Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 981
Filter
1.
Oxid Med Cell Longev ; 2024: 5594090, 2024.
Article in English | MEDLINE | ID: mdl-39156220

ABSTRACT

Background: Type II diabetes mellitus (DM) is an increasing health problem that has negative impacts on patients and healthcare systems, worldwide. The development of new therapies with better efficacy, fewer side effects, and lower prices are urgently needed to treat this disease. Aim: To evaluate and compare the therapeutic effects of Nigella sativa (N. sativa) seed and oil on the biochemical parameters and regeneration of pancreatic islets (or islets of Langerhans) of streptozotocin (STZ)-induced diabetic rats. Materials and Methods: The diabetic rat model was prepared by administering a single dose of STZ (35 mg/kg body weight). The whole seed or the oil of N. sativa was administered to the diabetic and control groups for a period of 28 days, but not to the negative and STZ controls. Serum blood glucose, liver enzymes, lipid profile, and renal function tests (uric acid, albumin, total protein, urea, and creatinine) were measured in all groups. After the rats were euthanized, their pancreases were extracted, and then sectioned and fixed on slides in preparation before staining with H&E stain and immunohistochemical study. Results: Treatment of STZ-diabetic rats with N. sativa seeds or oil significantly improved their serum glucose levels, lipid profiles, and liver and renal functions as well as preserved the integrity of pancreatic ß cells. Conclusion: N. sativa seeds and oil demonstrate significant therapeutic improvement effects on DM and its related complications including effective protection of islets of Langerhans. The therapeutic benefits of N. sativa seeds and oil on DM and its related complications are comparable.


Subject(s)
Diabetes Mellitus, Experimental , Nigella sativa , Plant Oils , Seeds , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Seeds/chemistry , Rats , Plant Oils/pharmacology , Plant Oils/therapeutic use , Nigella sativa/chemistry , Male , Rats, Wistar , Immunohistochemistry , Blood Glucose/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Carum
2.
Molecules ; 29(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124928

ABSTRACT

Turmeric rhizomes (Curcuma longa) and black cumin seeds (Nigella sativa) are polyherbal ingredients used for the management of cancer and other chronic inflammatory diseases in Nigerian ethnomedicine. Previous studies have shown the antioxidant, anti-inflammatory, and anticancer activities of the individual plant extracts. However, the two spices have not been biologically potentiated in their combined form. Therefore, this study obtained essential oils (EOs) from the combined spices and evaluated their inhibitory effects on free radicals, protein denaturation, and cancer proliferation. The EOs were extracted by hydro-distillation (HD) and characterized by gas chromatography-mass spectrometry (GC-MS). In vitro antioxidant assessment was conducted based on DPPH, hydrogen peroxide (H2O2), nitric oxide (NO), and ferric ion (Fe3+) radical scavenging assays. The cytotoxicity of the oil against non-tumorigenic (HEK293) and cancerous (HepG2 and HeLa) cell lines was determined following the MTT cell viability assay. An in silico molecular docking analysis of the oil constituents was also performed. Six batches of EOs I-VI were afforded, comprising twenty-two major constituents, with aromatic Ar-turmerone being the most prominent compound. There was a marked improvement in the bioactivity of the oils upon repeated HD and as a combination. The batch VI oil exhibited the best activity, with a cytotoxicity (CC50) of 10.16 ± 1.69 µg/100 µL against the HepG2 cell line, which was comparable to 5-fluorouracil (standard, CC50 = 8.59 ± 1.33 µg/100 µL). In silico molecular docking suggested δ-curcumene, Ar-curcumene, Ar-turmerol, and Ar-turmerone among the promising compounds based on their high binding energy scores with NOX2, NF-κB, and mdm2 proteins. In conclusion, the oils from the turmeric-black cumin combined possess a considerable inhibition ability against free radicals, protein denaturation, and cancer proliferation. This study's findings further underscore the effectiveness of turmeric-black cumin as a polyherbal medicinal ingredient.


Subject(s)
Antioxidants , Cell Proliferation , Curcuma , Molecular Docking Simulation , Nigella sativa , Oils, Volatile , Humans , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Curcuma/chemistry , Cell Proliferation/drug effects , Nigella sativa/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Protein Denaturation , HeLa Cells , Free Radicals/chemistry , Hep G2 Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , HEK293 Cells , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
3.
Medicine (Baltimore) ; 103(32): e39243, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121267

