Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Lancet Planet Health ; 8(7): e463-e475, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969474

ABSTRACT

BACKGROUND: Nipah virus is a zoonotic paramyxovirus responsible for disease outbreaks with high fatality rates in south and southeast Asia. However, knowledge of the potential geographical extent and risk patterns of the virus is poor. We aimed to establish an integrated spatiotemporal and phylogenetic database of Nipah virus infections in humans and animals across south and southeast Asia. METHODS: In this geospatial modelling analysis, we developed an integrated database containing information on the distribution of Nipah virus infections in humans and animals from 1998 to 2021. We conducted phylodynamic analysis to examine the evolution and migration pathways of the virus and meta-analyses to estimate the adjusted case-fatality rate. We used two boosted regression tree models to identify the potential ecological drivers of Nipah virus occurrences in spillover events and endemic areas, and mapped potential risk areas for Nipah virus endemicity. FINDINGS: 749 people and eight bat species across nine countries were documented as being infected with Nipah virus. On the basis of 66 complete genomes of the virus, we identified two clades-the Bangladesh clade and the Malaysia clade-with the time of the most recent common ancestor estimated to be 1863. Adjusted case-fatality rates varied widely between countries and were higher for the Bangladesh clade than for the Malaysia clade. Multivariable meta-regression analysis revealed significant relationships between case-fatality rate estimates and viral clade (p=0·0021), source country (p=0·016), proportion of male patients (p=0·036), and travel time to health-care facilities (p=0·036). Temperature-related bioclimate variables and the probability of occurrence of Pteropus medius were important contributors to both the spillover and the endemic infection models. INTERPRETATION: The suitable niches for Nipah virus are more extensive than previously reported. Future surveillance efforts should focus on high-risk areas informed by updated projections. Specifically, intensifying zoonotic surveillance efforts, enhancing laboratory testing capacity, and implementing public health education in projected high-risk areas where no human cases have been reported to date will be crucial. Additionally, strengthening wildlife surveillance and investigating potential modes of transmission in regions with documented human cases is needed. FUNDING: The Key Research and Development Program of China.


Subject(s)
Henipavirus Infections , Nipah Virus , Nipah Virus/physiology , Henipavirus Infections/epidemiology , Henipavirus Infections/transmission , Humans , Animals , Chiroptera/virology , Asia, Southeastern/epidemiology , Phylogeny , Zoonoses/epidemiology , Zoonoses/virology
2.
Emerg Microbes Infect ; 13(1): 2368217, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38865205

ABSTRACT

Nipah virus (NiV), a highly pathogenic Henipavirus in humans, has been responsible for annual outbreaks in recent years. Experiments involving live NiV are highly restricted to biosafety level 4 (BSL-4) laboratories, which impedes NiV research. In this study, we developed transcription and replication-competent NiV-like particles (trVLP-NiV) lacking N, P, and L genes. This trVLP-NiV exhibited the ability to infect and continuously passage in cells ectopically expressing N, P, and L proteins while maintaining stable genetic characteristics. Moreover, the trVLP-NiV displayed a favourable safety profile in hamsters. Using the system, we found the NiV nucleoprotein residues interacting with viral RNA backbone affected viral replication in opposite patterns. This engineered system was sensitive to well-established antiviral drugs, innate host antiviral factors, and neutralizing antibodies. We then established a high-throughput screening platform utilizing the trVLP-NiV, leading to the identification of tunicamycin as a potential anti-NiV compound. Evidence showed that tunicamycin inhibited NiV replication by decreasing the infectivity of progeny virions. In conclusion, this trVLP-NiV system provided a convenient and versatile molecular tool for investigating NiV molecular biology and conducting antiviral drug screening under BSL-2 conditions. Its application will contribute to the development of medical countermeasures against NiV infections.


Subject(s)
Henipavirus Infections , Nipah Virus , Virus Replication , Nipah Virus/physiology , Nipah Virus/genetics , Nipah Virus/drug effects , Animals , Cricetinae , Humans , Henipavirus Infections/virology , Transcription, Genetic , Virion/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Antiviral Agents/pharmacology , Vero Cells , Chlorocebus aethiops , Cell Line , RNA, Viral/genetics
3.
J Virol ; 98(6): e0050324, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38780245

