1 gene was detected in the cultured amniocytes from the mothers. Postnatal genetic analysis and normal development of the three infants confirmed the prenatal diagnosis. CONCLUSIONS: Seven novel mutations associated with NPD-A were identified in the Chinese population. Prenatal diagnosis for four fetuses of three families was successfully performed by amniocyte gene analysis.


Subject(s)
Hepatomegaly/genetics , Niemann-Pick Disease, Type A/genetics , Prenatal Diagnosis , Sphingomyelin Phosphodiesterase/genetics , Amniocentesis , China , Female , Hepatomegaly/physiopathology , Humans , Infant , Male , Mutation , Niemann-Pick Disease, Type A/physiopathology , Pregnancy
7.
Mol Genet Metab ; 107(3): 526-33, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22818240

ABSTRACT

Niemann-Pick disease (NPD) is a neurovisceral lysosomal storage disorder caused by acid sphingomyelinase (ASM) deficiency, which can be categorized as either Niemann-Pick disease type A [NPD-A], with progressive neurological disease and death in early childhood, or as Niemann-Pick disease type B [NPD-B], with a more variable spectrum of manifestations. Enzyme replacement therapy (ERT) with recombinant sphingomyelinase is currently studied as potential treatment for NPD-B patients. The objective of this study is to characterize the clinical features of patients with ASM deficiency in the Netherlands and Belgium with focus on the natural disease course of NPD-B patients. Prospective and retrospective data on ASM deficient patients were collected in The Netherlands and part of Belgium. Patients with NPD-B that could be followed prospectively were evaluated every 6-12 months for pulmonary function tests, 6 minute walk test (6 MWT), imaging (bone marrow infiltration measured by QCSI, organ volumes by MRI and CT scan of the lungs) and biochemical markers. Twenty-five patients with ASM deficiency were identified (13 males, 12 females, median age 13years, range 1-59 years). Nine patients had died at the time of the study, including four NPD-A patients at the age of 1,1, 2, 3 and five NPDB patents at the age of 5, 6, 43, 56 and 60 years. There was a high prevalence of homozygosity and compound heterozygosity for the common p.Arg608del mutation in 43% and 19% of NPD-B patients, respectively. In NPD-B patients, thrombocytopenia was present in most, while anemia and leucopenia were less common (33% and 6 % respectively). HDL cholesterol was reduced in most patients. Pulmonary disease was severe in several patients. Follow-up up to 11 years revealed a gradual decrease in platelet count. Detailed investigations in 6 NPD-B patients with follow-up in 4 patients revealed remarkable stable disease parameters up to 6 years, with some decline in pulmonary function and 6 MWT. Bone marrow fat fractions were decreased, indicating the presence of storage macrophages. Lung involvement was not related to the extent of visceromegaly, cytopenia or bone marrow involvement. In conclusion, in NPD-B patients pulmonary disease is the most debilitating feature. Disease manifestations are mostly stable in attenuated patients. Bone marrow infiltration is a less prominent feature of the disease.


Subject(s)
Niemann-Pick Disease, Type A/physiopathology , Niemann-Pick Disease, Type B/physiopathology , Sphingomyelin Phosphodiesterase/genetics , Adolescent , Adult , Belgium , Biomarkers/analysis , Child , Child, Preschool , Female , Hepatomegaly/pathology , Humans , Infant , Lung/pathology , Male , Middle Aged , Mutation , Netherlands , Niemann-Pick Disease, Type A/enzymology , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type B/enzymology , Niemann-Pick Disease, Type B/genetics , Prospective Studies , Respiratory Function Tests , Retrospective Studies , Severity of Illness Index , Sphingomyelin Phosphodiesterase/metabolism , Splenomegaly/pathology , Tomography, X-Ray Computed
8.
J Dermatol Sci ; 67(3): 166-72, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22771321

ABSTRACT

BACKGROUND: Scleroderma (SSc) is characterized by excess production and deposition of extracellular matrix (ECM) proteins. Activated fibroblasts play a key role in fibrosis in SSc and are resistant to Fas-mediated apoptosis. Acid sphingomyelinase (ASMase), a major sphingolipid enzyme, plays an important role in the Fas-mediated apoptosis. OBJECTIVE: We investigated whether dysregulation of ASMase contributes to Fas-mediated apoptosis resistance in SSc fibroblasts. METHODS: Fibroblasts were isolated from SSc patients and healthy controls. Western blot was performed to analyze protein levels and quantitative real time RT-PCR was used to determine mRNA expression. Cells were transiently transfected with siRNA oligos against ASMase or transduced with adenoviruses overexpressing ASMase. Apoptosis was induced using anti-Fas antibody (1 µg/mL) and analyzed using caspase-3 antibody or Cell Death Detection ELISA. RESULTS: SSc fibroblasts showed increased resistance to Fas-mediated apoptosis. ASMase expression was decreased in SSc fibroblasts and Transforming Growth Factor beta (TGFß), the major fibrogenic cytokine involved in the pathogenesis of SSc, downregulated ASMase in normal fibroblasts. Forced expression of ASMase in SSc fibroblasts restored sensitivity of these cells to Fas-mediated apoptosis while blockade of ASMase was sufficient to induce partial resistance to Fas-induced apoptosis in normal fibroblasts. In addition, ASMase blockade decreased activity of protein phosphatase 2A (PP2A) through phosphorylation on Tyr(307) and resulted in activation of extracellular regulated kinase 1/2 (Erk1/2) and protein kinase B (Akt/PKB). CONCLUSION: In conclusion, this study suggests that ASMase deficiency promotes apoptosis resistance and contributes to activation of profibrotic signaling in SSc fibroblasts.