ABSTRACT

BACKGROUND: Allergic rhinitis (AR) or seasonal allergy characterized by sneezing, nasal congestion, nasal itching, and nasal discharge, triggered by immune reactions to environmental allergens. Present day customers also monitor the personal improvements in the area of Evidence-Based natural medicines/supplements. METHODS: A randomized, double-blind, placebo-controlled study was conducted on 65 participants aged 18 to 60 years having 2 or more allergic symptoms like sneezing, rhinorrhoea, nasal obstruction, and nasal itching for a cumulative period greater than 1 hour per day. The study participants received a capsule of NSO (250 mg) with 2.5 mg piperine (BioPerine) as a bioavailability enhancer or a placebo, twice a day, after food for 15 days. The primary objectives were evaluated by mean change in Total Nasal Symptom Score and the duration of AR symptoms per day from baseline to Day 15. Secondary endpoints were changes in Total Ocular Symptoms Score, AR symptom frequency and severity, serum Immunoglobulin E levels, and Patient Global Impression of Change scale. Adverse events were monitored throughout the study. RESULTS: Sixty-five patients were enrolled and all of them completed the study, N = 33 in NSO and N = 32 in placebo. A significant reduction in Total Nasal Symptom Score and Total Ocular Symptoms Score was observed in the NSO group compared to the placebo, highlighting the potential of NSO in alleviating AR symptoms. The episodes of AR symptoms per day and the frequency of symptoms in 24 hours reduced significantly in 15 days in both groups, but the extent of improvement was significantly higher in NSO compared to placebo. Improvement in Patient Global Impression of Change was also significantly better in NSO compared to the placebo. Serum Immunoglobulin E levels decreased in NSO but were not significantly different from placebo. No clinically significant changes were observed in vital signs, liver and renal function, lipid profile, hematology, fasting blood sugar, or urine analysis at the end of the study. CONCLUSION: The result of the study demonstrates that NSO 250 mg with 2.5 mg piperine is an effective and well-tolerated supplement for the management of AR symptoms.


Subject(s)
Benzoquinones , Plant Oils , Rhinitis, Allergic, Seasonal , Humans , Double-Blind Method , Adult , Male , Female , Middle Aged , Plant Oils/therapeutic use , Plant Oils/administration & dosage , Benzoquinones/therapeutic use , Benzoquinones/administration & dosage , Benzoquinones/pharmacology , Rhinitis, Allergic, Seasonal/drug therapy , Young Adult , Adolescent , Piperidines/therapeutic use , Piperidines/administration & dosage , Treatment Outcome , Immunoglobulin E/blood , Polyunsaturated Alkamides/therapeutic use , Alkaloids , Carum , Nigella sativa , Benzodioxoles
4.
Prostaglandins Other Lipid Mediat ; 174: 106885, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39181437

ABSTRACT

This systematic review and meta-analysis of randomized controlled trials (RCTs) sought to evaluate the effects of Nigella sativa (N. sativa) consumption on glycemic index in adults. A systematic literature search up to December 2023 was completed in PubMed, Scopus, and Web of Science, to identify eligible RCTs. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as weighted mean differences with a 95 % confidence interval. Finally, a total of 30 studies were found to be eligible for this meta-analysis. The pooled results using random effects model indicated that N. sativa supplementation significantly reduced FBS (SMD: -1.71; 95 % CI: -2.11, -1.31, p <0.001; I2= 92.7 %, p-heterogeneity <0.001) and HA1c levels (SMD: -2.16; 95 % CI: -3.04, -1.29, p <0.001; I2= 95.7 %, p-heterogeneity <0.001) but not effect on insulin (SMD = 0.48; 95 % CI: -0.53, 1.48, P = 0.353; I2= 96.1 %, p-heterogeneity <0.001), and HOMA-IR (SMD: -0.56; 95 % CI: -1.47, 0.35, p=0.229; I2= 95.0 %, p-heterogeneity <0.001).Overall, the evidence supports the consumption of N. sativa to reduce FBS and HA1c levels. Additional research, featuring extended durations and robust study designs, is necessary to determine the ideal dosage and duration of N. sativa supplementation for achieving a positive impact on glycemic markers.


Subject(s)
Blood Glucose , Dietary Supplements , Nigella sativa , Randomized Controlled Trials as Topic , Humans , Nigella sativa/chemistry , Dietary Supplements/analysis , Blood Glucose/metabolism , Blood Glucose/drug effects , Adult , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Insulin/blood
5.
Front Immunol ; 15: 1416842, 2024.
Article in English | MEDLINE | ID: mdl-39188726

ABSTRACT

Psoriasis, a persistent immune-mediated inflammatory skin condition, affects approximately 2-3% of the global population. Current treatments for psoriasis are fraught with limitations, including adverse effects, high costs, and diminishing efficacy over time. Thymoquinone (TQ), derived from Nigella sativa seeds, exhibits promising anti-inflammatory, antioxidant, and immunomodulatory properties that could prove beneficial in managing psoriasis. However, TQ's hydrophobic nature and poor bioavailability have hindered its usefulness as a therapeutic agent. Recent research has strategically addressed these challenges by developing nano-thymoquinone (nano-TQ) formulations to enhance delivery and efficacy in treating psoriasis. Preclinical studies employing mouse models have demonstrated that nano-TQ effectively mitigates inflammation, erythema, scaling, epidermal thickness, and cytokine levels in psoriatic lesions. Various nano-TQ formulations, including nanoemulsions, lipid vesicles, nanostructured lipid carriers, and ethosomes, have been explored to improve solubility, facilitate skin penetration, ensure sustained release, and achieve site-specific targeting. Although clinical trials are currently scarce, the outcomes from in vitro and animal models are promising. The potential co-delivery of nano-TQ with other anti-psoriatic agents also presents avenues for further investigation.