ABSTRACT

The henipaviruses, including Nipah virus (NiV) and Hendra virus (HeV), are biosafety level 4 (BSL-4) zoonotic pathogens that cause severe neurological and respiratory disease in humans. To study the replication machinery of these viruses, we developed robust minigenome systems that can be safely used in BSL-2 conditions. The nucleocapsid (N), phosphoprotein (P), and large protein (L) of henipaviruses are critical elements of their replication machinery and thus essential support components of the minigenome systems. Here, we tested the effects of diverse combinations of the replication support proteins on the replication capacity of the NiV and HeV minigenomes by exchanging the helper plasmids coding for these proteins among the two viruses. We demonstrate that all combinations including one or more heterologous proteins were capable of replicating both the NiV and HeV minigenomes. Sequence alignment showed identities of 92% for the N protein, 67% for P, and 87% for L. Notably, variations in amino acid residues were not concentrated in the N-P and P-L interacting regions implying that dissimilarities in amino acid composition among NiV and HeV polymerase complex proteins may not impact their interactions. The observed indiscriminate activity of NiV and HeV polymerase complex proteins is different from related viruses, which can support the replication of heterologous genomes only when the whole polymerase complex belongs to the same virus. This newly observed promiscuous property of the henipavirus polymerase complex proteins likely attributed to their conserved interaction regions could potentially be harnessed to develop universal anti-henipavirus antivirals.IMPORTANCEGiven the severity of disease induced by Hendra and Nipah viruses in humans and the continuous emergence of new henipaviruses as well as henipa-like viruses, it is necessary to conduct a more comprehensive investigation of the biology of henipaviruses and their interaction with the host. The replication of henipaviruses and the development of antiviral agents can be studied in systems that allow experiments to be performed under biosafety level 2 conditions. Here, we developed robust minigenome systems for the Nipah virus (NiV) and Hendra virus (HeV) that provide a convenient alternative for studying NiV and HeV replication. Using these systems, we demonstrate that any combination of the three polymerase complex proteins of NiV and HeV could effectively initiate the replication of both viral minigenomes, which suggests that the interaction regions of the polymerase complex proteins could be effective targets for universal and effective anti-henipavirus interventions.


Subject(s)
Genome, Viral , Nipah Virus , Virus Replication , Nipah Virus/genetics , Nipah Virus/physiology , Humans , Viral Proteins/metabolism , Viral Proteins/genetics , Hendra Virus/genetics , Hendra Virus/metabolism , Hendra Virus/physiology , Animals , Henipavirus/genetics , Henipavirus/metabolism , Henipavirus Infections/virology , Phosphoproteins/metabolism , Phosphoproteins/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Cell Line
4.
J Integr Neurosci ; 23(5): 90, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38812392

ABSTRACT

The genome of the Nipah virus (NiV) encodes a variety of structural proteins linked to a diverse array of symptoms, including fevers, headaches, somnolence, and respiratory impairment. In instances of heightened severity, it can also invade the central nervous system (CNS), resulting in more pronounced problems. This work investigates the effects of NiV on the blood-brain barrier (BBB), the vital physiological layer responsible for safeguarding the CNS by regulating the passage of chemicals into the brain selectively. To achieve this, the researchers (MMJAO, AM and MNMD) searched a variety of databases for relevant articles on NiV and BBB disruption, looking for evidence of work on inflammation, immune response (cytokines and chemokines), tight junctions (TJs), and basement membranes related to NiV and BBB. Based on these works, it appears that the affinity of NiV for various receptors, including Ephrin-B2 and Ephrin-B3, has seen many NiV infections begin in the respiratory epithelium, resulting in the development of acute respiratory distress syndrome. The virus then gains entry into the circulatory system, offering it the potential to invade brain endothelial cells (ECs). NiV also has the ability to infect the leukocytes and the olfactory pathway, offering it a "Trojan horse" strategy. When NiV causes encephalitis, the CNS generates a strong inflammatory response, which makes the blood vessels more permeable. Chemokines and cytokines all have a substantial influence on BBB disruption, and NiV also has the ability to affect TJs, leading to disturbances in the structural integrity of the BBB. The pathogen's versatility is also shown by its capacity to impact multiple organ systems, despite particular emphasis on the CNS. It is of the utmost importance to comprehend the mechanisms by which NiV impacts the integrity of the BBB, as such comprehension has the potential to inform treatment approaches for NiV and other developing viral diseases. Nevertheless, the complicated pathophysiology and molecular pathways implicated in this phenomenon have offered several difficult challenges to researchers to date, underscoring the need for sustained scientific investigation and collaboration in the ongoing battle against this powerful virus.


Subject(s)
Blood-Brain Barrier , Henipavirus Infections , Nipah Virus , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/virology , Nipah Virus/physiology , Humans , Henipavirus Infections/metabolism , Henipavirus Infections/virology , Henipavirus Infections/physiopathology , Animals , Viral Tropism/physiology
5.
Viruses ; 15(4)2023 04 13.
Article in English | MEDLINE | ID: mdl-37112941