Subject(s)
Apoptosis , Fibroblasts/metabolism , Niemann-Pick Disease, Type A/complications , Scleroderma, Systemic/metabolism , Sphingomyelin Phosphodiesterase/metabolism , fas Receptor/metabolism , Cytokines/metabolism , Extracellular Matrix/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibrosis , Humans , Myofibroblasts/metabolism , Niemann-Pick Disease, Type A/physiopathology , Oligonucleotides/metabolism , Protein Phosphatase 2/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Transforming Growth Factor beta/metabolism , Wound Healing
10.
Exp Neurol ; 214(2): 181-92, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18778708

ABSTRACT

Niemann-Pick A (NP-A) is an inherited metabolic (lysosomal storage) disease characterized by neurovisceral accumulation of sphingomyelin due to deficiency of acid sphingomyelinase (ASM). An ASM knockout (ASMKO) mouse model of NP-A is available through targeted disruption of the parent gene. This study presents the pattern and time course of lysosomal pathology and neurodegeneration in the ASMKO mouse nervous system. Cells throughout the nervous system developed the classic foamy appearance associated with lysosomal storage disorders. Despite this, neurons were capable of retrogradely transporting dyes within established brain pathways comparable to control animals. A silver degeneration staining method demonstrated widespread damage in the form of 'classic' impregnation of cells, fibers and synaptic terminals. Of particular interest was the degeneration of Purkinje cells (PC) within the cerebellum, beginning by 7 weeks of age in parasagittal bands and culminating with near complete degeneration of this cell type by 20 weeks. In parallel, ASMKO mice had progressively deteriorating motor performance on two versions of the rotating rod test (accelerating and rocking). ASMKO mice at 5-7 weeks of age performed similarly to controls on both rotating rod tests, but performance sharply deteriorated between 7 and 20 weeks of age. This study further characterized the neuropathology associated with ASM deficiency, and identifies quantitative histological and behavioral endpoints for evaluation of therapeutic intervention in this authentic NP-A mouse model.


Subject(s)
Nerve Degeneration/pathology , Niemann-Pick Disease, Type A/pathology , Purkinje Cells/pathology , Sphingomyelin Phosphodiesterase/genetics , Animals , Behavior, Animal , Disease Models, Animal , Female , Lysosomes/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity , Nerve Degeneration/genetics , Nerve Degeneration/physiopathology , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type A/physiopathology , Silver Staining , Sphingomyelin Phosphodiesterase/metabolism
11.
Brain Res ; 1140: 195-204, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17289003

ABSTRACT

Cloned mouse C17.2 neural stem cells (NSCs) or human NSCs were injected into five CNS sites in very large numbers (100,000 cells/site, or a total of 500,000 cells) into 18 neonatal mice homozygous for a targeted deletion (knockout) of the acid sphingomyelinase (ASM) gene (called ASMKO mice), a faithful model of human Niemann-Pick type A (NP-A) disease, and into 10 wild-type mice, all on the C57BL/6J background. Injected mice were not immunosuppressed, and all survived to adulthood. Non-injected ASMKO controls had developed widespread neuronal and glial vacuolation and lysosomal accumulation of sphingomyelin and cholesterol when examined histologically at 16 weeks of age. Unlike children with NP-A disease, the ASMKO mice also lose cerebellar Purkinje neurons progressively, are ataxic, and show parallel progressive declines in rotorod performance. At 16 weeks NSC-injected mice showed a dramatic decrease in neuronal and glial vacuolation (by standard histological staining) and in cholesterol accumulation (by filipin fluorescence staining) throughout the cerebral neocortex, hippocampal formation, striatum and cerebellum, with lesser but clear improvement throughout the brainstem. Improvement was modestly but consistently better in human HFT13-injected than in mouse C17.2-injected ASMKO mice. Improvement in the ASMKO brains was more widespread than the distribution of NSCs, an indication that ASM must have been secreted and diffused at therapeutic concentrations beyond the territory occupied by NSCs. However, though Purkinje cell rescue has been achieved with NSCs in some other disease models, loss of Purkinje neurons and decline in rotorod performance were still present in injected ASMKO mice.


Subject(s)
Neurons/physiology , Niemann-Pick Disease, Type A/surgery , Stem Cell Transplantation/methods , Stem Cells/physiology , Animals , Animals, Newborn , Cholesterol/metabolism , Disease Models, Animal , Female , Fetus , Humans , Indoles , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/physiology , Niemann-Pick Disease, Type A/physiopathology , Rats , Sex Factors , Sphingomyelin Phosphodiesterase/deficiency , Staining and Labeling/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...