Subject(s)
Benzoquinones , Psoriasis , Benzoquinones/administration & dosage , Benzoquinones/chemistry , Benzoquinones/therapeutic use , Humans , Animals , Psoriasis/drug therapy , Psoriasis/immunology , Nanoparticles/chemistry , Drug Compounding , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/administration & dosage , Nigella sativa/chemistry
6.
J Cancer Res Ther ; 20(4): 1224-1231, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39206985

ABSTRACT

PURPOSE: Malignant and aggressive, small cell lung cancer (SCLC) constitutes about 15% of all diagnosed lung cancer cases. With primary therapeutic options such as chemotherapy accompanied by debilitating side effects, interest has been soaring in the therapeutic competencies of herbs. The pharmacological driving force behind the beneficial properties of Nigella sativa is the quinone, thymoquinone (TQ). The anti-cancer effects of TQ on different cancers have been extensively studied. Nonetheless, only one paper in the entire National Center for Biotechnology Information (NCBI) database describes its effects on SCLC. A more detailed investigation is required. METHODS: The current study examined the impact of TQ in vitro on five SCLC cell lines and in vivo in a nude mouse xenograft model. The following in vitro effects of TQ on SCLC were evaluated: (a) cell viability; (b) apoptosis; (c) cell cycle arrest; (d) intracellular reactive oxygen species (ROS) levels, and (e) protein expression in concomitant signaling pathways. For the in vivo effects of TQ on SCLC, (a) tumor volume was measured, and (b) selected protein expression in selected concomitant signaling pathways was determined by Western blotting. RESULT: In general, TQ reduced cell viability, induced apoptosis and cell cycle arrest, depleted ROS, and altered protein expression in associated signaling pathways. Furthermore, TQ exhibited a tumor-suppressive effect in an H446 SCLC xenograft model. CONCLUSION: The cytotoxic impact of TQ arising from anti-cancer mechanisms was elucidated. The positive results obtained in this study warrant further investigation.


Subject(s)
Apoptosis , Benzoquinones , Lung Neoplasms , Nigella sativa , Reactive Oxygen Species , Small Cell Lung Carcinoma , Xenograft Model Antitumor Assays , Benzoquinones/pharmacology , Benzoquinones/therapeutic use , Animals , Nigella sativa/chemistry , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Mice, Nude , Cell Cycle Checkpoints/drug effects , Signal Transduction/drug effects
7.
Sci Rep ; 14(1): 17573, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39080438

ABSTRACT

The oil obtained from black cumin (Nigella sativa) seeds has many health-effective properties, which is used in food applications and in traditional medicine. One practical method to extract its oil is mixing with other seeds such as sunflower (Helianthus anuus) seeds before oil extraction by press. The effectiveness of the cold-press oil obtained from the mixture of black cumin seeds (BS) and sunflower seeds (SF) in different proportions 100:0, 95:5, 90:10, 85:15 and 0:100 (w/w) was studied to evaluate their qualitative properties including peroxide value (PV), acid value, p-anisidine value (AnV), pigments (carotenoid and chlorophyll) content, polyphenols, and profile of fatty acids during heating process (30-150 min at 180 °C). The results revealed that the acid and p-anisidine value of the all samples enhanced with the extension of the heating time, and the peroxide value increased at the beginning of the heating and then decreased with the prolongation of the heating time (p < .05). With the increase of temperature and heating time, the peroxide of sunflower oil increased with a higher slope and speed than that of black seed and blends oil. Changes in the PV and AnV were the fastest in sunflower oil. Blending and heating caused considerable changes in the fatty acid composition of oils, especially myristic, palmitic, and stearic acids. Moreover, the levels of certain unsaturated fatty acids, namely linoleic, oleic, and linolenic acids declined after heating. The carotenoids, chlorophyll and total phenol content decreased gradually during heating treatments. Among extracted oils, SF:BS (15%) had the good potential for stability, with total phenol content of 95.92 (Caffeic acid equivalents/100 g), PV of 2.16 (meq O2/kg), AV of 2.59 (mg KOH/g oil), and AnV of 8.08 after the heating. In conclusion, oil extracted from the mixture of SF and BS can be used as salad and cooking oils with a high content of bioactive components and positive nutritional properties.


Subject(s)
Helianthus , Hot Temperature , Nigella sativa , Plant Oils , Seeds , Nigella sativa/chemistry , Helianthus/chemistry , Seeds/chemistry , Plant Oils/chemistry , Plant Oils/analysis , Fatty Acids/analysis , Chlorophyll/analysis , Peroxides/analysis , Polyphenols/analysis , Polyphenols/chemistry , Sunflower Oil/chemistry , Carotenoids/analysis , Carotenoids/chemistry
8.
Toxicon ; 247: 107854, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38977085

ABSTRACT

The consumption of mushrooms containing α-Amanitin (α-A) can lead to severe liver damage. In this study, toxicological experiments were conducted to confirm the protective effects of pomegranate seed oil (PSO) and black cumin oil (BCO) against α-A-induced hepatotoxicity. Rats exposed once to α-A (3 mg/kg bw, i.p.) or saline alone (0.1 ml, i.p.) were either left untreated or treated with PSO or BCO at a dose of 2 ml/kg bw/day by oral gavage on the same day, and the treatment was continued for 7 days. Serum aminotransferases (ALT and AST), alkaline phosphatase (ALP) and total protein levels were measured and the active caspase 3 (cl-caspase 3) was evaluated by western blotting in the liver. Serum ALT, AST and ALP levels tended to decrease in the α-A exposed group, but no statistically significant difference was found compared to the saline group (p > 0.05). PSO and BCO did not affect serum liver function tests in rats exposed to saline or α-A. α-A toxicity was demonstrated by a significant decrease in serum total protein level (p < 0.05), a significant increase in liver cl-caspase 3 expression (p < 0.05), and structural liver damage mainly characterized by mononuclear inflammation and steatosis. When α-A exposed rats were treated with BCO, the increase in cl-caspase 3 was not inhibited, on the contrary BCO increased cl-caspase 3 in healthy rats (p < 0.05). PSO significantly ameliorated α-A-induced cl-caspase 3 increase and inflammatory histopathology in the liver. Both PSO and BCO completely prevented α-A-induced protein degradation. The findings indicate that PSO and BCO may protect liver functions against α-A-induced hepatotoxicity, encouraging future comprehensive studies to test them at different doses and frequency.