ABSTRACT

Respiratory tract epithelium infection plays a primary role in Nipah virus (NiV) pathogenesis and transmission. Knowledge about infection dynamics and host responses to NiV infection in respiratory tract epithelia is scarce. Studies in non-differentiated primary respiratory tract cells or cell lines indicate insufficient interferon (IFN) responses. However, studies are lacking in the determination of complex host response patterns in differentiated respiratory tract epithelia for the understanding of NiV replication and spread in swine. Here we characterized infection and spread of NiV in differentiated primary porcine bronchial epithelial cells (PBEC) cultivated at the air-liquid interface (ALI). After the initial infection of only a few apical cells, lateral spread for 12 days with epithelium disruption was observed without releasing substantial amounts of infectious virus from the apical or basal sides. Deep time course proteomics revealed pronounced upregulation of genes related to type I/II IFN, immunoproteasomal subunits, transporter associated with antigen processing (TAP)-mediated peptide transport, and major histocompatibility complex (MHC) I antigen presentation. Spliceosomal factors were downregulated. We propose a model in which NiV replication in PBEC is slowed by a potent and broad type I/II IFN host response with conversion from 26S proteasomes to immunoproteasomal antigen processing and improved MHC I presentation for adaptive immunity priming. NiV induced cytopathic effects could reflect the focal release of cell-associated NiV, which may contribute to efficient airborne viral spread between pigs.


Subject(s)
Nipah Virus , Animals , Swine , Nipah Virus/physiology , Proteome/metabolism , Epithelial Cells , Virus Replication , Respiratory Mucosa , Cells, Cultured
6.
Essays Biochem ; 66(7): 915-934, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36148633

ABSTRACT

Measles, Nipah and Hendra viruses are severe human pathogens within the Paramyxoviridae family. Their non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the viral RNA-dependent-RNA-polymerase (RpRd) for transcription and replication. The RpRd is a complex made of the large protein (L) and of the phosphoprotein (P), the latter serving as an obligate polymerase cofactor and as a chaperon for N. Both the N and P proteins are enriched in intrinsically disordered regions (IDRs), i.e. regions devoid of stable secondary and tertiary structure. N possesses a C-terminal IDR (NTAIL), while P consists of a large, intrinsically disordered N-terminal domain (NTD) and a C-terminal domain (CTD) encompassing alternating disordered and ordered regions. The V and W proteins, two non-structural proteins that are encoded by the P gene via a mechanism of co-transcriptional edition of the P mRNA, are prevalently disordered too, sharing with P the disordered NTD. They are key players in the evasion of the host antiviral response and were shown to phase separate and to form amyloid-like fibrils in vitro. In this review, we summarize the available information on IDRs within the N, P, V and W proteins from these three model paramyxoviruses and describe their molecular partnership. We discuss the functional benefit of disorder to virus replication in light of the critical role of IDRs in affording promiscuity, multifunctionality, fine regulation of interaction strength, scaffolding functions and in promoting liquid-liquid phase separation and fibrillation.


Subject(s)
Hendra Virus , Measles virus , Nipah Virus , Virus Replication , Hendra Virus/genetics , Hendra Virus/physiology , Nucleoproteins/chemistry , Nucleoproteins/genetics , RNA , Measles virus/genetics , Measles virus/physiology , Nipah Virus/genetics , Nipah Virus/physiology
7.
Viruses ; 14(9)2022 09 16.
Article in English | MEDLINE | ID: mdl-36146863

ABSTRACT

Nipah virus is a relatively newly discovered emerging virus on the WHO list of priority pathogens which has the potential to cause outbreaks with high fatality rates. Whilst progress is being made in the development of animal models for evaluating vaccines and therapies, some of the more fundamental data on Nipah virus are lacking. We performed studies to generate novel information on the aerosol survival of Nipah virus and to look at the efficacy of two common disinfectants. We also performed studies to evaluate the inactivation of Nipah virus by using neutral buffered formalin. Nipah virus was relatively stable in a small particle (1-5 µm) aerosol in the dark, with it having a decay rate of 1.46%min-1. Sodium hypochlorite (at 10%) and ethanol (at 80%) reduced the titre of Nipah virus to undetectable levels. Nipah virus that was in tissue culture medium was also inactivated after 24 h in the presence of 10% formalin.


Subject(s)
Disinfectants , Henipavirus Infections , Nipah Virus , Aerosols , Animals , Disinfectants/pharmacology , Disinfection , Ethanol , Formaldehyde/pharmacology , Nipah Virus/physiology , Sodium Hypochlorite/pharmacology , Virus Inactivation
8.
Viruses ; 14(7)2022 07 12.
Article in English | MEDLINE | ID: mdl-35891503

ABSTRACT

Nipah virus (NiV) is a zoonotic paramyxovirus with a fatality rate of up to 92% in humans. While several pathogenic mechanisms used by NiV to counteract host immune defense responses have been described, all of the processes that take place in cells during infection are not fully characterized. Here, we describe the formation of ordered intracellular structures during NiV infection. We observed that these structures are formed specifically during NiV infection, but not with other viruses from the same Mononegavirales order (namely Ebola virus) or from other orders such as Bunyavirales (Junín virus). We also determined the kinetics of the appearance of these structures and their cellular localization at the cellular periphery. Finally, we confirmed the presence of these NiV-specific ordered structures using structured illumination microscopy (SIM), as well as their localization by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and correlative light and electron microscopy (CLEM). Herein, we describe a cytopathogenic mechanism that provides a new insight into NiV biology. These newly described ordered structures could provide a target for novel antiviral approaches.


