Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.636
Filter
1.
PLoS One ; 19(6): e0305253, 2024.
Article in English | MEDLINE | ID: mdl-38870192

ABSTRACT

Cell-penetrating peptides comprise a group of molecules that can naturally cross the lipid bilayer membrane that protects cells, sharing physicochemical and structural properties, and having several pharmaceutical applications, particularly in drug delivery. Investigations of molecular descriptors have provided not only an improvement in the performance of classifiers but also less computational complexity and an enhanced understanding of membrane permeability. Furthermore, the employment of new technologies, such as the construction of deep learning models using overfitting treatment, promotes advantages in tackling this problem. In this study, the descriptors nitrogen, oxygen, and hydrophobicity on the Eisenberg scale were investigated, using the proposed ConvBoost-CPP composed of an improved convolutional neural network with overfitting treatment and an XGBoost model with adjusted hyperparameters. The results revealed favorable to the use of ConvBoost-CPP, having as input nitrogen, oxygen, and hydrophobicity together with ten other descriptors previously investigated in this research line, showing an increase in accuracy from 88% to 91.2% in cross-validation and 82.6% to 91.3% in independent test.


Subject(s)
Cell-Penetrating Peptides , Deep Learning , Hydrophobic and Hydrophilic Interactions , Nitrogen , Oxygen , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Oxygen/metabolism , Oxygen/chemistry , Nitrogen/chemistry , Neural Networks, Computer
2.
Sci Adv ; 10(24): eado6169, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865457

ABSTRACT

Nitrogenase plays a key role in the global nitrogen cycle; yet, the evolutionary history of nitrogenase and, particularly, the sequence of appearance between the homologous, yet distinct NifDK (the catalytic component) and NifEN (the cofactor maturase) of the extant molybdenum nitrogenase, remains elusive. Here, we report the ability of NifEN to reduce N2 at its surface-exposed L-cluster ([Fe8S9C]), a structural/functional homolog of the M-cluster (or cofactor; [(R-homocitrate)MoFe7S9C]) of NifDK. Furthermore, we demonstrate the ability of the L-cluster-bound NifDK to mimic its NifEN counterpart and enable N2 reduction. These observations, coupled with phylogenetic, ecological, and mechanistic considerations, lead to the proposal of a NifEN-like, L-cluster-carrying protein as an ancient nitrogenase, the exploration of which could shed crucial light on the evolutionary origin of nitrogenase and related enzymes.


Subject(s)
Nitrogenase , Nitrogenase/metabolism , Nitrogenase/chemistry , Nitrogenase/genetics , Phylogeny , Nitrogen/metabolism , Nitrogen/chemistry , Molybdoferredoxin/chemistry , Molybdoferredoxin/metabolism , Models, Molecular , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Nitrogen Fixation/genetics
3.
Luminescence ; 39(6): e4801, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855811

ABSTRACT

Atopic dermatitis (AD) is a persistent, inflammatory skin condition that impacts approximately 15 to 20% of children and 1 to 3% of adults globally. Common skin manifestations include papules, papulovesicular, and brown or red patches with swelling, crusting, and flaking. Therefore, the drug abrocitinib (ABR) was approved by the US FDA as an oral treatment for atopic dermatitis. The present study outlines the development of innovative, thermostable, and pH-stable organic solvent-free nitrogen-doped carbon dots (N@CQDs) synthesized through a one-step method for evaluating ABR with a notable quantum yield of 33.84% to minimize the use of organic solvents. Their cost-effectiveness, eco-friendly characteristics, and outstanding photocatalytic properties have established them as a promising alternative to conventional luminescent techniques like fluorescent dyes and luminous derivatization technique. The reaction of ABR with N@CQDs led to a significant decrease in the luminescent response of the produced green and stable carbon quantum dots at 513 nm. The detection range was determined to be 1.0-150.0 ng mL-1, with a lower limit of quantitation (LOQ) equal to 0.52 ng mL-1 based on the linear graph. The green method effectively used for analysis of ABR in pharmaceutical tablets and pharmacokinetic study with high sensitivity.


