Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.425
Filter
1.
Nitric Oxide ; 148: 23-33, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697467

ABSTRACT

Dietary nitrate (NO3-) supplementation can increase nitric oxide (NO) bioavailability, reduce blood pressure (BP) and improve muscle contractile function in humans. Plasma nitrite concentration (plasma [NO2-]) is the most oft-used biomarker of NO bioavailability. However, it is unclear which of several NO biomarkers (NO3-, NO2-, S-nitrosothiols (RSNOs)) in plasma, whole blood (WB), red blood cells (RBC) and skeletal muscle correlate with the physiological effects of acute and chronic dietary NO3- supplementation. Using a randomized, double-blind, crossover design, 12 participants (9 males) consumed NO3--rich beetroot juice (BR) (∼12.8 mmol NO3-) and NO3--depleted placebo beetroot juice (PL) acutely and then chronically (for two weeks). Biological samples were collected, resting BP was assessed, and 10 maximal voluntary isometric contractions of the knee extensors were performed at 2.5-3.5 h following supplement ingestion on day 1 and day 14. Diastolic BP was significantly lower in BR (-2 ± 3 mmHg, P = 0.03) compared to PL following acute supplementation, while the absolute rate of torque development (RTD) was significantly greater in BR at 0-30 ms (39 ± 57 N m s-1, P = 0.03) and 0-50 ms (79 ± 99 N m s-1, P = 0.02) compared to PL following two weeks supplementation. Greater WB [RSNOs] rather than plasma [NO2-] was correlated with lower diastolic BP (r = -0.68, P = 0.02) in BR compared to PL following acute supplementation, while greater skeletal muscle [NO3-] was correlated with greater RTD at 0-30 ms (r = 0.64, P=0.03) in BR compared to PL following chronic supplementation. We conclude that [RSNOs] in blood, and [NO3-] in skeletal muscle, are relevant biomarkers of NO bioavailability which are related to the reduction of BP and the enhanced muscle contractile function following dietary NO3- ingestion in humans.


Subject(s)
Biomarkers , Blood Pressure , Cross-Over Studies , Dietary Supplements , Nitrates , Nitric Oxide , Humans , Nitrates/administration & dosage , Nitrates/pharmacology , Nitrates/blood , Male , Biomarkers/blood , Female , Nitric Oxide/metabolism , Nitric Oxide/blood , Adult , Double-Blind Method , Blood Pressure/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Young Adult , Beta vulgaris/chemistry , Nitrites/blood
2.
J Appl Physiol (1985) ; 136(6): 1364-1375, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38572540

ABSTRACT

Cold exposure increases blood pressure (BP) and salivary flow rate (SFR). Increased cold-induced SFR would be hypothesized to enhance oral nitrate delivery for reduction to nitrite by oral anaerobes and to subsequently elevate plasma [nitrite] and nitric oxide bioavailability. We tested the hypothesis that dietary nitrate supplementation would increase plasma [nitrite] and lower BP to a greater extent in cool compared with normothermic conditions. Twelve males attended the laboratory on four occasions. Baseline measurements were completed at 28°C. Subsequently, participants ingested 140 mL of concentrated nitrate-rich (BR; ∼13 mmol nitrate) or nitrate-depleted (PL) beetroot juice. Measurements were repeated over 3 h at either 28°C (Norm) or 20°C (Cool). Mean skin temperature was lowered compared with baseline in PL-Cool and BR-Cool. SFR was greater in BR-Norm, PL-Cool, and BR-Cool than PL-Norm. Plasma [nitrite] at 3 h was higher in BR-Cool (592 ± 239 nM) versus BR-Norm (410 ± 195 nM). Systolic BP (SBP) at 3 h was not different between PL-Norm (117 ± 6 mmHg) and BR-Norm (113 ± 9 mmHg). SBP increased above baseline at 1, 2, and 3 h in PL-Cool but not BR-Cool. These results suggest that BR consumption is more effective at increasing plasma [nitrite] in cool compared with normothermic conditions and blunts the rise in BP following acute cool air exposure, which might have implications for attenuating the increased cardiovascular strain in the cold.NEW & NOTEWORTHY Compared with normothermic conditions, acute nitrate ingestion increased plasma [nitrite], a substrate for oxygen-independent nitric oxide generation, to a greater extent during cool air exposure. Systolic blood pressure was increased during cool air exposure in the placebo condition with this cool-induced blood pressure increase attenuated after acute nitrate ingestion. These findings improve our understanding of environmental factors that influence nitrate metabolism and the efficacy of nitrate supplementation to lower blood pressure.