Subject(s)
Alpha-Amanitin , Chemical and Drug Induced Liver Injury , Liver , Plant Oils , Pomegranate , Seeds , Animals , Plant Oils/pharmacology , Rats , Pomegranate/chemistry , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Liver/drug effects , Liver/pathology , Male , Alpha-Amanitin/toxicity , Seeds/chemistry , Caspase 3/metabolism , Nigella sativa/chemistry , Alkaline Phosphatase/blood , Alanine Transaminase/blood , Rats, Sprague-Dawley , Carum
9.
Vet Parasitol ; 331: 110253, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032481

ABSTRACT

Gastrointestinal nematode (GIN) infection poses the most significant obstacle to the sustainable development of small ruminant (sheep and goat) farming globally. Resistance of GINs to synthetic anthelmintic drugs has led to rising interest in exploring alternative methods for parasite control, such as the utilization of bioactive plants with anti-parasitic properties. In this investigation, black seed (Nigella sativa), a shrub high in secondary antioxidant compounds, and sericea lespedeza (Lespedeza cuneata), a perennial legume high in tannins with anti-parasitic properties were combined to determine if two bioactive plants containing different types of secondary compounds can provide a stronger anti-parasitic effect than sericea lespedeza alone. In a 49-day trial, naturally parasitized 6-7-month-old intact male Spanish goats (n = 15/treatment) were fed pelletized feeds encompassing sericea lespedeza leaf meal (SL), a combination of black seed meal (BS) and sericea lespedeza leaf meal (BS-SL - 75 % SL, 25 % BS), or alfalfa (Medicago sativa, control parasitized; CONP), with an additional group of dewormed kids given the alfalfa pellets (Control treated; CONT). Weekly measurements of animal weights and samples of blood and feces were collected to determine the packed cell volume (PCV), GIN fecal egg counts (FEC), and coccidia fecal oocyte counts (FOC), respectively. All animals were processed at the end of the trial (60 total), with adult Haemonchus contortus worms recovered from the abomasum of each goat for counting and sex determination. Carcass weights were recorded after processing. Goats given the SL and BS-SL treatments had lower FEC (P<0.05) than the parasitized alfalfa (CONP) goats. At the end of the study, the SL and BS-SL groups' FOC values were lower (P < 0.05) than the CONT and CONP groups. A rise in PCV values was seen over time for all groups; SL, BS-SL, and CONT animals exhibited higher PCV values (P < 0.05) in comparison to the CONP goats. The parasitized goats fed SL-only pellets showed greater feed intake and animal body weights (P < 0.05) compared to goats fed BS-SL or alfalfa pellets. However, the treatments had no effect on the weight of the goats' carcasses. Although the H. contortus adult worm counts in the CONT goats (alfalfa-dewormed) were lower (P < 0.05) than in the CONP goats (alfalfa-parasitized), they did not differ from the SL or BS-SL animals. This study indicates that sericea lespedeza leaf meal pellet diet, either by itself or in combination with black seed meal, showed promising results as an anthelmintic and may prove to be an effective alternative to exclusive use of conventional deworming drugs. The addition of black seed did not appear to enhance the effectiveness of sericea lespedeza in this study.


Subject(s)
Animal Feed , Goat Diseases , Goats , Lespedeza , Nematode Infections , Animals , Goat Diseases/parasitology , Male , Animal Feed/analysis , Nematode Infections/veterinary , Nematode Infections/parasitology , Lespedeza/chemistry , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/prevention & control , Plant Leaves/chemistry , Gastrointestinal Diseases/veterinary , Gastrointestinal Diseases/parasitology , Diet/veterinary , Seeds/chemistry , Nigella sativa/chemistry , Nematoda/drug effects , Nematoda/physiology , Parasite Egg Count/veterinary , Feces/parasitology , Coccidia/drug effects , Coccidia/physiology , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Anthelmintics/administration & dosage
10.
BMC Complement Med Ther ; 24(1): 266, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997638