Subject(s)
Ebolavirus , Henipavirus Infections , Nipah Virus , Paramyxovirinae , Antiviral Agents , Humans , Nipah Virus/physiology
9.
Viruses ; 14(5)2022 05 15.
Article in English | MEDLINE | ID: mdl-35632791

ABSTRACT

Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe disease in humans and livestock. Due to its high pathogenicity in humans and the lack of available vaccines and therapeutics, NiV needs to be handled in biosafety level 4 (BSL-4) laboratories. Safe inactivation of samples containing NiV is thus necessary to allow further processing in lower containment areas. To date, there is only limited information available on NiV inactivation methods validated by BSL-4 facilities that can be used as a reference. Here, we compare some of the most common inactivation methods in order to evaluate their efficacy at inactivating NiV in infected cells, supernatants and organs. Thus, several physical and chemical inactivation methods, and combinations thereof, were assessed. Viral replication was monitored for 3 weeks and NiV presence was assessed by RT-qPCR, plaque assay and indirect immunofluorescence. A total of nineteen methods were shown to reduce NiV infectious particles in cells, supernatants and organs to undetectable levels. Therefore, we provide a list of methods for the safe and efficient inactivation of NiV.


Subject(s)
Henipavirus Infections , Nipah Virus , Humans , Nipah Virus/physiology , Virus Replication
10.
J Mol Biol ; 434(10): 167551, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35317998

ABSTRACT

To understand the dynamic interactions between the phosphoprotein (P) and the nucleoprotein (N) within the transcription/replication complex of the Paramyxoviridae and to decipher their roles in regulating viral multiplication, we characterized the structural properties of the C-terminal X domain (PXD) of Nipah (NiV) and Hendra virus (HeV) P protein. In crystals, isolated NiV PXD adopted a two-helix dimeric conformation, which was incompetent for binding its partners, but in complex with the C-terminal intrinsically disordered tail of the N protein (NTAIL), it folded into a canonical 3H bundle conformation. In solution, SEC-MALLS, SAXS and NMR spectroscopy experiments indicated that both NiV and HeV PXD were larger in size than expected for compact proteins of the same molecular mass and were in conformational exchange between a compact three-helix (3H) bundle and partially unfolded conformations, where helix α3 is detached from the other two. Some measurements also provided strong evidence for dimerization of NiV PXD in solution but not for HeV PXD. Ensemble modeling of experimental SAXS data and statistical-dynamical modeling reconciled all these data, yielding a model where NiV and HeV PXD exchanged between different conformations, and where NiV but not HeV PXD formed dimers. Finally, recombinant NiV comprising a chimeric P carrying HeV PXD was rescued and compared with parental NiV. Experiments carried out in cellula demonstrated that the replacement of PXD did not significantly affect the replication dynamics while caused a slight virus attenuation, suggesting a possible role of the dimerization of NiV PXD in viral replication.


Subject(s)
Hendra Virus , Nipah Virus , Nucleocapsid Proteins , Phosphoproteins , Viral Proteins , Virus Replication , Hendra Virus/genetics , Hendra Virus/physiology , Humans , Nipah Virus/genetics , Nipah Virus/physiology , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Domains , Protein Folding , Protein Multimerization , Scattering, Small Angle , Viral Proteins/chemistry , Viral Proteins/genetics , X-Ray Diffraction
11.
Infect Disord Drug Targets ; 22(4): e170122200296, 2022.
Article in English | MEDLINE | ID: mdl-35078400

ABSTRACT

Many hospitals are teetering on the edge of being overwhelmed, with many already there because of the COVID-19 pandemic. Moreover, a recent report has also warned about the Nipah virus (NiV). NiV is a pleomorphic enveloped virus that belongs to the Paramyxoviridae family (genus Henipavirus); it affects both the respiratory and central nervous systems, with a fatality rate ranging from 40% to 75%, as documented by the World Health Organization. The first reported NiV outbreak was in early 1999 in Malaysia among people who contacted infected pigs. NiV also affected Bangladesh and India, where the main infection route was the consumption of raw date palm sap contaminated by bats. The World Health Organization has listed NiV as one of the emerging pathogens that can lead to severe outbreaks at any moment in the future with limited medical preparations and only a few projects in pharmaceutical firms. There is no licensed treatment for human use against NiV until now, and the management is limited to supportive care and symptomatic treatment. In severe cases with neurologic and respiratory complications, intensive care is needed. This article reviews the published literature and highlights the latest updates about this emerging pathogen and the methods to avoid the spread of this disease during this critical period.


Subject(s)
COVID-19 , Henipavirus Infections , Nipah Virus , Animals , Bangladesh/epidemiology , Disease Outbreaks , Henipavirus Infections/drug therapy , Henipavirus Infections/epidemiology , Humans , Nipah Virus/physiology , Pandemics , Swine
12.
Commun Biol ; 4(1): 1292, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34785771

ABSTRACT

Nipah virus (NiV) is a highly pathogenic emerging bat-borne Henipavirus that has caused numerous outbreaks with public health concerns. It is able to inhibit the host innate immune response. Since the NF-κB pathway plays a crucial role in the innate antiviral response as a major transcriptional regulator of inflammation, we postulated its implication in the still poorly understood NiV immunopathogenesis. We report here that NiV inhibits the canonical NF-κB pathway via its nonstructural W protein. Translocation of the W protein into the nucleus causes nuclear accumulation of the cellular scaffold protein 14-3-3 in both African green monkey and human cells infected by NiV. Excess of 14-3-3 in the nucleus was associated with a reduction of NF-κB p65 subunit phosphorylation and of its nuclear accumulation. Importantly, W-S449A substitution impairs the binding of the W protein to 14-3-3 and the subsequent suppression of NF-κB signaling, thus restoring the production of proinflammatory cytokines. Our data suggest that the W protein increases the steady-state level of 14-3-3 in the nucleus and consequently enhances 14-3-3-mediated negative feedback on the NF-κB pathway. These findings provide a mechanistic model of W-mediated disruption of the host inflammatory response, which could contribute to the high severity of NiV infection.


Subject(s)
Immunity, Innate/physiology , Nipah Virus/physiology , Signal Transduction/immunology , Viral Proteins/metabolism , Animals , Cell Line , Cell Nucleus/immunology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , NF-kappa B , Nipah Virus/genetics
13.
J Virol Methods ; 298: 114287, 2021 12.
Article in English | MEDLINE | ID: mdl-34530012

ABSTRACT

Henipaviruses, Hendra (HeV) and Nipah (NiV), are highly pathogenic zoonotic agents that pose a serious health risk to human life, and as such are restricted to physical containment 4 (PC4) laboratories. For further analysis of virus-infected biological specimens, it is necessary to ensure absolute inactivation of any infectious virus present before removal from the PC4 laboratory. To evaluate the inactivation of HeV and NiV within infected samples, two chemical inactivation methods were assessed. Henipavirus-infected cell monolayers treated with 4 % paraformaldehyde (PFA) showed the complete inactivation of infectious virus, with an inactivation period of 15 min resulting in more than 8-log decrease in infectious titre. NiV-infected tissue samples treated with 10 % neutral-buffered formalin (NBF) showed a complete reduction of infectious virus in 7/8 ferret organs incubated for 24 h, with the remaining tissue demonstrating complete virus inactivation after 48 h. The chemical inactivation methods described herein evaluated two simple methods of henipavirus inactivation, resulting in the complete inactivation of infectious virus - an essential requirement for the safe removal and handling of biological samples from the PC4 laboratory.


Subject(s)
Hendra Virus , Henipavirus Infections , Henipavirus , Nipah Virus , Animals , Containment of Biohazards , Ferrets , Henipavirus Infections/prevention & control , Henipavirus Infections/veterinary , Humans , Laboratories , Nipah Virus/physiology
14.
J Virol ; 95(9)2021 04 12.
Article in English | MEDLINE | ID: mdl-33568505

ABSTRACT

Nipah virus (NiV) is a zoonotic bat henipavirus in the family Paramyxoviridae NiV is deadly to humans, infecting host cells by direct fusion of the viral and host cell plasma membranes. This membrane fusion process is coordinated by the receptor-binding attachment (G) and fusion (F) glycoproteins. Upon G-receptor binding, F fuses membranes via a cascade that sequentially involves F-triggering, fusion pore formation, and viral or genome entry into cells. Using NiV as an important paramyxoviral model, we identified two novel regions in F that modulate the membrane fusion cascade. For paramyxoviruses and other viral families with class I fusion proteins, the heptad repeat 1 (HR1) and HR2 regions in the fusion protein prefusion conformation bind to form a six-helix bundle in the postfusion conformation. Here, structural comparisons between the F prefusion and postfusion conformations revealed that a short loop region (N1) undergoes dramatic spatial reorganization and a short alpha helix (N4) undergoes secondary structural changes. The roles of the N1 and N4 regions during the membrane fusion cascade, however, remain unknown for henipaviruses and paramyxoviruses. By performing alanine scanning mutagenesis and various functional analyses, we report that specific residues within these regions alter various steps in the membrane fusion cascade. While the N1 region affects early F-triggering, the N4 region affects F-triggering, F thermostability, and extensive fusion pore expansion during syncytium formation, also uncovering a link between F-G interactions and F-triggering. These novel mechanistic roles expand our understanding of henipaviral and paramyxoviral F-triggering, viral entry, and cell-cell fusion (syncytia), a pathognomonic feature of paramyxoviral infections.IMPORTANCE Henipaviruses infect bats, agriculturally important animals, and humans, with high mortality rates approaching ∼75% in humans. Known human outbreaks have been concentrated in Southeast Asia and Australia. Furthermore, about 20 new henipaviral species have been recently discovered in bats, with geographical spans in Asia, Africa, and South America. The development of antiviral therapeutics requires a thorough understanding of the mechanism of viral entry into host cells. In this study, we discovered novel roles of two regions within the fusion protein of the deadly henipavirus NiV. Such roles were in allowing viral entry into host cells and cell-cell fusion, a pathological hallmark of this and other paramyxoviruses. These novel roles were in the previously undescribed N1 and N4 regions within the fusion protein, modulating early and late steps of these important processes of viral infection and henipaviral disease. Notably, this knowledge may apply to other henipaviruses and more broadly to other paramyxoviruses.


Subject(s)
Henipavirus Infections/virology , Membrane Fusion , Nipah Virus/physiology , Viral Fusion Proteins/chemistry , Virus Internalization , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Protein Conformation , Protein Conformation, alpha-Helical , Vero Cells
15.
Biophys Chem ; 270: 106537, 2021 03.
Article in English | MEDLINE | ID: mdl-33450550

ABSTRACT

Nipah virus (NiV) infections are highly contagious and can cause severe febrile encephalitis. An outbreak of NiV infection has reported high mortality rates in Southeast Asian countries including Bangladesh, East Timor, Malaysia, Papua New Guinea, Vietnam, Cambodia, Indonesia, Madagascar, Philippines, Thailand and India. Considering the high risk for an epidemic outbreak, the World Health Organization (WHO) declared NiV as an emerging priority pathogen. However, there are no effective therapeutics or any FDA approved drugs available for the treatment of this infection. Among the known nine proteins of NiV, glycoprotein plays an important role in initiating the entry of viruses and attaching to the host cell receptors. Herein, three antiviral databases consisting of 79,892 chemical entities have been computationally screened against NiV glycoprotein (NiV-G). Particularly, multi-step molecular docking followed by extensive molecular binding interactions analyses, binding free energy estimation, in silico pharmacokinetics, synthetic accessibility and toxicity profile evaluations have been carried out for initial identification of potential NiV-G inhibitors. Further, molecular dynamics (MD) simulation has been performed to understand the dynamic properties of NiV-G protein-bound with proposed five inhibitors (G1-G5) and their interactions behavior, and any conformational changes in NiV-G protein during simulations. Moreover, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) based binding free energies (∆G) has been calculated from all MD simulation trajectories to understand the energy contribution of each proposed compound in maintaining and stabilizing the complex binding interactions with NiV-G protein. Proposed compounds showed high negative ∆G values ranging from -166.246 to -226.652 kJ/mol indicating a strong affinity towards the NiV-G protein.


Subject(s)
Antiviral Agents/pharmacology , Glycoproteins/antagonists & inhibitors , Nipah Virus/drug effects , Small Molecule Libraries/pharmacology , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Drug Discovery , Glycoproteins/chemistry , Glycoproteins/metabolism , Henipavirus Infections/drug therapy , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Nipah Virus/physiology , Small Molecule Libraries/chemistry , Viral Proteins/chemistry , Viral Proteins/metabolism
16.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33408170

ABSTRACT

Cholesterol has been implicated in various viral life cycle steps for different enveloped viruses, including viral entry into host cells, cell-cell fusion, and viral budding from infected cells. Enveloped viruses acquire their membranes from their host cells. Although cholesterol has been associated with the binding and entry of various enveloped viruses into cells, cholesterol's exact function in the viral-cell membrane fusion process remains largely elusive, particularly for the paramyxoviruses. Furthermore, paramyxoviral fusion occurs at the host cell membrane and is essential for both virus entry (virus-cell fusion) and syncytium formation (cell-cell fusion), central to viral pathogenicity. Nipah virus (NiV) is a deadly member of the Paramyxoviridae family, which also includes Hendra, measles, mumps, human parainfluenza, and various veterinary viruses. The zoonotic NiV causes severe encephalitis, vasculopathy, and respiratory symptoms, leading to a high mortality rate in humans. We used NiV as a model to study the role of membrane cholesterol in paramyxoviral membrane fusion. We used a combination of methyl-beta cyclodextrin (MßCD), lovastatin, and cholesterol to deplete or enrich cell membrane cholesterol outside cytotoxic concentrations. We found that the levels of cellular membrane cholesterol directly correlated with the levels of cell-cell fusion induced. These phenotypes were paralleled using NiV/vesicular stomatitis virus (VSV)-pseudotyped viral infection assays. Remarkably, our mechanistic studies revealed that cholesterol reduces an early F-triggering step but enhances a late fusion pore formation step in the NiV membrane fusion cascade. Thus, our results expand our mechanistic understanding of the paramyxoviral/henipaviral entry and cell-cell fusion processes.IMPORTANCE Cholesterol has been implicated in various steps of the viral life cycle for different enveloped viruses. Nipah virus (NiV) is a highly pathogenic enveloped virus in the Henipavirus genus within the Paramyxoviridae family, capable of causing a high mortality rate in humans and high morbidity in domestic and agriculturally important animals. The role of cholesterol for NiV or the henipaviruses is unknown. Here, we show that the levels of cholesterol influence the levels of NiV-induced cell-cell membrane fusion during syncytium formation and virus-cell membrane fusion during viral entry. Furthermore, the specific role of cholesterol in membrane fusion is not well defined for the paramyxoviruses. We show that the levels of cholesterol affect an early F-triggering step and a late fusion pore formation step during the membrane fusion cascade. Thus, our results expand our mechanistic understanding of the viral entry and cell-cell fusion processes, which may aid the development of antivirals.


Subject(s)
Cholesterol/metabolism , Membrane Fusion/physiology , Nipah Virus/physiology , Cholesterol/deficiency , Giant Cells/metabolism , Membrane Lipids/analysis , Membrane Lipids/metabolism , Nipah Virus/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Virion/metabolism , Virus Internalization
17.
mSphere ; 5(6)2020 12 16.
Article in English | MEDLINE | ID: mdl-33328346

ABSTRACT

The Nipah virus (NiV) phosphoprotein (P) gene encodes four proteins. Three of these-P, V, and W-possess a common N-terminal domain but distinct C termini. These proteins interact with immune modulators. Previous studies demonstrated that P, V, and W bind STAT1 and STAT4 and that V also interacts with STAT2 but not with STAT3. The STAT1 and STAT2 interactions block interferon (IFN)-induced STAT tyrosine phosphorylation. To more fully characterize the interactions of P, V, and W with the STATs, we screened for interaction of each viral protein with STATs 1 to 6 by coimmunoprecipitation. We demonstrate that NiV P, V, and W interact with STAT4 through their common N-terminal domain and block STAT4 activity, based on a STAT4 response element reporter assay. Although none of the NiV proteins interact with STAT3 or STAT6, NiV V, but not P or W, interacts with STAT5 through its unique C terminus. Furthermore, the interaction of NiV V with STAT5 was not disrupted by overexpression of the N-terminal binding STAT1 or the C-terminal binding MDA5. NiV V also inhibits a STAT5 response element reporter assay. Residues 114 to 140 of the common N-terminal domain of the NiV P gene products were found to be sufficient to bind STAT1 and STAT4. Analysis of STAT1-STAT3 chimeras suggests that the P gene products target the STAT1 SH2 domain. When fused to GST, the 114-140 peptide is sufficient to decrease STAT1 phosphorylation in IFN-ß-stimulated cells, suggesting that this peptide could potentially be fused to heterologous proteins to confer inhibition of STAT1- and STAT4-dependent responses.IMPORTANCE How Nipah virus (NiV) antagonizes innate immune responses is incompletely understood. The P gene of NiV encodes the P, V, and W proteins. These proteins have a common N-terminal sequence that is sufficient to bind to STAT1 and STAT2 and block IFN-induced signal transduction. This study sought to more fully understand how P, V, and W engage with the STAT family of transcription factors to influence their functions. The results identify a novel interaction of V with STAT5 and demonstrate V inhibition of STAT5 function. We also demonstrate that the common N-terminal residues 114 to 140 of P, V, and W are critical for inhibition of STAT1 and STAT4 function, map the interaction to the SH2 region of STAT1, and show that a fusion construct with this peptide significantly inhibits cytokine-induced STAT1 phosphorylation. These data clarify how these important virulence factors modulate innate antiviral defenses.


Subject(s)
Cell Nucleus/chemistry , Henipavirus Infections/metabolism , Nipah Virus/physiology , STAT Transcription Factors/metabolism , Viral Proteins/metabolism , HEK293 Cells , Henipavirus Infections/immunology , Henipavirus Infections/virology , Humans , Immunity, Innate/immunology , Phosphorylation , STAT Transcription Factors/genetics , Signal Transduction , Trans-Activators/metabolism , Viral Proteins/genetics
18.
Virol J ; 17(1): 151, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33036623

ABSTRACT

BACKGROUND: Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe encephalitis and respiratory disease with a high mortality rate in humans. During large outbreaks of the viral disease, serological testing of serum samples could be a useful diagnostic tool, which could provide information on not only the diagnosis of NiV disease but also the history of an individual with previous exposure to the virus, thereby supporting disease control. Therefore, an efficient method for the inactivation of NiV in serum samples is required for serological diagnosis. METHODS: We determined the optimal conditions for the inactivation of NiV infectivity in human serum using heating and UV treatment. The inactivation method comprised UV irradiation with a cover of aluminum foil for 30 min and heating at 56 °C for 30 min. RESULTS: With an optimized protocol for virus inactivation, NiV infectivity in serum samples (containing 6.0 × 105 TCID50) was completely inactivated. CONCLUSIONS: We developed a recommended protocol for the effective inactivation of NiV. This protocol would enable a regional or local laboratory to safely transport or process samples, including NiV, for serological testing in its biosafety level-2 facility.


Subject(s)
Hot Temperature , Microbial Viability/radiation effects , Nipah Virus/radiation effects , Ultraviolet Rays , Virology/methods , Virus Inactivation/radiation effects , Animals , Chlorocebus aethiops , Henipavirus Infections/blood , Henipavirus Infections/virology , Humans , Nipah Virus/physiology , Research , Vero Cells
19.
J Immunol Res ; 2020: 2567957, 2020.
Article in English | MEDLINE | ID: mdl-32377531

ABSTRACT

BACKGROUND: Nipah belongs to the genus Henipavirus and the Paramyxoviridae family. It is an endemic most commonly found at South Asia and has first emerged in Malaysia in 1998. Bats are found to be the main reservoir for this virus, causing disease in both humans and animals. The last outbreak has occurred in May 2018 in Kerala. It is characterized by high pathogenicity and fatality rates which varies from 40% to 70% depending on the severity of the disease and on the availability of adequate healthcare facilities. Currently, there are no antiviral drugs available for NiV disease and the treatment is just supportive. Clinical presentations for this virus range from asymptomatic infection to fatal encephalitis. OBJECTIVE: This study is aimed at predicting an effective epitope-based vaccine against glycoprotein G of Nipah henipavirus, using immunoinformatics approaches. METHODS AND MATERIALS: Glycoprotein G of the Nipah virus sequence was retrieved from NCBI. Different prediction tools were used to analyze the epitopes, namely, BepiPred-2.0: Sequential B Cell Epitope Predictor for B cell and T cell MHC classes II and I. Then, the proposed peptides were docked using Autodock 4.0 software program. Results and Conclusions. The two peptides TVYHCSAVY and FLIDRINWI have showed a very strong binding affinity to MHC class I and MHC class II alleles. Furthermore, considering the conservancy, the affinity, and the population coverage, the peptide FLIDRINWIT is highly suitable to be utilized to formulate a new vaccine against glycoprotein G of Nipah henipavirus. An in vivo study for the proposed peptides is also highly recommended.


Subject(s)
Antigens, Viral/genetics , Epitopes/genetics , Glycoside Hydrolases/genetics , Henipavirus Infections/immunology , Nipah Virus/physiology , Vaccines, Subunit/immunology , Viral Vaccines/immunology , Antigens, Viral/metabolism , Asia, Southeastern/epidemiology , Computational Biology , Endemic Diseases , Epitope Mapping , Epitopes/immunology , Epitopes/metabolism , Glycoside Hydrolases/metabolism , HLA Antigens/metabolism , Henipavirus Infections/epidemiology , Humans , Malaysia/epidemiology , Molecular Docking Simulation , Protein Binding , Respiratory Tract Infections , Vaccination
20.
J Infect Dis ; 221(Suppl 4): S460-S470, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32108876

ABSTRACT

The error-prone nature of RNA-dependent RNA polymerases drives the diversity of RNA virus populations. Arising within this diversity is a subset of defective viral genomes that retain replication competency, termed defective interfering (DI) genomes. These defects are caused by aberrant viral polymerase reinitiation on the same viral RNA template (deletion DI species) or the nascent RNA strand (copyback DI species). DI genomes have previously been shown to alter the dynamics of a viral population by interfering with normal virus replication and/or by stimulating the innate immune response. In this study, we investigated the ability of artificially produced DI genomes to inhibit Nipah virus (NiV), a highly pathogenic biosafety level 4 paramyxovirus. High multiplicity of infection passaging of both NiV clinical isolates and recombinant NiV in Vero cells generated an extensive DI population from which individual DIs were identified using next-generation sequencing techniques. Assays were established to generate and purify both naturally occurring and in silico-designed DIs as fully encapsidated, infectious virus-like particles termed defective interfering particles (DIPs). We demonstrate that several of these NiV DIP candidates reduced NiV titers by up to 4 logs in vitro. These data represent a proof-of-principle that a therapeutic application of DIPs to combat NiV infections may be an alternative source of antiviral control for this disease.


Subject(s)
Genome, Viral , Nipah Virus/genetics , Nipah Virus/physiology , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , Defective Viruses , Mesocricetus , Virus Replication/genetics , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...