Subject(s)
Blood Pressure , Cold Temperature , Cross-Over Studies , Nitrates , Humans , Male , Nitrates/administration & dosage , Nitrates/blood , Blood Pressure/drug effects , Blood Pressure/physiology , Double-Blind Method , Adult , Young Adult , Nitrites/blood , Nitric Oxide/metabolism , Dietary Supplements , Beta vulgaris , Skin Temperature/drug effects , Skin Temperature/physiology , Fruit and Vegetable Juices
4.
Appl Physiol Nutr Metab ; 49(5): 635-648, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38190654

ABSTRACT

Beetroot juice (BRJ) supplementation increases nitric oxide bioavailability with hypoxia and acidosis, characteristics of high-intensity exercise. We investigated whether BRJ improved forearm oxygen delivery:demand matching in an intensity-dependent manner. Healthy men (21 ± 2.5 years) participated in a randomized crossover trial between October 2017 and May 2018 (Queen's University, Kingston, ON, Canada). Participants completed a forearm incremental exercise test to limit of tolerance (IET-LOT) 2.5 h post placebo (PL) versus BRJ (2 completed PL/BRJ vs. 9 completed BRJ/PL) within a 2-week period. Data are presented as mean ± standard deviation. There was a significant main effect of drink (PL < BRJ; P = 0.042, ηp2 = 0.385) and drink × intensity interaction for arteriovenous oxygen difference (PL < BRJ; P = 0.03; ηp2= 0.197; 20%-50% and 90% LOT). BRJ did not influence oxygen delivery (P = 0.893, ηp2 = 0.002), forearm blood flow (P = 0.589, ηp2 = 0.03) (forearm vascular conductance (P = 0.262, ηp2 = 0.124), mean arterial pressure (P = 0.254,ηp2 = 0.128)), oxygen consumption (P = 0.194, ηp2 = 0.179) or LOT (P = 0.432, d = 0.247). In healthy men, BRJ did not improve forearm oxygen delivery (vasodilatory or pressor response) during IET-LOT. Increased arteriovenous oxygen difference at submaximal intensities did not significantly influence oxygen consumption or performance across the entire range of forearm exercise intensities. This study adds to the growing body of evidence that BRJ does not influence small muscle mass blood flow in humans regardless of exercise intensity.


Subject(s)
Cross-Over Studies , Dietary Supplements , Forearm , Nitrates , Oxygen Consumption , Humans , Male , Forearm/blood supply , Nitrates/administration & dosage , Nitrates/blood , Young Adult , Beta vulgaris , Exercise Tolerance/drug effects , Exercise/physiology , Fruit and Vegetable Juices , Adult , Oxygen/blood , Oxygen/administration & dosage , Exercise Test
5.
Med. intensiva (Madr., Ed. impr.) ; 46(3): 132-139, Mar. 2022. tab, graf
Article in English | IBECS | ID: ibc-204234

ABSTRACT

Objective: Higher blood nitrate and nitrite levels have been found in coronavirus disease 2019 (COVID-19) patients than in healthy subjects. The present study explores the potential association between serum nitrate levels and mortality in COVID-19 patients. Design: A prospective observation study was carried out. Setting: Eight Intensive Care Units (ICUs) from 6 hospitals in the Canary Islands (Spain). Patients: COVID-19 patients admitted to the ICU. Interventions: Determination of serum nitrate levels at ICU admission. Main variable of interest: Mortality at 30 days. Results: Non-surviving (n=11) compared to surviving patients (n=42) showed higher APACHE-II (p<0.001) and SOFA scores (p=0.004), and higher serum nitrate levels (p=0.001). Logistic regression analyses showed serum nitrate levels to be associated to 30-day mortality after controlling for SOFA (OR=1.021; 95%CI=1.006–1.036; p=0.01) or APACHE-II (OR=1.023; 95%CI=1.006–1.041; p=0.01). There were no differences in the area under the curve (AUC) for mortality prediction by serum nitrate levels (AUC=83%; 95%CI=73–92%; p<0.001), APACHE II (AUC=85%; 95%CI=75–96%; p<0.001) and SOFA (AUC=78%; 95%CI=63–92%; p=0.005) based on the DeLong method. The Kaplan–Meier analysis found patients with serum nitrates levels>68.4μmol/l to have a higher mortality rate (hazard ratio=138.8; 95%CI=22.3–863.9; p<0.001). Conclusions: The main novel finding was the association between serum nitrate levels and mortality in COVID-19 patients controlling for the SOFA or APACHE-II scores, though larger studies are needed to confirm this observation (AU)


Objetivo: Se han encontrado niveles más elevados de nitratos en la sangre de pacientes con enfermedad del coronavirus 2019 (COVID-19) que en sujetos sanos. Por lo tanto, el objetivo de estudio consistió en explorar la posible asociación entre los niveles séricos de nitratos y la mortalidad de pacientes por COVID-19. Diseño: Estudio observacional y prospectivo. Ámbito: Ocho unidades de cuidados intensivos (UCI) de 6 hospitales de las Islas Canarias (España). Pacientes: Pacientes COVID-19 ingresados en la UCI. Intervenciones: Se midieron los niveles séricos de nitratos al ingreso en la UCI. Variable de interés principal: Mortalidad a los 30 días. Resultados: Los pacientes fallecidos (n=11) comparados con los supervivientes (n=42) presentaron mayores APACHE-II (p<0,001), SOFA (p=0,004) y niveles séricos de nitratos (p=0,001). Los análisis de regresión logística mostraron una asociación entre los niveles séricos de nitratos al ingreso en la UCI y la mortalidad a los 30 días controlando por SOFA (OR:1.021; IC 95%:1.006-1.036; p=0,01) o APACHE-II (OR:1.023; IC 95%:1.006-1.041; p=0,01). No encontramos diferencias en el área bajo la curva (ABC) para la predicción de mortalidad entre los niveles séricos de nitratos (ABC:83%; IC 95%:73-92%; p<0,001), APACHE-II (ABC:85%; IC 95%:75-96%; p<0,001) y SOFA (ABC:78%; IC 95%:63-92%; p=0,005) con el método de DeLong. El análisis de Kaplan-Meier mostró que los pacientes que tenían niveles séricos de nitratos al ingreso en la UCI>68,4μmol/l presentaban mayor riesgo de fallecer (hazard ratio:138,8; IC 95%:22,3-863,9; p<0,001). Conclusiones: El principal nuevo hallazgo fue la asociación entre los niveles séricos de nitratos y la mortalidad de pacientes COVID-19 controlando por SOFA o APACHE-II; pero estudios de mayor tamaño muestral son necesarios para confirmar este resultado (AU)