ABSTRACT

The growing global threat of antimicrobial resistance endangers both human and animal life, necessitating the urgent discovery of novel antimicrobial solutions. Medicinal plants hold promise as sources of potential antimicrobial compounds. In this study, we investigated the phytochemical constituents and microbicidal capabilities of the ethanolic extract from Nigella sativa (black seed). Gas chromatography analysis (GC) identified 11 compounds, among them thymoquinone, and thymol, contributing to antimicrobial and antioxidant properties. Antimicrobial assays demonstrated notable inhibition zones against broad spectra of bacteria, including Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Enterobacter, and Bacillus subtilis, along with potent antifungal activity against Aspergillus niger, Penicillium, and Candida albicans. Notably, when combined with antibiotics, the extract displayed exceptional synergistic antimicrobial efficacy. The black seed extract demonstrated membrane-damaging activity and disrupted virulence factors that protect microbes from antimicrobial agents, including the formation of bacterial biofilm and protease secretion. Thymoquinone, the primary active constituent of the extract, exhibited similar antimicrobial and ant virulence properties. In silico analysis targeting key regulators of quorum sensing and biofilm formation in P. aeruginosa, such as RhlG, LasR, and PqsR, showed a remarkable affinity of thymol and thymoquinone for these targets. Moreover, the N. sativa extract exhibited dose-dependent cytotoxicity against both the promastigote and amastigote forms of Leishmania tropica parasites, hinting at potential antiparasitic activity. In addition to its antimicrobial properties, the extract displayed potential antioxidant activity at a concentration of 400 µg/mL.


Subject(s)
Antioxidants , Nigella sativa , Phytochemicals , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nigella sativa/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Animals , Bacteria/drug effects , Seeds/chemistry
11.
J Ovarian Res ; 17(1): 144, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997723

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive age and the most common cause of infertility due to anovulation. PCOS in adolescents is concerning. Nigella sativa is effective in improving gonadotropins and sex hormones. The current study was designed to investigate the effect of Nigella sativa supplementation on PCOS symptoms and their severity in adolescents. METHODS: The current randomized clinical trial was conducted on 114 adolescents with PCOS who were referred to gynecologist offices and clinics in Gonabad, Iran from March 2022 to March 2023. Participants were randomly allocated to the intervention (Nigella sativa 1000 mg/day) and control (10 mg/day medroxyprogesterone from the 14th day of the cycle for 10 nights) groups. The study duration was 16 weeks. Ovarian volume (measured by ultrasound), anthropometric and blood pressure; serum testosterone, dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEA-S), luteinizing hormone (LH), hirsutism severity (Ferriman-Gallwey score) levels were evaluated before and after the study. RESULTS: Data from 103 participants (control group = 53, intervention group = 50) were analyzed. The mean age of participants was 17.0 (Interquartile range [IQR]:2.0). The mean difference in hirsutism score changes (p < 0.001), right (p = 0.002), and left (p = 0.010) ovarian volume, serum LH (p < 0.001) and testosterone (p = 0.001) were significantly higher in the intervention group compared to the control group. The frequency of oligomenorrhea, menometrorrhagia, and amenorrhea, were significantly reduced after the study in the intervention group compared to the control group (ps < 0.001). CONCLUSIONS: Short-term Nigella sativa supplementation may be effective in reducing ovarian volume and improving hormonal balance, and menstrual irregularities in adolescents with PCOS. Further research and long-term studies are warranted to validate the potential therapeutic effects of Nigella sativa in adolescents with PCOS. IRCT REGISTRATION NUMBER: IRCT20221017056209N1 Registration date: 2022-11-22.


Subject(s)
Nigella sativa , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/drug therapy , Female , Adolescent
12.
West Afr J Med ; 41(4): 372-380, 2024 04 30.
Article in English | MEDLINE | ID: mdl-39002164

ABSTRACT

BACKGROUND: Metabolic syndrome as defined by The National Cholesterol Education Panel-Adult Treatment Panel III (NCEPATP III), is the presence of obesity, dyslipidaemia, the elevation of arterial blood pressure, and glucose intolerance. It affects 25% to 40% of the adult population of Malaysia and is associated with other medical conditions, especially cardiovascular disease. In this systematic review, the objective is to assess the effects of Nigella Sativa on parameters that reflect metabolic syndromes, such as lipid profile, blood pressure, blood glucose, and anthropometry indices. METHODS: This systematic review was conducted by performing searches for relevant publications on two databases (PubMed and Scopus). The publication period was limited from January 2011 to December 2021. Cochrane collaboration tools were used for the risk of bias assessment of each trial. RESULT: Six out of 8 randomised controlled trials (n:776) demonstrated a significant improvement in lipid profile (p <0.05), 5 out of 7 trials (n:701) showed a significant reduction in glycaemic indices (p <0.05), 1 out of 5 trials (n:551) demonstrated significant improvements in blood pressure (p <0.05), and 2 out of 7 trials (n:705) showed a significant reduction in anthropometric measurements (p <0.05). CONCLUSION: Nigella Sativa has proved to have a significant positive effect on lipid profile and glycaemic index. The results showed in the parameters of blood pressure and anthropometric indices are less convincing, as results were inconsistent across studies. Nigella Sativa can therefore be recommended as an adjunct therapy for metabolic syndrome.