Subject(s)
Carbon , Nitrogen , Quantum Dots , Quantum Dots/chemistry , Carbon/chemistry , Nitrogen/chemistry , Humans , Pyrimidines/chemistry , Pyrimidines/blood , Pyrimidines/chemical synthesis , Fluorometry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Solvents/chemistry , Molecular Structure
4.
Mikrochim Acta ; 191(7): 370, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38837084

ABSTRACT

The development of an ultrasensitive and precise measurement of a breast cancer biomarker (cancer antigen 15-3; CA15-3) in complex human serum is essential for the early diagnosis of cancer in groups of healthy populations and the treatment of patients. However, currently available testing technologies suffer from insufficient sensitivity toward CA15-3, which severely limits early large-scale screening of breast cancer patients. We report a versatile electrochemical immunoassay method based on atomically cobalt-dispersed nitrogen-doped carbon (Co-NC)-modified disposable screen-printed carbon electrode (SPCE) with alkaline phosphatase (ALP) and its metabolite, ascorbic acid 2-phosphate (AAP), as the electrochemical labeling and redox signaling unit for sensitive detection of low-abundance CA15-3. During electrochemical detection by differential pulse voltammetry (DPV), it was found that the Co-NC-SPCE electrode did not have a current signal response to the AAP substrate; however, it had an extremely favorable response current to ascorbic acid (AA). Based on the above principle, the target CA15-3-triggered immunoassay enriched ALP-catalyzed AAP produces a large amount of AA, resulting in a significant change in the system current signal, thereby realizing the highly sensitive detection of CA15-3. Under the optimal AAP substrate concentration and ALP catalysis time, the Co-NC-SPCE-based electrochemical immunoassay demonstrated a good DPV current for CA15-3 in the assay interval of 1.0 mU/mL to 10,000 mU/mL, with a calculated limit of detection of 0.38 mU/mL. Since Co-NC-SPCE has an excellent DPV current response to AA and employs split-type scheme, the constructed electrochemical immunoassay has the merits of high preciseness and anti-interference, and its clinical diagnostic results are comparable to those of commercial kits.


Subject(s)
Ascorbic Acid , Biomarkers, Tumor , Breast Neoplasms , Carbon , Cobalt , Electrochemical Techniques , Mucin-1 , Nitrogen , Humans , Immunoassay/methods , Breast Neoplasms/blood , Mucin-1/blood , Biomarkers, Tumor/blood , Electrochemical Techniques/methods , Carbon/chemistry , Nitrogen/chemistry , Cobalt/chemistry , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analogs & derivatives , Female , Limit of Detection , Alkaline Phosphatase/blood , Alkaline Phosphatase/chemistry , Electrodes , Biosensing Techniques/methods
5.
Chirality ; 36(6): e23681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839280

ABSTRACT

An N-centered epimeric mixture of chlorophyll-a derivatives methylated at the inner nitrogen atom was separated by reverse-phase high-performance liquid chromatography. Circular dichroism (CD) spectroscopic analyses of the epimerically pure N22-methyl-chlorins revealed that the minor first-eluted and major second-eluted stereoisomers were (22S)- and (22R)-configurations, respectively. Their visible absorption and CD spectra in solution were dependent on the N22-stereochemistry. The epimer-dependent spectral changes were independent of the substituents at the peripheral 3-position of the core chlorin chromophore.


Subject(s)
Chlorophyll A , Chlorophyll , Circular Dichroism , Stereoisomerism , Chlorophyll/chemistry , Methylation , Chlorophyll A/chemistry , Chromatography, High Pressure Liquid/methods , Nitrogen/chemistry
6.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891779

ABSTRACT

In this review, the principles of gas-phase proton basicity measurements and theoretical calculations are recalled as a reminder of how the basicity PA/GB scale, based on Brønsted-Lowry theory, was constructed in the gas-phase (PA-proton affinity and/or GB-gas-phase basicity in the enthalpy and Gibbs energy scale, respectively). The origins of exceptionally strong gas-phase basicity of some organic nitrogen bases containing N-sp3 (amines), N-sp2 (imines, amidines, guanidines, polyguanides, phosphazenes), and N-sp (nitriles) are rationalized. In particular, the role of push-pull nitrogen bases in the development of the gas-phase basicity in the superbasicity region is emphasized. Some reasons for the difficulties in measurements for poly-functional nitrogen bases are highlighted. Various structural phenomena being in relation with gas-phase acid-base equilibria that should be considered in quantum-chemical calculations of PA/GB parameters are discussed. The preparation methods for strong organic push-pull bases containing a N-sp2 site of protonation are briefly reviewed. Finally, recent trends in research on neutral organic superbases, leaning toward catalytic and other remarkable applications, are underlined.


Subject(s)
Gases , Gases/chemistry , Thermodynamics , Protons , Nitrogen/chemistry , Organic Chemicals/chemistry , Quantum Theory
7.
Mikrochim Acta ; 191(7): 384, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38861028

ABSTRACT

Multifunctional N, Fe-doped carbon dots (N, Fe-CDs) were synthesized by the one-step hydrothermal method using ferric ammonium citrate and dicyandiamide as raw materials. The N, Fe-CDs exhibited peroxidase-like (POD) activity by catalyzing the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) to the green oxidation state ox-TMB in the presence of hydrogen peroxide (H2O2). Subsequently, based on the POD activity of N, Fe-CDs, an efficient and sensitive colorimetric method for the detection of H2O2 and ascorbic acid (AA) was established with a limit of detection of 0.40 µM and 2.05 µM. The proposed detection method has been successfully applied to detect AA in fruit juice, vitamin C tablets, and human serum samples and has exhibited excellent application prospects in biotechnology and food fields. Furthermore, N, Fe-CDs also showed a protective effect on the cell damage caused by H2O2 and could be used as an antioxidant agent.


Subject(s)
Ascorbic Acid , Carbon , Fruit and Vegetable Juices , Hydrogen Peroxide , Oxidation-Reduction , Quantum Dots , Hydrogen Peroxide/chemistry , Ascorbic Acid/chemistry , Humans , Carbon/chemistry , Quantum Dots/chemistry , Fruit and Vegetable Juices/analysis , Benzidines/chemistry , Colorimetry/methods , Limit of Detection , Iron/chemistry , Nitrogen/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology
8.
J Environ Manage ; 362: 121346, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824884

ABSTRACT

The conversion of NO3--N to N2 is of great significance for zero discharge of industrial wastewater. Pd-Cu hydrogenation catalysis has high application prospects for the reduction of NO3--N to N2, but the existing form of Pd-Cu, the Pd-Cu mass ratio and the H2 evolution rate can affect the coverage of active hydrogen (*H) on the surface of Pd, thereby affecting N2 selectivity. In this work, mesoporous carbon (MC) is used as support to disperse Pd-Cu catalyst and is applied in an in-situ electrocatalytic H2 evolution system for NO3--N removal. The Pd-Cu particles with the average size of 6 nm are uniformly encapsulated in the mesopores of MC. Electrochemical in-situ H2 evolution can not only reduce the amount of H2 used, but the H2 bubbles can also be efficiently dispersed when PPy coated nickel foam (PPy/NF) is used as cathode. Moreover, the mesoporous structure of MC can further split H2 bubbles, reducing the coverage of *H on Pd. The highest 77% N2 selectivity and a relatively faster NO3--N removal rate constant (0.10362 min-1) can be achieved under the optimal conditions, which is superior to most reported Pd-Cu catalytic systems. The prepared catalyst is further applied to the denitrification of actual deplating wastewater. NO3--N with the initial concentration of 650 mg L-1 can be completely removed after 180 min of treatment, and the TN removal can be maintained at 72%.


Subject(s)
Carbon , Hydrogen , Nitrates , Nitrogen , Wastewater , Nitrogen/chemistry , Wastewater/chemistry , Hydrogen/chemistry , Carbon/chemistry , Catalysis , Nitrates/chemistry , Copper/chemistry , Palladium/chemistry , Water Pollutants, Chemical/chemistry
9.
Int J Biol Macromol ; 272(Pt 1): 132814, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825281

ABSTRACT

In this study, a new eco-friendly urea-rich sodium alginate-based hydrogel with a slow-release nitrogen property was prepared, and its effectiveness was evaluated in the cultivation of tomato plants under different water stress levels. The structure and performance of the hydrogel were investigated by FTIR, XRD, TGA, DTG, and SEM. The swelling and release experiments showed that prepared urea-rich hydrogel exhibited a high-water holding capacity (412 ± 4 g/g) and showed a sustained and slow nitrogen release property. A greenhouse pot experiment was conducted using two hydrogel levels (0.1 and 0.5 wt%) under two water deficit levels (30 and 70 % based on required water irrigation). Germination tests indicated that the developed hydrogel fertilizer has no phytotoxicity and has a positive impact on the germination rate even under water deficit conditions. The application of hydrogel fertilizer at 0.5 wt% significantly (p > 0.05) enhanced plant growth parameters such as leaf number, chlorophyll content, stem diameter, and plant length compared to the control treatment. The magnitude of the responses to the hydrogel fertilizer application depended on the concentration of applied hydrogel fertilizer and stress severity with the most positive effects on the growth and yield of tomato observed at a level of 0.5 %. Tomato yield was significantly enhanced by 19.58 %-12.81 %, 18.58 %-22.02 %, and 39.38 %-43.18 % for the plant amended with hydrogel at 0.1-0.5 wt% and grown under water deficit levels of 0, 30, and 70 %, respectively, compared to the control treatment.


Subject(s)
Alginates , Fertilizers , Hydrogels , Nitrogen , Solanum lycopersicum , Urea , Water , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Alginates/chemistry , Urea/chemistry , Water/chemistry , Hydrogels/chemistry , Nitrogen/chemistry , Germination/drug effects
10.
Water Sci Technol ; 89(11): 2880-2893, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877619

ABSTRACT

As a new pollutant treatment technology, microbial fuel cell (MFC) has a broad prospect. In this article, the devices assembled using walnut shells are named biochar-microbial fuel cell (B-MFC), and the devices assembled using graphene are named graphene-microbial fuel cell (G-MFC). Under the condition of an external resistance of 1,000 Ω, the B-MFC with biochar as the electrode plate can generate a voltage of up to 75.26 mV. The maximum power density is 76.61 mW/m2, and the total internal resistance is 3,117.09 Ω. The removal efficiency of B-MFC for ammonia nitrogen (NH3-N), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) was higher than that of G-MFC. The results of microbial analysis showed that there was more operational taxonomic unit (OTU) on the walnut shell biochar electrode plate. The final analysis of the two electrode materials using BET specific surface area testing method (BET) and scanning electron microscope (SEM) showed that the pore size of walnut shell biochar was smaller, the specific surface area was larger, and the pore distribution was smoother. The results show that using walnut shells to make electrode plates is an optional waste recycling method and an electrode plate with excellent development prospects.


Subject(s)
Bioelectric Energy Sources , Charcoal , Electrodes , Graphite , Juglans , Sewage , Juglans/chemistry , Charcoal/chemistry , Sewage/chemistry , Graphite/chemistry , Waste Disposal, Fluid/methods , Nitrogen/chemistry , Phosphorus/chemistry
11.
Chemosphere ; 361: 142535, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844108

ABSTRACT

Antibiotics are widely used in clinical medicine due to their excellent antibacterial abilities. As typical emerging pollutants, their misuse can lead to excess antibiotics entering the environment, causing antimicrobial resistance and leading to serious health problems via food chain. Herein, a nano-fluorescent probe based on nitrogen-doped carbon dots (N-CDs) was constructed for the sensitive detection of chlortetracycline (CTC). N-CDs with stable fluorescence were synthesized by hydrothermal method using alizarin red and melamine as raw materials. The N-CDs exhibited significant independence to excitation wavelength. The fluorescence of N-CDs was significantly quenched by CTC ascribing to the fluorescence resonance energy transfer mechanism. The concentration of N-CDs, solution pH and incubation time were optimized to obtain the optimal detection parameters. Under optimal conditions, CTC exhibited excellent linearity over the range of 20-1200 µg/L, and the detection limit was 8.74 µg/L. The method was validated with actual water samples and achieved satisfied spiked recoveries of 97.6-102.6%. Therefore, the proposed method has significant application value in the detection of CTC in waters.


Subject(s)
Anti-Bacterial Agents , Carbon , Chlortetracycline , Fluorescent Dyes , Limit of Detection , Nitrogen , Quantum Dots , Water Pollutants, Chemical , Chlortetracycline/analysis , Nitrogen/chemistry , Nitrogen/analysis , Carbon/chemistry , Fluorescent Dyes/chemistry , Water Pollutants, Chemical/analysis , Quantum Dots/chemistry , Anti-Bacterial Agents/analysis , Fluorescence Resonance Energy Transfer , Fluorescence
12.
Int J Biol Macromol ; 272(Pt 2): 132787, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844284

ABSTRACT

Insect protein extract is one of the high-quality protein sources and is frequently viewed as a potential nutrition alternative. However, a more precise method for protein measurement is still needed due to protein overestimation by the Kjeldahl method due to the presence of a large amount of chitin in insects. Therefore, we demonstrated the monitoring of chitin and protein extracted from yellow mealworm larvae through the information on molecular vibration obtained using Raman spectroscopy and infrared (IR) spectroscopy. The NH vibration at 3475 cm-1 is the characteristic peak of chitin in defatted product observed in the Raman spectra. The nitrogen-to-protein conversion factor in protein extracted from larvae by the Raman method was determined based on the NH vibration and found to be 5.66 ± 0.01. We also compared these experimental data to theoretical Raman and IR spectra and determined the possible reasons for why nitrogen elements in chitin affect the determination of protein content. The method of sequentially removing fat and protein could provide more accurate quantification of protein and chitin. Raman spectroscopy is feasible for various types of insects with high chitin content. Compared with the Kjeldahl method, the Raman method is a faster and more accurate measurement method. Moreover, it provides the content of impurities, purity, and structural information.


Subject(s)
Chitin , Insect Proteins , Larva , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Chitin/chemistry , Chitin/analysis , Larva/chemistry , Animals , Insect Proteins/chemistry , Insect Proteins/analysis , Tenebrio/chemistry , Nitrogen/analysis , Nitrogen/chemistry
13.
Chemosphere ; 361: 142526, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851507

ABSTRACT

The DEnitrifying AMmonium OXidation (DEAMOX) has been proven to be a promising process treating contaminated surface water containing ammonia and nitrate, while the enrichment of the slow-growing anammox bacteria (AnAOB) remains a challenge. In this study, a novel polyurethane-adhesion vermiculite/tourmaline (VTP) modified carrier was developed to achieve effective enrichment of AnAOB. The results demonstrated that the VTP-1 (vermiculite: tourmaline = 1:1) system exhibited the greatest performance with the total nitrogen removal efficiency reaching 87.6% and anammox contributing 63% to nitrogen removal. Scanning electron microscope analysis revealed the superior biofilm structure of the VTP-1 carrier, providing attachment for AnAOB. The addition of VTP-1 promoted the secretion of EPS (extracellular polymeric substances) by microorganisms, which increased to 85.34 mg/g VSS, contributing to the aggregation of anammox cells. The favorable substrate microenvironment created by NH4+ adsorption and NO2- supply via partial denitrification process facilitated the growth of AnAOB. The relative abundance of Candidatus Brocadia and Thauera increased from 0.04% to 0.3%-1.03% and 2.06% in the VTP-1 system, respectively. This study sheds new light on the anammox biofilm formation and provides a valid approach to initiate the DEAMOX process for low nitrogen polluted water treatment.


Subject(s)
Aluminum Silicates , Ammonium Compounds , Biofilms , Denitrification , Oxidation-Reduction , Ammonium Compounds/chemistry , Aluminum Silicates/chemistry , Bacteria/metabolism , Nitrogen/chemistry , Water Pollutants, Chemical , Ammonia/chemistry , Nitrates
14.
Chemosphere ; 361: 142493, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823426

ABSTRACT

Lignin-based carbon material can be utilized as carbonaceous adsorbents for the removal of toxic gaseous organic pollutants, while the poor heat-resistance limited its widely application. Here in, B-N co-doped lignin carbon (BN-C) with high thermal stability was synthesized, and the optimized BN-C (1:2) exhibited notably improved heat resistance with the decomposition temperature up to 505 °C, and excellent adsorption capacity for o-dichlorobenzene (o-DCB) (1510.0 mg/g) and toluene (947.3 mg/g), together with good cyclic stability over 10 cycles for o-dichlorobenzene. The existence of abundant hexagonal boron nitride (h-BN) with good thermal conductivity contributed to the superior heat-resistance of BN-C (1:2), and the high specific surface area (1764.5 m2/g), enriched hydroxyl functional groups and improved graphitization degree contributed to its enhanced adsorption performance. More importantly, BN-C (1:2) supported Ru could effectively remove o-DCB and toluene at wide temperature range (50-300 °C). The present work guided the development of heat-resistant lignin-derived adsorbent-catalyst for gaseous aromatic pollutants removal, which benefits both environmental protection and resource utilization.


Subject(s)
Air Pollutants , Lignin , Nitrogen , Adsorption , Lignin/chemistry , Catalysis , Nitrogen/chemistry , Air Pollutants/chemistry , Hot Temperature , Boron/chemistry , Toluene/chemistry , Boron Compounds/chemistry , Carbon/chemistry
15.
Water Environ Res ; 96(6): e11061, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881414

ABSTRACT

Subsurface wastewater infiltration systems (SWISs) are suggested to be a cost-effective and environmentally friendly method for sewage treatment. However, a comprehensive summary of the relevant mechanisms and optimization methods for nitrogen (N) removal in SWIS is currently lacking. In this review, we first summarize the N transformation mechanisms in SWIS. The impact of operational parameters on the N removal efficiency is then delineated. To enhance pollutant removal and minimize resource wastage, it is advisable to maintain a wet-dry ratio of 1:1 and a hydraulic loading rate of 8-10 cm/day. The organic load should be determined based on influent characteristics to optimize the balance between sewage treatment and nitrous oxide (N2O) emission. Finally, various strategies and modifications have been suggested to enhance pollutant removal efficiency and reduce N2O emissions in SWIS, such as artificial aeration, supply electron donors, and well-designed structures. Overall, greater emphasis should be placed on the design and management of SWIS to optimize their co-benefits while effectively controlling N pollution. PRACTITIONER POINTS: SWISs are often considered black boxes with their efficiency depending on hydraulic characteristics, biological characteristics, and substrate properties. Biological nitrification coupled with denitrification is considered to be the major N removal process. Increasing the reduction of N2O to the inert N2 form is a potential mechanism to mitigate global warming. Strategies such as artificial aeration, supply electron donors, and well-designed structures are suggested to improve N removal performance.


Subject(s)
Nitrogen , Waste Disposal, Fluid , Wastewater , Nitrogen/chemistry , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Nitrous Oxide
16.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38831060

ABSTRACT

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Subject(s)
Antioxidants , Carbon , Colorimetry , Copper , Nitrogen , Nitrogen/chemistry , Colorimetry/methods , Carbon/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Copper/chemistry , Cobalt/chemistry , Hydrogen Peroxide/chemistry , Humans , Catalysis , Limit of Detection , Glutathione/chemistry , Glutathione/blood , Dopamine/blood , Dopamine/analysis , Dopamine/chemistry , Benzidines/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analysis , Oxidation-Reduction , Uric Acid/blood , Uric Acid/chemistry , Uric Acid/analysis , Cysteine/chemistry , Cysteine/blood
17.
Environ Pollut ; 355: 124198, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38782161

ABSTRACT

Electro-Fenton (EF) can in-situ produce H2O2 and effectively activate H2O2 to generate powerful reactive species for the destruction of contaminants under acidic conditions, however, the production of iron-containing sludge and requirement of low working pH significantly hinder its practical application. Herein, a novel Cu, N co-doped carbon (Cu-N@C) with metal organic framework (MOF) as a precursor was constructed and adopted for the elimination of pefloxacin (PEF) in the heterogeneous electro-Fenton (HEF) process. PEF could be almost completely removed within 1 h and total organic carbon (TOC) removal efficiency was 48.57% within 6 h. Meanwhile, Cu-N@C had good repeatability and environmental adaptability, it can still maintain excellent catalytic performance after 10 cycles, and it exhibited satisfactory remediation performance in simulated water matrix. In addition, the HEF process catalyzed by Cu-N@C also showed satisfactory degradation effect on other organic pollutants including atrazine, methylene blue, and chlorotetracycline. Under the action of impressed current, the HEF system could generate H2O2 in-situ, and the active species could be generated in the redox cycle of Cu0/Cu1+/Cu2+. Electron paramagnetic resonance and quenching experiments confirmed that •OH was the dominant active species in the degradation of organic compounds. The degradation process of PEF was studied by mass spectrometry analysis of intermediate products. This study provided a simple method to prepare MOF-based electrocatalyst, which exhibits promising application potential for treatment wastewater.


Subject(s)
Carbon , Copper , Hydrogen Peroxide , Iron , Nanocomposites , Pefloxacin , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Copper/chemistry , Carbon/chemistry , Nanocomposites/chemistry , Pefloxacin/chemistry , Iron/chemistry , Nitrogen/chemistry , Metal-Organic Frameworks/chemistry
18.
Bioresour Technol ; 403: 130865, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801954

ABSTRACT

N-doped porous biochar is a promising carbon material for supercapacitor electrodes due to its developed pore structure and high chemical activity which greatly affect the capacitive performance. Predicting the capacitance and exploring the most influential factors are of great significance because it can not only avoid the trial-and-error experiments but also provide guidance for the synthesis of biochar with the aim of capacitance enhancement. In this study, a CNN model with ReLU activation function was established using DenseNet architecture for specific capacitance prediction. The importance and impacts of the physiochemical properties of N-doped porous biochar to the capacitance were revealed. With the guidance of the model, N-doped porous biochar samples with high capacitance were synthesized, the data of which were further used for model validation. This study provides not only a deep learning model which can be used in practice for capacitance prediction but also directions for the synthesis of N-doped porous biochar with high capacitive performance.


Subject(s)
Charcoal , Deep Learning , Electric Capacitance , Nitrogen , Charcoal/chemistry , Nitrogen/chemistry , Porosity , Electrodes
20.
Colloids Surf B Biointerfaces ; 239: 113953, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729021

ABSTRACT

Ascorbic acid (AA) is a powerful antioxidant in food safety and disease treatment. It is of great significance to develop a low-cost, high-stability, and easy-to-operate colorimetric method for quantitative detection of AA in food or human body. Although various nanozymes have been developed for the colorimetric detection of AA, the size regulation of the catalytic center of nanozymes remains a challenge. In this work, we propose a combined strategy of flow chemistry synthesis and pyrolysis to realize the controllable adjustment of the catalytic center size of nanozymes. Zinc-cobalt zeolitic imidazole frameworks (ZnCo-ZIFs) with different sizes are synthesized by flow chemistry. Nitrogen-doped carbon materials with different Co catalytic centers (80 nm-10 nm) are then obtained by pyrolysis of ZnCo-ZIFs precursors. Among them, cobalt quantum dot embedded nitrogen-doped carbon (Co QDs/N-C) exhibits excellent oxidase activity, with Vmax and Km of 4.19 × 10-7 M s-1 and 0.12 mM. Therefore, a simple, low-cost, and stable colorimetric method for the detection of AA is established with a good linear relationship (3-500 µM) and low detection limit (0.40 µM). This work has certain guiding significance for the size regulation of catalytic center of nanozyme, and the detection method has broad application prospects in biochemical sensing field.


Subject(s)
Ascorbic Acid , Carbon , Cobalt , Nitrogen , Quantum Dots , Quantum Dots/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Nitrogen/chemistry , Cobalt/chemistry , Carbon/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Colorimetry/methods , Particle Size , Limit of Detection , Humans , Surface Properties , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...