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Nitrates/blood , Coronavirus Infections/blood , Pneumonia, Viral/blood , Coronavirus Infections/mortality , Pneumonia, Viral/mortality , Prospective Studies , APACHE , Biomarkers/blood
6.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216250

ABSTRACT

INTRODUCTION: L-Arginine (Arg) is a semi-essential amino acid. Constitutive and inducible nitric oxide synthase (NOS) isoforms convert Arg to nitric oxide (NO), a potent vaso- and bronchodilator with multiple biological functions. Atopic dermatitis (AD) and bronchial asthma (BA) are atopic diseases affecting many children globally. Several studies analyzed NO in airways, yet the systemic synthesis of NO in AD and BA in children with BA, AD or both is elusive. METHODS: In a multicenter study, blood and urine were obtained from 130 of 302 participating children for the measurement of metabolites of the Arg/NO pathway (BA 31.5%; AD 5.4%; AD + BA 36.1%; attention deficit hyperactivity disorder (ADHD) 12.3%). In plasma and urine amino acids Arg and homoarginine (hArg), both substrates of NOS, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), both inhibitors of NOS, dimethylamine (DMA), and nitrite and nitrate, were measured by gas chromatography-mass spectrometry. Malondialdehyde (MDA) was measured in plasma and urine samples to evaluate possible effects of oxidative stress. RESULTS: There were no differences in the Arg/NO pathway between the groups of children with different atopic diseases. In comparison to children with ADHD, children with AD, BA or AD and BA had higher plasma nitrite (p < 0.001) and nitrate (p < 0.001) concentrations, suggesting higher systemic NO synthesis in AD and BA. Urinary excretion of DMA was also higher (p = 0.028) in AD and BA compared to patients with ADHD, suggesting elevated ADMA metabolization. DISCUSSION/CONCLUSION: The Arg/NO pathway is activated in atopic diseases independent of severity. Systemic NO synthesis is increased in children with an atopic disease. Plasma and urinary MDA levels did not differ between the groups, suggesting no effect of oxidative stress on the Arg/NO pathway in atopic diseases.


Subject(s)
Arginine/metabolism , Dermatitis, Atopic/metabolism , Nitric Oxide/metabolism , Oxidative Stress/physiology , Signal Transduction/physiology , Arginine/analogs & derivatives , Arginine/blood , Asthma/blood , Asthma/metabolism , Child , Dermatitis, Atopic/blood , Female , Homoarginine/blood , Homoarginine/metabolism , Humans , Male , Malondialdehyde/blood , Malondialdehyde/metabolism , Nitrates/blood , Nitrates/metabolism , Nitric Oxide/blood , Nitrites/blood , Nitrites/metabolism
7.
J Thorac Cardiovasc Surg ; 163(4): 1393-1403.e9, 2022 04.
Article in English | MEDLINE | ID: mdl-32718702

ABSTRACT

OBJECTIVE: Acute kidney injury (AKI) is a serious complication of cardiac surgery with cardiopulmonary bypass (CPB). The aim of this study was to evaluate the effects of nitric oxide (NO) supplementation to the CPB circuit on the development of cardiac surgery-associated AKI. METHODS: This prospective randomized controlled study included 96 patients with moderate risk of renal complications who underwent elective cardiac surgery with CPB. The study protocol was registered at ClinicalTrials.gov (identifier NCT03527381). Patients were randomly allocated to either NO supplementation to the CPB bypass circuit (NO treatment group; n = 48) or usual care (control group; n = 48). In the NO treatment group, 40-ppm NO was administered during the entire CPB period. The primary outcome was the incidence of AKI. RESULTS: NO treatment was associated with a significant decrease in AKI incidence (10 cases [20.8%] vs 20 cases [41.6%] in the control group; relative risk, 0.5; 95% confidence interval, 0.26-0.95; P = .023) and a higher median urine output during CPB (2.6 mL/kg/h [interquartile range (IQR), 2.1-5.08 mL/kg/h] vs 1.7 mL/kg/h [IQR, 0.80-2.50 mL/kg/h]; P = .0002). The median urinary neutrophil gelatinase-associated lipocalin level at 4 hours after surgery was significantly lower in the NO treatment group (1.12 ng/mL [IQR, 0.75-5.8 ng/mL] vs 4.62 ng/mL [IQR, 2.02-34.55 ng/mL]; P = .005). In the NO treatment group, concentrations of NO metabolites were significantly increased at 5 minutes postclamping, at 5 minutes after declamping, and at the end of the operation. Concentrations of proinflammatory and anti-inflammatory mediators and free plasma hemoglobin did not differ significantly between the 2 groups. CONCLUSIONS: NO administration in patients at moderate risk of renal complications undergoing elective cardiac surgery with CPB was associated with a lower incidence of AKI.