CONTEXTE: Le syndrome métabolique, tel que défini par le National Cholesterol Education Panel-Adult Treatment Panel III (NCEP-ATP III), se caractérise par la présence d'obésité, de dyslipidémie, d'hypertension artérielle et d'intolérance au glucose. Il affecte 25% à 40% de la population adulte en Malaisie et est associé à d' autres affections médicales, notamment les maladies cardiovasculaires. L'objectif de cette revue systématique est d'évaluer les effets de Nigella Sativa sur des paramètres reflétant le syndrome métabolique, tels que le profil lipidique, la pression artérielle, la glycémie et les indices anthropométriques. MÉTHODES: Cette revue systématique a été réalisée en effectuant des recherches de publications pertinentes dans deux bases de données (PubMed et Scopus). La période de publication était limitée de janvier 2011 à décembre 2021. Les outils de la collaboration Cochrane ont été utilisés pour évaluer le risque de biais de chaque essai. RÉSULTATS: Six des huit essais contrôlés randomisés (n : 776) ont montré une amélioration significative du profil lipidique (p <0,05), cinq des sept essais (n : 701) ont montré une réduction significative des indices glycémiques (p <0,05), un des cinq essais (n : 551) a démontré des améliorations significatives de la pression artérielle (p<0,05), et deux des sept essais (n : 705) ont montré une réduction significative des mesures anthropométriques (p <0,05). CONCLUSION: Nigella Sativa a prouvé avoir un effet positif significatif sur le profil lipidique et les indices glycémiques. Les résultats concernant les paramètres de la pression artérielle et des indices anthropométriques sont moins convaincants, car les résultats étaient incohérents entre les études. Nigella Sativa peut donc être recommandée comme thérapie adjuvante pour le syndrome métabolique. MOTS CLÉS: Nigella Sativa, Graines de nigelle, Essai contrôlé randomisé, Syndrome métabolique.


Subject(s)
Metabolic Syndrome , Nigella sativa , Randomized Controlled Trials as Topic , Metabolic Syndrome/drug therapy , Humans , Phytotherapy/methods , Blood Pressure/drug effects , Blood Glucose/drug effects , Seeds , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Lipids/blood
13.
Yale J Biol Med ; 97(2): 141-152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947105

ABSTRACT

Nodal regions, areas of intensive contact between Schwann cells and axons, may be exceptionally vulnerable to diabetes-induced changes because they are exposed to and impacted by the metabolic implications of diabetes. Insulin receptors, glucose transporters, Na+ and K+ channels, and mitochondria are abundant in nodes, all of which have been linked to the development and progression of Diabetic Peripheral Neuropathy (DPN) and Type 1 Diabetes Mellitus (T1DM)-associated cognitive impairment. Our study aimed to evaluate if the administration of Nigella sativa (NS) and Cassia angustifolia (CA) prevented diabetes-associated nervous system deficits in hyperglycemic mice. We developed T1DM mice through Streptozotocin (STZ) injections and validated the elevations in blood glucose levels. NS and CA were administered immediately upon the induction of diabetes. Behavioral analysis, histopathological evaluations, and assessment of molecular biomarkers (NR2A, MPZ, NfL) were performed to assess neuropathy and cognitive impairment. Improvements in memory, myelin loss, and the expression of synaptic proteins, even with the retention of hyperglycemia, were evident in the mice who were given a dose of herbal products upon the detection of hyperglycemia. NS was more beneficial in preventing memory impairments, demyelination, and synaptic dysfunction. The findings indicate that including these herbs in the diets of diabetic as well as pre-diabetic patients can reduce complications associated with T1DM, notably diabetic peripheral neuropathy and cognitive deficits associated with T1DM.


Subject(s)
Cognitive Dysfunction , Diabetic Neuropathies , Nigella sativa , Animals , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/prevention & control , Nigella sativa/chemistry , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/etiology , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Senna Plant
14.
Nutrients ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892617

ABSTRACT

Non-communicable diseases (NCDs) place a significant burden on global health and the healthcare systems which support it. Metabolic syndrome is a major risk factor for a large number of NCDs; however, treatments remain limited. Previous research has shown the protective benefits of edible dietary spices on key components of metabolic syndrome. Therefore we performed a 12-week double-blind, placebo-controlled, randomized, clinical trial to evaluate the effect of ginger (Zingiber officinale), cinnamon (Cinnamomum), and black seed (Nigella sativa) consumption on blood glucose, lipid profiles, and body composition in 120 participants with, or at risk of, metabolic syndrome. Each participant consumed 3 g/day of powder (spice or placebo). Data related to different parameters were collected from participants at the baseline, midpoint, and endpoint of the intervention. Over the 12-week interventions, there was an improvement in a number of biochemical indices of metabolic syndrome, including fasting blood glucose, HbA1c, LCL, and total cholesterol associated with supplementation with the spices when compared to a placebo. This study provides evidence to support the adjunct use of supplementation for those at risk of metabolic syndrome and its sequelae.


Subject(s)
Blood Glucose , Cinnamomum zeylanicum , Metabolic Syndrome , Spices , Zingiber officinale , Humans , Male , Female , Double-Blind Method , Middle Aged , Cinnamomum zeylanicum/chemistry , Blood Glucose/drug effects , Blood Glucose/metabolism , Adult , Nigella sativa/chemistry , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Body Composition/drug effects , Aged , Lipids/blood , Dietary Supplements
15.
Drug Des Devel Ther ; 18: 1917-1932, 2024.
Article in English | MEDLINE | ID: mdl-38828022

ABSTRACT

The oral cavity is an excellent place for various microorganisms to grow. Spectrococcus mutans and Spectrococcus sanguinis are Gram-negative bacteria found in the oral cavity as pioneer biofilm formers on the tooth surface that cause caries. Caries treatment has been done with antibiotics and therapeutics, but the resistance level of S. mutans and S. sanguinis bacteria necessitates the exploration of new drug compounds. Black cumin (Nigella sativa Linn.) is known to contain secondary metabolites that have antioxidant, antibacterial, anti-biofilm, anti-inflammatory and antifungal activities. The purpose of this review article is to present data on the potential of Nigella sativa Linn seeds as anti-biofilm. This article will discuss biofilm-forming bacteria, the resistance mechanism of antibiotics, the bioactivity of N. sativa extracts and seed isolates together with the Structure Activity Relationship (SAR) review of N. sativa compound isolates. We collected data from reliable references that will illustrate the potential of N. sativa seeds as anti-biofilm drug.


Subject(s)
Anti-Bacterial Agents , Biofilms , Dental Caries , Nigella sativa , Phytochemicals , Seeds , Biofilms/drug effects , Nigella sativa/chemistry , Seeds/chemistry , Dental Caries/microbiology , Dental Caries/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Humans , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Microbial Sensitivity Tests , Structure-Activity Relationship
16.
Sci Rep ; 14(1): 13666, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871793

ABSTRACT

An experimental setup was developed for simulating the field conditions to determine the force and power required for cutting cumin crops in dynamic conditions. The effect of cutter bar speeds, forward speeds, and blade type on cutting force and power requirement for cutting cumin were also studied. Experiments were carried out at three levels: cutter bar speeds, forward speeds, and blade type. The results showed that all the factors significantly affected cutting force. The cutting force followed a decreasing trend with the increase in cutter bar speed. Whereas it followed an increasing trend with the increase in forward speed. The maximum cutting force for all three blades was observed at a cutter bar speed of 2.00 strokes.s-1 and forward speed of 0.46 m.s-1. The idle power and actual power required for cutting the cumin crop were also determined based on the cutting force. The results obtained were validated by the power drawn from the power source while operating the cutter bar blades. The R2 values for Blade-B1, Blade-B2, and Blade-B3 were 0.90, 0.82, and 0.88, respectively. The cutting force was primarily affected by the cutter bar speed, resulting in PCR values of 74.20%, 82.32%, and 81.75% for Blade-B1, Blade-B2, and Blade-B3, respectively, followed by the forward speed, which also had an impact on PCR values of 16.60%, 15.27%, and 18.25% for Blade-B1, Blade-B2, and Blade-B3, respectively. The cutting force for Blade-B1, Blade-B2, and Blade-B3 varied from 15.96 to 58.97 N, 21.08 to 76.64 N, and 30.22 to 85.31, respectively, for the selected range of cutter bar speed and forward speed. Blade-B1 had 18 and 30% less power consumption than Blade-B2 and Blade-B3, respectively.


Subject(s)
Crops, Agricultural , Crops, Agricultural/growth & development , Nigella sativa , Crop Production/instrumentation , Crop Production/methods
17.
Sci Rep ; 14(1): 14509, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914674

ABSTRACT

In this study, the complete plastome sequence of Nigella sativa (black seed), was analyzed for the first time. The plastome spans approximately 154,120 bp, comprising four sections: the Large Single-Copy (LSC) (85,538 bp), the Small Single-Copy (SSC) (17,984 bp), and two Inverted Repeat (IR) regions (25,299 bp). A comparative study of N. sativa's plastome with ten other species from various genera in the Ranunculaceae family reveals substantial structural variations. The contraction of the inverted repeat region in N. sativa influences the boundaries of single-copy regions, resulting in a shorter plastome size than other species. When comparing the plastome of N. sativa with those of its related species, significant divergence is observed, particularly except for N. damascena. Among these, the plastome of A. glaucifolium displays the highest average pairwise sequence divergence (0.2851) with N. sativa, followed by A. raddeana (0.2290) and A. coerulea (0.1222). Furthermore, the study identified 12 distinct hotspot regions characterized by elevated Pi values (> 0.1). These regions include trnH-GUG-psbA, matK-trnQ-UUG, psbK-trnR-UCU, atpF-atpI, rpoB-psbD, ycf3-ndhJ, ndhC-cemA, petA-psaJ, trnN-GUU-ndhF, trnV-GAC-rps12, ycf2-trnI-CAU, and ndhA-ycf1. Approximately, 24 tandem and 48 palindromic and forward repeats were detected in N. sativa plastome. The analysis revealed 32 microsatellites with the majority being mononucleotide repeats. In the N. sativa plastome, phenylalanine had the highest number of codons (1982 codons), while alanine was the least common amino acid with 260 codons. A phylogenetic tree, constructed using protein-coding genes, revealed a distinct monophyletic clade comprising N. sativa and N. damascene, closely aligned with the Cimicifugeae tribe and exhibiting robust support. This plastome provides valuable genetic information for precise species identification, phylogenetic resolution, and evolutionary studies of N. sativa.