Subject(s)
Acute Kidney Injury/prevention & control , Cardiopulmonary Bypass , Nitric Oxide/administration & dosage , Postoperative Complications/prevention & control , Aged , Female , Hemoglobins/analysis , Humans , Lipocalin-2/urine , Male , Middle Aged , Nitrates/blood , Nitrogen Dioxide/blood , Prospective Studies
8.
J Sports Sci ; 40(23): 2585-2594, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36759944

ABSTRACT

The purpose of this study was to investigate effects of concurrent and independent administration of dietary nitrate (NO3-), administered as NO3--rich beetroot juice (BR; ~12.4 mmol of NO3-), and N-acetylcysteine (NAC; 70 mg·kg-1) on physiological responses during prolonged exercise and subsequent high-intensity exercise tolerance. Sixteen recreationally active males supplemented with NO3--depleted beetroot juice (PL) or BR for 6 days and ingested an acute dose of NAC or maltodextrin (MAL) 1 h prior to performing 1 h of heavy-intensity cycling exercise immediately followed by a severe-intensity time-to-exhaustion (TTE) test in four conditions: 1) PL+MAL, 2) PL+NAC, 3) BR+MAL and 4) BR+NAC. Pre-exercise plasma [NO3-] and nitrite ([NO2-]) were elevated following BR+NAC  and BR+MAL (both P < 0.01) compared with PL+NAC and PL+MAL; plasma [cysteine] was increased in PL+NAC  and BR+NAC (both P < 0.01) compared to PL+MAL. Muscle excitability declined over time during the prolonged cycling bout in all conditions  but was better preserved in PL+NAC  compared to BR+NAC (P < 0.01) and PL+MAL (P < 0.05). There was no effect of supplementation on subsequent TTE . These findings indicate that co-ingestion of BR and NAC does not appreciably alter physiological responses during prolonged heavy-intensity cycling or enhance subsequent exercise tolerance.


Subject(s)
Acetylcysteine , Dietary Supplements , Exercise , Fruit and Vegetable Juices , Nitrates , Plant Extracts , Humans , Male , Exercise/physiology , Nitrates/blood , Acetylcysteine/administration & dosage , Antioxidants/administration & dosage , Cross-Over Studies , Reactive Oxygen Species , Endurance Training , Oxygen Consumption/physiology , Nitrites/blood , Adult , Plant Extracts/pharmacology , Plant Roots
9.
Int J Mol Sci ; 22(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34681920

ABSTRACT

In this review, we first provide a brief overview of the nitric oxide synthase (NOS) isoforms and biochemistry. This is followed by describing what is known about NOS-mediated blood pressure control during normal pregnancy. Circulating nitric oxide (NO) bioavailability has been assessed by measuring its metabolites, nitrite (NO2) and/or nitrate (NO3), and shown to rise throughout normal pregnancy in humans and rats and decline postpartum. In contrast, placental malperfusion/ischemia leads to systemic reductions in NO bioavailability leading to maternal endothelial and vascular dysfunction with subsequent development of hypertension in PE. We end this article by describing emergent risk factors for placental malperfusion and ischemic disease and discussing strategies to target the NOS system therapeutically to increase NO bioavailability in preeclamptic patients. Throughout this discussion, we highlight the critical importance that experimental animal studies have played in our current understanding of NOS biology in normal pregnancy and their use in finding novel ways to preserve this signaling pathway to prevent the development, treat symptoms, or reduce the severity of PE.


Subject(s)
Ischemia/metabolism , Nitric Oxide Synthase/metabolism , Nitric Oxide/metabolism , Pre-Eclampsia/metabolism , Animals , Blood Pressure , Female , Humans , Ischemia/blood , Nitrates/blood , Nitrites/blood , Pre-Eclampsia/blood , Pregnancy
10.
Nitric Oxide ; 117: 7-15, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34537345

ABSTRACT

Low doses of nitrite, close to physiological levels, increase blood flow in normal and ischemic tissues through a nitric oxide (NO) dependent mechanism. Given that nitrite therapy and dietary supplementation with vegetables high in nitrate (e.g. beets) are gaining popularity we decided to determine if low doses of nitrite impact the development of choroidal neovascularization (CNV), a key feature of wet age related macular degeneration (AMD). Sodium nitrite (at 50 mg/L, 150 mg/L, and 300 mg/L), nitrate (1 g/L) or water alone were provided in the drinking water of C57BL/6 J mice aged 2 or 12 months. Mice were allowed to drink ad libitum for 1 week at which time laser-induced choroidal neovascularization (L-CNV) was induced. The mice continued to drink the supplemented water ad libitum for a further 14 days at which point optical coherence tomography (OCT) was performed to determine the volume of the CNV lesion. Blood was drawn to determine nitrite and nitrate levels and eyes taken for histology. CNV volume was 2.86 × 107 µm3 (±0.4 × 107) in young mice on water alone but CNV volume more than doubled to >6.9 × 107 µm3 (±0.8 × 107) in mice receiving 300 mg/L nitrite or 7.34 × 107 µm3 (±1.4 × 107) in 1 g/L nitrate (p < 0.01). A similar trend was observed in older mice. CNV volume was 5.3 × 107 µm3 (±0.5 × 107) in older mice on water alone but CNV volume almost doubled to approximately 9.3 × 107 µm3 (±1.1 × 107) in mice receiving 300 mg/L nitrite or 8.7 × 107 µm3 (±0.9 × 107) 1 g/L nitrate (p < 0.01). Plasma nitrite levels were highest in young mice receiving 150 mg/L in the drinking water with no changes in plasma nitrate observed. In older mice, drinking water nitrite did not significantly change plasma nitrite, but plasma nitrate was increased. Plasma nitrate was elevated in both young and old mice provided with nitrate supplemented drinking water. Our data demonstrate that the CNV lesion is larger in older mice compared to young and that therapeutic levels of oral nitrite increase the volume of CNV lesions in both young and older mice. Therapeutic nitrite or nitrate supplementation should be used with caution in the elderly population prone to CNV.


Subject(s)
Choroidal Neovascularization/chemically induced , Nitrites/adverse effects , Animals , Female , Macular Degeneration , Mice , Mice, Inbred C57BL , Nitrates/blood , Nitrites/administration & dosage , Nitrites/blood
11.
Chem Biol Interact ; 349: 109658, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34543659

ABSTRACT

Nitric oxide (NO) metabolites have physiological and pharmacological importance and increasing their tissue concentrations may result in beneficial effects. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) has antioxidant properties that may improve NO bioavailability. Moreover, tempol increases oral nitrite-derived gastric formation of S-nitrosothiols (RSNO). We hypothesized that pretreatment with tempol may further increase tissue concentrations of NO-related species after oral nitrite administration and therefore we carried out a time-dependent analysis of how tempol affects the concentrations of NO metabolites in different tissues after oral nitrite administration to rats. NO metabolites (nitrate, nitrite and RSNO) were assessed by ozone-based reductive chemiluminescence assays in plasma, stomach, aorta, heart and liver samples obtained from anesthetized rats at baseline conditions and 15 min, 30 min, 2 h or 24 h after oral nitrite (15 mg/kg) was administered to rats pretreated with tempol (18 mg/kg) or vehicle 15 min prior to nitrite administration. Aortic protein nitrosation was assessed by resin-assited capture (SNO-RAC) method. We found that pretreatment with tempol transiently enhanced nitrite-induced increases in nitrite, RSNO and nitrate concentrations in the stomach and in the plasma (all P < 0.05), particularly for 15-30 min, without affecting aortic protein nitrosation. Pretreatment with tempol enhanced nitrite-induced increases in nitrite (but not RSNO or nitrate) concentrations in the heart (P < 0.05). In contrast, tempol attenuated nitrite-induced increases in nitrite, RSNO or nitrate concentrations in the liver. These findings show that pretreatment with tempol affects oral nitrite-induced changes in tissue concentrations of NO metabolites depending on tissue type and does not increase nitrite-induced vascular nitrosation. These results may indicate that oral nitrite therapy aiming at achieving increased nitrosation of cardiovascular targets requires appropriate doses of nitrite and is not optimized by tempol.


Subject(s)
Antioxidants/pharmacology , Cyclic N-Oxides/pharmacology , Nitric Oxide/metabolism , Nitrites/administration & dosage , Administration, Oral , Animals , Male , Nitrates/blood , Nitrites/blood , Rats , Rats, Wistar , Spin Labels
12.
Nitric Oxide ; 116: 1-6, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34371196

ABSTRACT

Nitrite anion (NO2-) is a circulating nitric oxide (NO) metabolite considered an endothelial function marker. Nitrite can be produced from nitrate (NO3-) secreted from plasma into saliva. The nitrate reductase of oral bacteria converts salivary nitrate to nitrite, which is swallowed and absorbed into circulation. In this study, we aimed to examine the relevance between these species' salivary and blood levels. We collected three whole saliva samples (unstimulated, paraffin-stimulated, and post-chlorhexidine mouthwash stimulated saliva) and blood from 75 healthy volunteers. We measured the nitrite and nitrate by the chemiluminescence method. The nitrite levels in stimulated saliva and post-mouthwash stimulated saliva exhibited weak correlations with blood nitrite. There was no correlation between nitrite in unstimulated saliva with blood nitrite. The baseline platelet activity, determined as P-selectin expression, negatively correlated with nitrite in plasma and post-mouthwash stimulated saliva. The salivary nitrate in all saliva samples showed correlations with its plasma levels. We conclude that nitrite in stimulated saliva correlates with blood nitrite.


Subject(s)
Nitrites/blood , Nitrites/metabolism , Saliva/chemistry , Adult , Chlorhexidine/pharmacology , Female , Humans , Male , Mastication , Mouthwashes/pharmacology , Nitrates/blood , Nitrates/metabolism , Paraffin , Saliva/metabolism
13.
Molecules ; 26(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34361720

ABSTRACT

The metabolism of nitric oxide plays an increasingly interesting role in the physiological response of the human body to extreme environmental conditions, such as underwater, in an extremely cold climate, and at low oxygen concentrations. Field studies need the development of analytical methods to measure nitrite and nitrate in plasma and red blood cells with high requirements of accuracy, precision, and sensitivity. An optimized spectrophotometric Griess method for nitrite-nitrate affords sensitivity in the low millimolar range and precision within ±2 µM for both nitrite and nitrate, requiring 100 µL of scarcely available plasma sample or less than 50 µL of red blood cells. A scheduled time-efficient procedure affords measurement of as many as 80 blood samples, with combined nitrite and nitrate measurement in plasma and red blood cells. Performance and usefulness were tested in pilot studies that use blood fractions deriving from subjects who dwelt in an Antarctica scientific station and on breath-holding and scuba divers who performed training at sea and in a land-based deep pool facility. The method demonstrated adequate to measure low basal concentrations of nitrite and high production of nitrate as a consequence of water column pressure-triggered vasodilatation in deep-water divers.


Subject(s)
High-Throughput Screening Assays , Hypoxia/blood , Nitrates/blood , Nitric Oxide/blood , Nitrites/blood , Stress, Physiological , Antarctic Regions , Cold Temperature , Diving/physiology , Erythrocytes/chemistry , Humans , Hyperbaric Oxygenation/methods , Hypoxia/physiopathology , Sensitivity and Specificity , Vasodilation
14.
Curr Issues Mol Biol ; 43(1): 324-334, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208106

ABSTRACT

Hemorrhagic stroke remains an important health challenge. Adrenomedullin (AM) is a vasoactive peptide with an important role in cardiovascular diseases, including stroke. Serum AM and nitrate-nitrite and S-nitroso compounds (NOx) levels were measured and compared between healthy volunteers (n = 50) and acute hemorrhagic stroke patients (n = 64). Blood samples were taken at admission (d0), 24 h later (d1), and after 7 days or at the time of hospital discharge (d7). Neurological severity (NIHSS) and functional prognosis (mRankin) were measured as clinical outcomes. AM levels were higher in stroke patients at all times when compared with healthy controls (p < 0.0001). A receiving operating characteristic curve analysis identified that AM levels at admission > 69.0 pg/mL had a great value as a diagnostic biomarker (area under the curve = 0.89, sensitivity = 80.0%, specificity = 100%). Furthermore, patients with a favorable outcome (NIHSS ≤ 3; mRankin ≤ 2) experienced an increase in AM levels from d0 to d1, and a decrease from d1 to d7, whereas patients with unfavorable outcome had no significant changes over time. NOx levels were lower in patients at d0 (p = 0.04) and d1 (p < 0.001) than in healthy controls. In conclusion, AM levels may constitute a new diagnostic and prognostic biomarker for this disease, and identify AM as a positive mediator for hemorrhagic stroke resolution.


Subject(s)
Adrenomedullin/blood , Biomarkers/blood , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/diagnosis , Acute Disease , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Nitrates/blood , Nitroso Compounds/blood , Prognosis , ROC Curve
15.
Forensic Sci Int ; 325: 110855, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34098473

ABSTRACT

In recent years, a significant increase of reports about suicidal cases due to intentional sodium nitrite intake has been described. In the forensic pathology context, the strategy to approach intoxication cases by sodium nitrite, without any preliminary information or hint, is not straightforward. Indeed, in a number of cases the lack of crime scene data and/or specific pathological signs makes difficult the identification of nitrite poisoning. Moreover, the analytical determination of nitrite in blood is challenging, due to its rapid oxidization to nitrate by hemoglobin. Although several methods have been proposed for the clinical analysis of nitrate and/or nitrite in biological samples, none of these is specifically focused on the determination of these ions in cadaveric samples. Consequently, the diagnosis of nitrite fatal intoxication is still based on methemoglobin analysis. The present paper reports the optimization and validation of an analytical method of capillary ion analysis (CIA) with UV detection, for the determination of nitrite and nitrate in biological fluids and its application to two authentic cases of death by nitrite intake. The analyses were carried out in a bare fused-silica capillary (75 µm inner diameter) using 100 mM sodium tetraborate (pH 9.24) as background electrolyte and applying a voltage of - 15 kV between the capillary ends. The detection was obtained by direct UV absorption recorded at 214 nm wavelength. Bromide was used as the internal standard. Linearity was established in the range of 0.25-5 mmol/L). Reproducibility (intraday and day-to-day) was characterized by relative standard deviations (RSDs) 14.7% for peak areas. The method was applied to the determination of nitrite and nitrate in two real forensic cases, where high concentrations of nitrate were found in cadaveric blood samples (6.5 and 4.4 mmol/L, respectively). Nitrite was found only in trace amounts, due to the instability of this ion in cadaveric blood where it is oxidized to nitrate. The present method represents a new tool for the direct and rapid determination of nitrite and nitrate in cases of forensic interest, and thus offers a diagnostic tool more sensitive and precise than the need methemoglobin analysis.


Subject(s)
Electrophoresis, Capillary/methods , Nitrates/blood , Sodium Nitrite/poisoning , Adult , Forensic Toxicology/methods , Humans , Male , Poisoning/diagnosis , Reproducibility of Results , Ultraviolet Rays
16.
Nitric Oxide ; 113-114: 57-69, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34091009

ABSTRACT

Arterial hypertension is one of the major health risk factors leading to coronary artery disease, stroke or peripheral artery disease. Dietary uptake of inorganic nitrite (NO2-) and nitrate (NO3-) via vegetables leads to enhanced vascular NO bioavailability and provides antihypertensive effects. The present study aims to understand the underlying vasoprotective effects of nutritional NO2- and NO3- co-therapy in mice with angiotensin-II (AT-II)-induced arterial hypertension. High-dose AT-II (1 mg/kg/d, 1w, s. c.) was used to induce arterial hypertension in male C57BL/6 mice. Additional inorganic nitrite (7.5 mg/kg/d, p. o.) or nitrate (150 mg/kg/d, p. o.) were administered via the drinking water. Blood pressure (tail-cuff method) and endothelial function (isometric tension) were determined. Oxidative stress and inflammation markers were quantified in aorta, heart, kidney and blood. Co-treatment with inorganic nitrite, but not with nitrate, normalized vascular function, oxidative stress markers and inflammatory pathways in AT-II treated mice. Of note, the highly beneficial effects of nitrite on all parameters and the less pronounced protection by nitrate, as seen by improvement of some parameters, were observed despite no significant increase in plasma nitrite levels by both therapies. Methemoglobin levels tended to be higher upon nitrite/nitrate treatment. Nutritional nitric oxide precursors represent a non-pharmacological treatment option for hypertension that could be applied to the general population (e.g. by eating certain vegetables). The more beneficial effects of inorganic nitrite may rely on superior NO bioactivation and stronger blood pressure lowering effects. Future large-scale clinical studies should investigate whether hypertension and cardiovascular outcome in general can be influenced by dietary inorganic nitrite therapy.


Subject(s)
Antihypertensive Agents/pharmacology , Hypertension/drug therapy , Nitrates/pharmacology , Nitrites/pharmacology , Administration, Oral , Angiotensin II/administration & dosage , Animals , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/blood , Blood Pressure/drug effects , Hypertension/chemically induced , Inflammation/chemically induced , Inflammation/drug therapy , Male , Mice , Mice, Inbred C57BL , Nitrates/administration & dosage , Nitrates/blood , Nitrites/administration & dosage , Nitrites/blood , Oxidative Stress/drug effects
17.
Nitric Oxide ; 113-114: 70-77, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34051342

ABSTRACT

PURPOSE: The aim was to investigate the effect of dietary nitrate supplementation (in the form of beetroot juice, BRJ) for 20 days on salivary nitrite (a potential precursor of bioactive nitric oxide), exercise performance and high altitude (HA) acclimatisation in field conditions (hypobaric hypoxia). METHODS: This was a single-blinded randomised control study of 22 healthy adult participants (12 men, 10 women, mean age 28 ± 12 years) across a HA military expedition. Participants were randomised pre-ascent to receive two 70 ml dose per day of either BRJ (~12.5 mmol nitrate per day; n = 11) or non-nitrate calorie matched control (n = 11). Participants ingested supplement doses daily, beginning 3 days prior to departure and continued until the highest sleeping altitude (4800 m) reached on day 17 of the expedition. Data were collected at baseline (44 m altitude), at 2350 m (day 9), 3400 m (day 12) and 4800 m (day 17). RESULTS: BRJ enhanced the salivary levels of nitrite (p = 0.007). There was a significant decrease in peripheral oxygen saturation and there were increases in heart rate, diastolic blood pressure, and rating of perceived exertion with increasing altitude (p=<0.001). Harvard Step Test fitness scores significantly declined at 4800 m in the control group (p = 0.003) compared with baseline. In contrast, there was no decline in fitness scores at 4800 m compared with baseline (p = 0.26) in the BRJ group. Heart rate recovery speed following exercise at 4800 m was significantly prolonged in the control group (p=<0.01) but was unchanged in the BRJ group (p = 0.61). BRJ did not affect the burden of HA illness (p = 1.00). CONCLUSIONS: BRJ increases salivary nitrite levels and ameliorates the decline in fitness at altitude but does not affect the occurrence of HA illness.


Subject(s)
Adaptation, Physiological/physiology , Exercise/physiology , Fruit and Vegetable Juices/analysis , Hypoxia/blood , Nitrates/blood , Nitrites/blood , Adult , Altitude , Dietary Supplements , Female , Humans , Male , Military Personnel , Nitrates/administration & dosage , Nitrates/metabolism
18.
Nitric Oxide ; 109-110: 42-49, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33713800

ABSTRACT

The roles of nitrate and nitrite ions as nitric oxide (NO) sources in mammals, complementing NOS enzymes, have recently been the focus of much research. We previously reported that rat skeletal muscle serves as a nitrate reservoir, with the amount of stored nitrate being highly dependent on dietary nitrate availability, as well as its synthesis by NOS1 enzymes and its subsequent utilization. We showed that at conditions of increased NO need, this nitrate reservoir is used in situ to generate nitrite and NO, at least in part via the nitrate reductase activity of xanthine oxidoreductase (XOR). We now further investigate the dynamics of nitrate/nitrite fluxes in rat skeletal muscle after first increasing nitrate levels in drinking water and then returning to the original intake level. Nitrate/nitrite levels were analyzed in liver, blood and several skeletal muscle samples, and expression of proteins involved in nitrate metabolism and transport were also measured. Increased nitrate supply elevated nitrate and nitrite levels in all measured tissues. Surprisingly, after high nitrate diet termination, levels of both ions in liver and all muscle samples first declined to lower levels than the original baseline. During the course of the overall experiment there was a gradual increase of XOR expression in muscle tissue, which likely led to enhanced nitrate to nitrite reduction. We also noted differences in basal levels of nitrate in the different types of muscles. These findings suggest complex control of muscle nitrate levels, perhaps with multiple processes to preserve its intracellular levels.


Subject(s)
Muscle, Skeletal/metabolism , Nitrates/metabolism , Administration, Oral , Animals , Diet , Female , Liver/chemistry , Male , Muscle, Skeletal/chemistry , Muscle, Skeletal/enzymology , Nitrate Reductase/metabolism , Nitrates/administration & dosage , Nitrates/blood , Nitrites/blood , Nitrites/metabolism , Rats, Wistar
19.
Nutrients ; 13(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498220

ABSTRACT

BACKGROUND: Nitrate (NO3 -)-rich beetrAs BR juice can naturally contain both NO3 In four separate treatments, 11 healthy adults consumed 250 mL of BR containing one of the following: (i) high NO3 Ingestion of the HL and MM BR increased plasma [NO2 Inorganic NO3 - consumptio


Subject(s)
Beta vulgaris , Dietary Supplements , Fruit and Vegetable Juices , Nitrates/blood , Nitrites/blood , Adolescent , Adult , Arterial Pressure , Blood Patch, Epidural , Cardiac Output , Cross-Over Studies , Female , Heart Rate , Humans , Male , Middle Aged , Nitrates/pharmacokinetics , Nitrites/pharmacokinetics , Young Adult
20.
Am J Physiol Heart Circ Physiol ; 320(3): H991-H998, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33449848

ABSTRACT

Aging causes deleterious changes in resting conduit artery shear patterns and reduced blood flow during exercise partially attributable to reduced nitric oxide (NO). Inorganic nitrate increases circulating NO bioavailability and may, therefore, improve age-associated changes in shear rate as well as exercise hyperemia. Ten older adults (age: 67 ± 3 yr) consumed 4.03 mmol nitrate and 0.29 mmol nitrite (active) or devoid of both (placebo) daily for 4 wk in a randomized, double-blinded, crossover fashion. Brachial artery diameter (D) and blood velocity (Vmean) were measured via Doppler ultrasound at rest for the characterization of shear profile as well as during two handgrip exercise trials (4 and 8 kg) for calculation of forearm blood flow (Vmean × cross-sectional area, FBF) and conductance [FBF/mean arterial pressure, forearm vascular conductance (FVC)]. Plasma [nitrate] and [nitrite] increased following active (P < 0.05 for both) but not placebo (P = 0.68 and 0.40, respectively) supplementation. Neither mean nor antegrade shear rate changed following either supplement (beverage-by-time P = 0.14 and 0.21, respectively). Retrograde (-13.4 ± 7.0 to -9.7 ± 6.8·s-1) and oscillatory (0.20 ± 0.08 to 0.15 ± 0.09 A.U., P < 0.05 for both) shear decreased following active, but not placebo (P = 0.81 and 0.70, respectively), supplementation. The FBF response (Δ from rest) to neither 4-kg nor 8-kg trials changed following either supplement (beverage-by-time P = 0.53 and 0.11, respectively). Similarly, no changes were observed in FVC responses to 4-kg or 8-kg trials (beverage-by-time P = 0.23 and 0.07, respectively). These data indicate that inorganic nitrate supplementation improves conduit artery shear profiles, but not exercise hyperemia, in older adults.NEW & NOTEWORTHY We report for the first time, to our knowledge, that 4 wk of inorganic nitrate supplementation attenuates retrograde and oscillatory shear in the brachial artery of older adults. However, this was not associated with greater hyperemic or vasodilatory responses to exercise. In sum, these data highlight favorable changes in shear patterns with aging, which may reduce the risk of atherosclerotic cardiovascular disease.


Subject(s)
Beta vulgaris , Brachial Artery/drug effects , Dietary Supplements , Forearm/blood supply , Fruit and Vegetable Juices , Hemodynamics/drug effects , Nitrates/administration & dosage , Age Factors , Aged , Blood Flow Velocity , Brachial Artery/diagnostic imaging , Brachial Artery/physiology , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Nitrates/blood , Regional Blood Flow , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...