Subject(s)
Nigella sativa , Phylogeny , Nigella sativa/genetics , Nigella sativa/chemistry , Genome, Plastid
18.
J Med Food ; 27(6): 552-562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935918

ABSTRACT

Malaria impedes the ability of primary cells of the immune system to generate an efficacious inflammatory and immune response. Black seed (Nigella sativa) is a core dietary supplement and food additive in folklore. This study investigated the antioxidant, immunomodulatory, and anti-inflammatory effects of N. sativa cookies in Plasmodium berghei-infected mice. Aqueous extract of black seed was prepared, and the total phenol and flavonoid contents were determined. The mice were infected with standard inoculum of the strain NK65 P. berghei. The mice weight and behavioral changes were observed. The mice were fed with the N. sativa cookies (2.5%, 5%, and 10%) and 10 mg/kg chloroquine for 5 consecutive days after the infection was established. The reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase, catalase, and hematological parameters (red cell indices, leukocytes, and its differentials) in the infected mice were determined. The inflammatory mediators, C-reactive protein (CRP), and myeloperoxidase (MPO) were also assayed. The result revealed that black seed had a total phenol content of 18.73 mgGAE/g and total flavonoid content of 0.36 mgQUE/g. The infected mice treated with N. sativa cookies showed significantly decreased parasitaemia, MDA, and ROS levels. Furthermore, the results showed significant suppression in proinflammatory mediators (CRP and MPO) levels and enhanced antioxidant status of infected mice treated with N. sativa. The study suggests that N. sativa could function as nutraceuticals in the management of Plasmodium infection associated with inflammatory and immunomodulatory disorders.


Subject(s)
Malaria , Nigella sativa , Oxidative Stress , Plant Extracts , Plasmodium berghei , Seeds , Animals , Plasmodium berghei/drug effects , Malaria/drug therapy , Malaria/immunology , Oxidative Stress/drug effects , Mice , Nigella sativa/chemistry , Seeds/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Male , Antioxidants/pharmacology , Disease Models, Animal , Reactive Oxygen Species/metabolism , Malondialdehyde/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Food, Fortified , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Superoxide Dismutase/metabolism , Humans , Flavonoids/pharmacology , Flavonoids/therapeutic use , Peroxidase/metabolism
19.
BMC Complement Med Ther ; 24(1): 241, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902620

ABSTRACT

Iron nanoparticles comprise a significant class of inorganic nanoparticles, which discover applications in various zones by prudence of their few exciting properties. This study achieved the green synthesis of iron oxide nanoparticles (IONPs) by black cumin seed (Nigella sativa) extract, which acts as a reducing and capping agent. The iron nanoparticles and black cumin extract were synthesized in three different concentrations: (01:01, 02:04,01:04). UV-visible spectroscopy, XRD, FTIR, and AFM characterized the synthesized iron oxide nanoparticles. UV-visible spectra show the maximum absorbance peak of 01:01 concentration at 380 nm. The other concentrations, such as 02:04, peaked at 400 nm and 01:04 at 680 nm, confirming the formation of iron oxide nanoparticles. AFM analysis reveals the spherical shape of iron oxide nanoparticles. The XRD spectra reveal the (fcc) cubic crystal structure of the iron oxide nanoparticles. The FTIR analysis's peaks at 457.13, 455.20, and 457.13 cm-1 depict the characteristic iron nanoparticle synthesis. The black cumin extract-mediated iron oxide nanoparticles show substantial antibacterial, antifungal, antioxidant and anti-inflammatory activity in a dose-dependent manner.


Subject(s)
Anti-Infective Agents , Anti-Inflammatory Agents , Nigella sativa , Plant Extracts , Seeds , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Seeds/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nigella sativa/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Ferric Compounds/chemistry , Green Chemistry Technology
20.
J Food Sci ; 89(7): 4522-4534, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38853293

ABSTRACT

Diabetes causes elevated blood sugar levels, and it has been categorized as one of the most frequent causes of death worldwide. This work aimed to analyze and compare the nutraceutical and therapeutic efficacy of fenugreek seeds (FSs) (Trigonella foenum-graecum) and black cumin seeds (BCSs) (Nigella sativa) against streptozotocin-induced diabetes mellitus in albino rats. FS and BCSs were evaluated for proximate analysis, phytochemicals, and antioxidant activities. Male albino rats were used to evaluate the in vivo antidiabetic activities of these medicinal plants for 42 days. Blood samples were drawn at regular intervals of 1 week to analyze blood glucose, plasma insulin, and cholesterol levels and to determine the homeostatic model assessment of insulin resistance (HOMA IR) index. At the end of the trial, pancreas tissue was also collected for histological examination. Results of the proximate analysis showed the significant presence of moisture, ash, fat, protein, and fiber. Antioxidant parameters like 2,2-diphenyl-1-picrylhydrazyl, total phenolic content, and total flavonoid content were found to be significant. There was a significant (p < 0.05) decrease in blood glucose level, serum cholesterol level, and insulin resistance in treatment groups T3-T5. Insulin and body weight results of treatment groups were significant (p < 0.05) compared to streptozotocin-intoxicated animals. Histological examination revealed the nutraceutical impact of selected herbal plants due to enhancing impact on the size and the number of ß-cells in the pancreas. Findings of current research work explore the antidiabetic capacity of selected nutraceutical and medicinal plants.


Subject(s)
Antioxidants , Blood Glucose , Diabetes Mellitus, Experimental , Dietary Supplements , Hypoglycemic Agents , Insulin , Nigella sativa , Plant Extracts , Seeds , Trigonella , Animals , Trigonella/chemistry , Nigella sativa/chemistry , Male , Rats , Seeds/chemistry , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Blood Glucose/metabolism , Antioxidants/pharmacology , Antioxidants/analysis , Hypoglycemic Agents/pharmacology , Insulin/blood , Insulin Resistance , Rats, Wistar , Cholesterol/blood , Flavonoids/analysis , Flavonoids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL