Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Physiol Rep ; 7(17): e14143, 2019 09.
Article in English | MEDLINE | ID: mdl-31496135

ABSTRACT

The present study explores the methods to determine human in vivo protein-specific myofibrillar and collagenous connective tissue protein fractional synthesis and breakdown rates. We found that in human myofibrillar proteins, the protein-bound tracer disappearance method to determine the protein fractional breakdown rate (FBR) (via 2 H2 O ingestion, endogenous labeling of 2 H-alanine that is incorporated into proteins, and FBR quantified by its disappearance from these proteins) has a comparable intrasubject reproducibility (range: 0.09-53.5%) as the established direct-essential amino acid, here L-ring-13 C6 -phenylalanine, incorporation method to determine the muscle protein fractional synthesis rate (FSR) (range: 2.8-56.2%). Further, the determination of the protein breakdown in a protein structure with complex post-translational processing and maturation, exemplified by human tendon tissue, was not achieved in this experimentation, but more investigation is encouraged to reveal the possibility. Finally, we found that muscle protein FBR measured with an essential amino acid tracer prelabeling is inappropriate presumably because of significant and prolonged intracellular recycling, which also may become a significant limitation for determination of the myofibrillar FSR when repeated infusion trials are completed in the same participants.


Subject(s)
Alanine/metabolism , Deuterium/pharmacokinetics , Muscle Proteins/biosynthesis , Nitrogen Isotopes/pharmacokinetics , Adult , Aged , Alanine/analogs & derivatives , Deuterium/administration & dosage , Humans , Male , Middle Aged , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Nitrogen Isotopes/administration & dosage , Protein Processing, Post-Translational , Tendons/metabolism
2.
An Acad Bras Cienc ; 90(4): 3299-3312, 2018.
Article in English | MEDLINE | ID: mdl-30184012

ABSTRACT

Best fertilizer management practices such as adopting the right N sidedress timing can reduce N losses by volatilization, thus, raising N-fertilizer recovery and grain yield. To evaluate ammonia (N-NH3 ) losses, N-fertilizer recovery and grain yield as a function of urea sidedress timing in corn, a field study was conducted during the 2011-2012 and 2012-2013 growing seasons, adopting a complete randomized block design with four replications. Treatments consisted of urea sidedress timing (140 kg N ha-1) at V4, V6, V8, V10, and V12 growth stages, plus a control without sidedress N. The largest N losses by N-NH3 volatilization occurred when urea was applied at V10 or V12 growth stages, reaching losses of 35 and 41 % of the total applied N. Although climatic factors influences N-NH3 volatilization process, crop characteristics such as canopy development also seems to affect N-NH3 losses. Nitrogen application at V4 or V6 growth stages resulted in greater N-fertilizer recovery from urea sidedress, reaching values of 53 %. No increase in corn grain yield was observed with N application at different corn growth stages during the two growing seasons evaluated, most likely due to high N mineralization rates from the soil.


Subject(s)
Agriculture/methods , Ammonia/administration & dosage , Fertilizers , Nitrogen Isotopes/administration & dosage , Urea/metabolism , Volatilization , Zea mays/growth & development , Ammonia/analysis , Ammonia/chemistry , Nitrogen Isotopes/analysis , Nitrogen Isotopes/chemistry , Random Allocation , Seasons , Time Factors , Zea mays/drug effects
3.
JPEN J Parenter Enteral Nutr ; 42(2): 361-370, 2018 02.
Article in English | MEDLINE | ID: mdl-29443397

ABSTRACT

BACKGROUND: We used the 15 N glycine urinary end-product enrichment technique to quantify whole body protein turnover following thoracic surgery. MATERIALS AND METHODS: A single dose of 15 N glycine (2 mg/kg) was administered orally on postoperative day 1 to children (1-18 years) following thoracic surgery. 15 N enrichment of ammonia and urea was measured in mixed urine after 12 and 24 hours, respectively, and protein synthesis, breakdown, and net balance determined. Nitrogen balance (dietary intake minus urinary excretion) was calculated. Urinary 3-methylhistidine:creatinine ratio was measured as a marker of skeletal muscle protein breakdown. RESULTS: We enrolled 19 subjects-median (interquartile range): age, 13.8 years (12.2-15.1); weight, 49.2 kg (38.4-60.8)-who underwent thoracotomy (n = 12) or thoracoscopic (n = 7) surgery. Protein synthesis and breakdown by 15 N enrichment were 7.1 (5.5-9) and 7.1 (5.6-9) g·kg-1 ·d-1 with ammonia (12 hours) as the end product, and 5.8 (3.8-6.7) and 6.7 (4.5-7.6) with urea (24 hours), respectively. Net protein balance by the 15 N glycine and urinary urea nitrogen methods were -0.34 (-0.47, -0.3) and -0.48 (-0.65, -0.28) g·kg-1 ·d-1 , respectively (rs = 0.828, P < .001). Postoperative change in 3-methylhistidine:creatinine ratio did not correlate significantly with protein breakdown or balance. CONCLUSION: The single-dose oral administration of 15 N glycine stable isotope with measurement of urinary end-product enrichment is a feasible and noninvasive method to investigate whole body protein turnover in children. After major surgery, children manifest increased protein turnover and net negative balance due to increased protein breakdown.


Subject(s)
Creatinine/urine , Glycine/administration & dosage , Methylhistidines/urine , Postoperative Complications/urine , Proteins/metabolism , Thoracic Surgical Procedures/adverse effects , Adolescent , Ammonia/urine , Biomarkers/urine , Child , Child, Preschool , Female , Humans , Infant , Male , Nitrogen Isotopes/administration & dosage , Pilot Projects , Reproducibility of Results , Urea/urine
4.
Clin Sci (Lond) ; 132(1): 17-31, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29187513

ABSTRACT

After bolus and continuous enteral feeding of the same protein, different digestion and absorption kinetics and anabolic responses are observed. Establishing which mode of feeding has the highest anabolic potential in patients with chronic obstructive pulmonary disease (COPD) may aid in the prevention of muscle wasting, but an important confounding factor is the duration of assessments after bolus feeding. We hypothesized that the anabolic response to bolus and continuous feeding in COPD patients is comparable when methodological issues are addressed. Twenty-one older adults (12 patients with stage II-IV COPD and 9 healthy controls) were studied after intake of a fast-absorbing hydrolyzed casein protein-carbohydrate mixture either as a single bolus or as small sips (crossover design). Whole body protein synthesis (PS), breakdown (PB), net PS (PS - PB) protein efficiency (netPSPE), net protein balance (phenylalanine (PHE) intake - PHE hydroxylation) protein efficiency (netBalPE), and splanchnic PHE extraction (SPEPHE) were assessed using stable isotope tracer methodology. Bolus feeding assessments were done at 90, 95, and 99% of the calculated duration of the anabolic response. At 99%, netBalPE was higher for sip feeding than bolus feeding in both groups (P<0.0001). Nevertheless, bolus feeding was associated with a lower SPEPHE (P<0.0001) and higher netPSPE (P<0.0001). At 90% compared with 99%, PS and netBalPE after bolus feeding was significantly overestimated. In conclusion, several factors complicate a comparison of the anabolic capacity of bolus and continuous feeding in acute studies, including the critical role of SPE calculation and assumptions, and the duration of postprandial assessments after bolus feeding.


Subject(s)
Caseins/metabolism , Dietary Carbohydrates/metabolism , Dietary Proteins/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Aged , Caseins/administration & dosage , Dietary Carbohydrates/administration & dosage , Dietary Proteins/administration & dosage , Female , Humans , Leucine/administration & dosage , Leucine/metabolism , Male , Nitrogen Isotopes/administration & dosage , Nitrogen Isotopes/metabolism , Phenylalanine/administration & dosage , Phenylalanine/metabolism , Postprandial Period , Protein Biosynthesis , Pulmonary Disease, Chronic Obstructive/physiopathology , Respiratory Function Tests
5.
Animal ; 12(4): 684-691, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28903794

ABSTRACT

An isotope dose technique was utilized (i) to determine endogenous amino acid (AA) and protein losses and (ii) to propose adjusted values for AA requirements. The endogenous flow rate was calculated from the pool of enrichment in plasma AA, assuming similitude to enrichment of endogenous AA. In experiment 1, chicks were orally administered D4-lysine at 2% of estimated lysine intake from 16 to 24 days to find the isotopic steady state of the atom percent excess (APE) of lysine for plasma and jejunal and ileal digesta. The APE of D4-lysine in plasma, jejunal digesta and ileal digesta reached the isotopic steady state at 5.5, 3.4 and 2.0 days, respectively, by using the broken-line model. It was assumed that the isotopic steady state at 5 days identified for D4-lysine is also representative for the 15N-labeled AA. In experiment 2, chicks were fed diets from 1 to 21 days with increasing levels of fat (6%, 8%, 12%, 13% extract ether), protein (26%, 28.5%, 31% CP) or fiber (14%, 16%, 18% NDF) by adding poultry fat, soybean meal, blended animal protein or barley. Chicks were orally administered 15N-threonine, 15N-cysteine, 15N-methionine, 15N-lysine and 15N-leucine at 2% of estimated daily intake for 5 days from 17 to 21 days of age. Dietary nutrients influenced endogenous losses (EL), where dietary fat stimulated EL of lysine (P=0.06), leucine and protein (P=0.07); dietary protein enhanced EL of leucine and protein; and finally the dietary fiber increased EL of leucine. Dietary nutrients also affected apparent ileal digestibility (AID). Dietary fat increased AID of cysteine but decreased AID of lysine. Dietary protein reduced AID of protein, threonine, lysine and leucine, and similarly dietary fiber decreased AID of protein, threonine, methionine, lysine and leucine. In contrast, dietary fat or protein did not affect real ileal digestibility (RID) of protein and AA except threonine and leucine. The dietary fiber reduced the RID of protein, threonine and leucine. This indicate that variations of some endogenous AA and protein losses due to dietary nutrients almost eliminates the effects of RID, and thus the EL coming from the body should be utilized to adjust the AA requirement instead of changing the true digestible nutrients of ingredients. The present data suggest that 5 days' feeding labeled AA was enough to reach the isotopic steady state and AA requirements should be adjusted when additional dietary protein, fat or fiber is fed.


Subject(s)
Amino Acids/metabolism , Chickens/metabolism , Dietary Fats/metabolism , Dietary Fiber/metabolism , Dietary Proteins/metabolism , Isotope Labeling/veterinary , Animals , Isotope Labeling/methods , Male , Nitrogen Isotopes/administration & dosage , Random Allocation
6.
PLoS One ; 12(11): e0188525, 2017.
Article in English | MEDLINE | ID: mdl-29166671

ABSTRACT

This study was conducted to assess the influence of dietary protein content in poultry when using the 15N-leucine single-injection method to determine endogenous amino acid losses (EAALs) in poultry. Forty-eight cecectomized roosters (2.39 ± 0.23 kg) were randomly allocated to eight dietary treatments containing protein levels of 0, 3%, 6%, 9%, 12%, 15%, 18% and 21%. Each bird was precisely fed an experimental diet of 25 g/kg of body weight. After feeding, all roosters were subcutaneously injected with a 15N-leucine solution at a dose of 20 mg/kg of body weight. Blood was sampled 23 h after the injection, and excreta samples were continuously collected during the course of the 48-h experiment. The ratio of 15N-enrichment of leucine in crude mucin to free leucine in plasma ranged from 0.664 to 0.763 and remained relatively consistent (P > 0.05) across all treatments. The amino acid (AA) profiles of total endogenous AAs, except isoleucine, alanine, aspartic acid, cysteine, proline and serine, were not influenced (P > 0.05) by dietary protein contents. The predominant endogenous AAs in the excreta were glutamic acid, aspartic acid, threonine, serine and proline. The order of the relative proportions of these predominant AAs also remained relatively constant (P > 0.05). The endogenous losses of total AAs determined with the 15N-leucine single-injection method increased curvilinearly with the dietary protein contents. The true digestibility of most AAs and total AAs was independent of their respective dietary protein levels. Collectively, the 15N-leucine single-injection method is appropriate for determining EAALs and the true digestibility of AAs in poultry fed varying levels of protein-containing ingredients.


Subject(s)
Cecum/surgery , Leucine/administration & dosage , Leucine/metabolism , Nitrogen Isotopes/administration & dosage , Animals , Chickens , Diet , Injections , Mucins/metabolism , Glycine max
7.
Am J Hematol ; 91(12): 1195-1201, 2016 12.
Article in English | MEDLINE | ID: mdl-27648808

ABSTRACT

Hemolysis is a key feature of sickle cell anemia (HbSS). Direct quantitation of hemolysis could be used as an objective outcome in clinical trials of new therapeutics for HbSS and would also enable better human studies of the pathogenesis of complications of HbSS that are ostensibly hemolysis-related, such as pulmonary hypertension. However, contemporary human studies in HbSS have used only surrogate markers of hemolysis rather than direct measurements of RBC survival. We directly quantified hemolysis in HbSS by measuring survival of an age cohort of RBCs labeled with a stable isotope, administered orally as 15 N-glycine, a metabolic precursor of heme. The atomic excess of 15 N in heme extracted from blood was monitored by mass spectrometry over time. We performed 13 labeling experiments in 11 individuals with HbSS. Mean RBC survival was 31.9 days (range 14.1-53.6). Both HbF level, a known determinant of hemolysis, and absolute reticulocyte count (ARC), an index of the marrow's response to hemolysis, correlated with directly measured RBC survival (r = 0.61, P < 0.002; r = -0.84, P < 0.001). However, commonly used biochemical surrogates of hemolysis (LDH, AST, bilirubin, and plasma free hemoglobin) did not correlate with directly measured RBC survival. These biochemical surrogates should be interpreted cautiously, at best, in clinical trials and human physiologic studies in HbSS. ARC was the best correlate of total hemolysis, but only 70% of the variation in RBC survival was reflected in this marker. If greater accuracy is required in human studies, 15 N-glycine RBC labeling can directly and accurately quantify hemolysis. Am. J. Hematol. 91:1195-1201, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Anemia, Sickle Cell/pathology , Biomarkers/blood , Cell Survival , Erythrocytes/pathology , Hemolysis , Nitrogen Isotopes/administration & dosage , Adolescent , Adult , Female , Fetal Hemoglobin , Glycine/administration & dosage , Humans , Isotope Labeling , Male , Mass Spectrometry , Reticulocyte Count , Young Adult
8.
Rapid Commun Mass Spectrom ; 28(9): 1011-8, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24677522

ABSTRACT

RATIONALE: Isotope ratio analysis of bovine tissues is a tool for inferring aspects of the dietary history of cattle. The objective of this experiment was to quantify the carbon (C) and nitrogen (N) isotopic turnover in blood (serum and residue) and inner organs (liver, kidney, heart and brain) of beef cattle. METHODS: Growing beef cattle (n = 70 in total) were either switched from a control diet containing barley and urea to an experimental diet containing maize and (15)N-enriched urea, for various intervals prior to slaughter or maintained on the control diet for 168 days pre-slaughter. Samples of blood, liver, kidney, heart and brain were collected at 0, 14, 28, 56, 112 and 168 days and analysed using Isotope Ratio Mass Spectrometry. RESULTS: After 168 days, C- and N-isotopic equilibrium was reached in the blood serum, liver and kidney, approached in the heart and brain, but not reached in the non-serum component of blood. The estimated C and N half-lives were 16.5 and 20.7 days for liver, 19.2 and 25.5 days for kidney, 29.2 and 35.6 days for blood serum, 37.6 and 49.9 days for heart, 53.3 and 52.2 days for brain and 113.3 and 115.0 days for the non-serum blood residue, respectively. Modelling the C and N turnover in the different tissue combinations revealed that a combined analysis of liver and heart as well as brain and kidney can provide the most accurate estimation of the timing of the diet switch. CONCLUSIONS: Based on the difference in turnover rates, bovine soft tissues can provide isotopic information on short- and long-term dietary changes, which in turn may be linked to the geographic or production origin of beef cattle. This study also provides basic biological data on organ C and N turnover in a large herbivorous mammal.


Subject(s)
Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Animal Feed , Animals , Brain Chemistry , Carbon Isotopes/administration & dosage , Carbon Isotopes/blood , Cattle , Kidney/chemistry , Liver/chemistry , Mass Spectrometry/methods , Nitrogen Isotopes/administration & dosage , Nitrogen Isotopes/blood , Tissue Distribution
9.
J Proteome Res ; 11(5): 2697-709, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22509746

ABSTRACT

Herein we report the characterization and optimization of single-step inline enrichment of phosphopeptides directly from small amounts of whole cell and tissue lysates (100-500 µg) using a hydroxyapatite (HAP) microcolumn and Multidimensional Protein Identification Technology (MudPIT). In comparison to a triplicate HILIC-IMAC phosphopeptide enrichment study, ∼80% of the phosphopeptides identified using HAP-MudPIT were unique. Similarly, analysis of the consensus phosphorylation motifs between the two enrichment methods illustrates the complementarity of calcium- and iron-based enrichment methods and the higher sensitivity and selectivity of HAP-MudPIT for acidic motifs. We demonstrate how the identification of more multiply phosphorylated peptides from HAP-MudPIT can be used to quantify phosphorylation cooperativity. Through optimization of HAP-MudPIT on a whole cell lysate we routinely achieved identification and quantification of ca. 1000 phosphopeptides from a ∼1 h enrichment and 12 h MudPIT analysis on small quantities of material. Finally, we applied this optimized method to identify phosphorylation sites from a mass-limited mouse brain region, the amygdala (200-500 µg), identifying up to 4000 phosphopeptides per run.


Subject(s)
Durapatite/chemistry , Phosphopeptides/isolation & purification , Proteomics/methods , Acids/chemistry , Amino Acid Motifs , Amino Acid Sequence , Amygdala/chemistry , Animals , Binding Sites , Calcium/chemistry , Chemical Precipitation , Consensus Sequence , Female , Mice , Mice, Inbred C57BL , Molecular Sequence Annotation , Molecular Sequence Data , Molecular Weight , Nitrogen Isotopes/administration & dosage , Nitrogen Isotopes/chemistry , Phosphopeptides/chemistry , Phosphorylation , Protein Folding , Proteome/chemistry , Proteome/isolation & purification , Proteomics/instrumentation , Proteomics/standards , Sensitivity and Specificity , Solubility
10.
Rapid Commun Mass Spectrom ; 26(1): 69-77, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22215580

ABSTRACT

A mounting body of evidence suggests that changes in energetic conditions like prolonged starvation can be monitored using stable isotope ratios of tissues such as bone, muscle, hair, and blood. However, it is unclear if urinary stable isotope ratios reflect a variation in energetic condition, especially if these changes in energetic condition are accompanied by shifts in dietary composition. In a feeding experiment conducted on captive bonobos (Pan paniscus), we monitored urinary δ(13)C, δ(15)N, total C (carbon), total N (nitrogen), and C/N ratios and compared these results with glucocorticoid levels under gradually changing energy availability and dietary composition. Measurements of daily collected urine samples over a period of 31 days showed that while shifts in urinary isotope signatures of δ(13)C and δ(15)N as well as total C were best explained by changes in energy consumption, urinary total N excretion as well as the C/N ratios matched the variation in dietary composition. Furthermore, when correcting for fluctuations in dietary composition, the isotope signatures of δ(13)C and δ(15)N as well as total C correlated with urinary glucocorticoid levels; however, the urinary total N and the C/N ratio did not. These results indicate for the first time that it is possible to non-invasively explore specific longitudinal records on animal energetic conditions and dietary compositions with urinary stable isotope ratios and elemental compositions, and this research provides a strong foundation for investigating how ecological factors and social dynamics affect feeding habits in wild animal populations such as primates.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Pan paniscus/urine , Animals , Caloric Restriction , Carbon Isotopes/administration & dosage , Carbon Isotopes/urine , Chromatography, High Pressure Liquid , Eating , Energy Metabolism/physiology , Female , Glucocorticoids/urine , Male , Nitrogen Isotopes/administration & dosage , Nitrogen Isotopes/urine , Regression Analysis , Statistics, Nonparametric , Stress, Physiological/physiology , Tandem Mass Spectrometry , Urine/chemistry
11.
Biol Psychiatry ; 70(11): 1074-82, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21791337

ABSTRACT

BACKGROUND: Although anxiety disorders are the most prevalent psychiatric disorders, no molecular biomarkers exist for their premorbid diagnosis, accurate patient subcategorization, or treatment efficacy prediction. To unravel the neurobiological underpinnings and identify candidate biomarkers and affected pathways for anxiety disorders, we interrogated the mouse model of high anxiety-related behavior (HAB), normal anxiety-related behavior (NAB), and low anxiety-related behavior (LAB) employing a quantitative proteomics and metabolomics discovery approach. METHODS: We compared the cingulate cortex synaptosome proteomes of HAB and LAB mice by in vivo (15)N metabolic labeling and mass spectrometry and quantified the cingulate cortex metabolomes of HAB/NAB/LAB mice. The combined data sets were used to identify divergent protein and metabolite networks by in silico pathway analysis. Selected differentially expressed proteins and affected pathways were validated with immunochemical and enzymatic assays. RESULTS: Altered levels of up to 300 proteins and metabolites were found between HAB and LAB mice. Our data reveal alterations in energy metabolism, mitochondrial import and transport, oxidative stress, and neurotransmission, implicating a previously nonhighlighted role of mitochondria in modulating anxiety-related behavior. CONCLUSIONS: Our results offer insights toward a molecular network of anxiety pathophysiology with a focus on mitochondrial contribution and provide the basis for pinpointing affected pathways in anxiety-related behavior.


Subject(s)
Anxiety/metabolism , Anxiety/physiopathology , Metabolomics , Mitochondria/metabolism , Proteomics , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Anxiety/drug therapy , Anxiety/genetics , Behavior, Animal/physiology , Citric Acid Cycle/genetics , Disease Models, Animal , Energy Metabolism/genetics , Gyrus Cinguli/metabolism , Gyrus Cinguli/pathology , Gyrus Cinguli/ultrastructure , Mass Spectrometry , Metabolic Networks and Pathways/genetics , Mice , Mitochondria/genetics , Models, Biological , Nitrogen Isotopes/administration & dosage , Nitrogen Isotopes/blood , Nitrogen Isotopes/metabolism , Oxidative Stress/genetics , Phosphorylation/genetics , Synaptic Transmission/genetics , Synaptosomes/metabolism
12.
Rapid Commun Mass Spectrom ; 24(24): 3515-20, 2010 Dec 30.
Article in English | MEDLINE | ID: mdl-21080502

ABSTRACT

A recent literature review reported negative relationships between diet discrimination factors (DDFs = X(fish) - X(food) ; X = δ(15) N or δ(13) C) and the values of δ(15) N and δ(13) C in the food of wild organisms but there has been no laboratory-based confirmation of these relationships to date. Laboratory reared guppies (Poecilia reticulata) fed a series of diets with a range of δ(13) C (-22.9 to -6.6‰) and δ(15) N (6.5 to 1586‰) values were used to magnify diet-tissue dynamics in order to calculate DDFs once the fish had achieved equilibrium with each of the diets. Values of DDFs range widely for δ(15) N (7.1 to -849‰) and δ(13) C (1.1 to -7.0‰) and showed a strong negative correlation with the stable isotope value in the food for δ(15) N (slope = -0.59 ± 0.02, r(2) = 0.95) and δ(13) C (slope = -0.56 ± 0.02, r(2) = 0.94). Based on these relationships, the magnitude of DDF change over environmentally relevant values of δ(15) N or δ(13) C would be significant and could confound the interpretation of stable isotopes in the environment. Using highly enriched experimental diets, our study adds to a growing number of studies that undermine the consistent trophic enrichment paradigm with results that demonstrate the currently poor mechanistic understanding of how DDFs arise. The results of our study highlight that the magnitude of the stable isotope values in prey must be considered when choosing DDF values. Future laboratory studies should therefore be directed at uncovering the mechanistic basis of DDFs and, like others before, we recommend the determination of diet-dependent DDFs under laboratory conditions before modeling dietary proportions or calculating trophic positions.


Subject(s)
Animals, Laboratory/metabolism , Carbon Isotopes/chemistry , Diet , Food Preferences , Nitrogen Isotopes/chemistry , Poecilia/metabolism , Animals , Carbon Isotopes/administration & dosage , Carbon Isotopes/metabolism , Food Chain , Food, Formulated , Larva , Linear Models , Lipids/chemistry , Models, Biological , Nitrogen Isotopes/administration & dosage , Nitrogen Isotopes/metabolism
13.
Plant Cell Environ ; 33(12): 2173-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20716065

ABSTRACT

Nitrogen-13 (t(1/2) 9.97 m), a radioactive isotope of nitrogen, offers unique opportunities to explore plant nitrogen utilization over short time periods. Here we describe a method for administering (13)N as gaseous (13)NH(3) to intact leaves of Nicotiana tabacum L. (cv Samsun), and measuring the labelled amino acids using radio high-performance liquid chromatography (HPLC) on tissue extract. We used this method to study the effects of defence induction on plant nitrogen utilization by applying treatments of methyl jasmonate (MeJA), a potent defence elicitor. MeJA caused a significant increase relative to controls in key [(13)N]amino acids, including serine, glycine and alanine by 4 h post-treatment, yet had no effect on (13)NH(3) incorporation, a process that is primarily under the control of the glutamine synthatase/glutamate synthase pathway (GS/GOGAT) in cellular photorespiration. We suggest that the reconfiguration of nitrogen metabolism may reflect induction of non-photorespiratory sources of nitrogen to better serve the plant's defences.


Subject(s)
Acetates/metabolism , Cyclopentanes/metabolism , Nicotiana/metabolism , Nitrogen/metabolism , Oxylipins/metabolism , Amino Acids/biosynthesis , Ammonia/metabolism , Carbon Dioxide/metabolism , Nitrogen Isotopes/administration & dosage , Nitrogen Isotopes/metabolism , Photosynthesis , Plant Leaves/metabolism , Stress, Physiological
14.
Burns ; 36(7): 1006-12, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20392565

ABSTRACT

UNLABELLED: Persistent and extensive skeletal muscle catabolism is characteristic of severe burns. Whole body protein metabolism, an important component of this process, has not been measured in burned children during the long-term convalescent period. The aim of this study was to measure whole body protein turnover in burned children at discharge (95% healed) and in healthy controls by a non-invasive stable isotope method. Nine burned children (7 boys, 2 girls; 54±14 (S.D.)% total body area burned; 13±4 years; 45±20 kg; 154±14 cm) and 12 healthy children (8 boys, 4 girls; 12±3 years; 54±16 kg; 150±22 cm) were studied. A single oral dose of (15)N-alanine (16 mg/kg) was given, and thereafter urine was collected for 34 h. Whole body protein flux was calculated from labeling of urinary urea nitrogen. Then, protein synthesis was calculated as protein flux minus excretion, and protein breakdown as flux minus intake. At discharge, total protein turnover was 4.53±0.65 (S.E.)g kg body weight(-1) day(-1) in the burned children compared to 3.20±0.22 g kg(-1) day(-1) in controls (P=0.02). Expressed relative to lean body mass (LBM), the rates were 6.12±0.94 vs. 4.60±0.36 g kg LBM(-1) day(-1) in burn vs. healthy (P=0.06). Total protein synthesis was also elevated in burned vs. healthy children, and a tendency for elevated protein breakdown was observed. CONCLUSION: Total protein turnover is elevated in burned children at discharge compared to age-matched controls, possibly reflecting the continued stress response to severe burn. The oral (15)N-alanine bolus method is a convenient, non-invasive, and no-risk method for measurement of total body protein turnover.


Subject(s)
Burns/metabolism , Proteins/metabolism , Adolescent , Alanine/administration & dosage , Child , Female , Humans , Male , Muscle Proteins/metabolism , Nitrogen/urine , Nitrogen Isotopes/administration & dosage , Nitrogen Isotopes/urine , Protein Biosynthesis , Urea/urine
15.
Rapid Commun Mass Spectrom ; 23(2): 319-26, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19089855

ABSTRACT

Metabolic turnover rates (m) of delta(15)N and delta(13)C were assessed in different tissues of newly hatched captive-raised corn snakes (Elaphe guttata guttata) fed maintenance diets consisting of earthworms (Eisenia foetida) that varied substantially in delta(15)N (by 644 per thousand) and delta(13)C (by 5.0 per thousand). Three treatments were used during this 144 day experiment that consisted of the same diet throughout (control), shifting from a depleted to an enriched stable isotope signature diet (uptake), and shifting from an enriched to depleted stable isotope signature diet (elimination). Values of delta(13)C in the liver, blood, and muscle of the control snakes reached equilibrium with and were, respectively, 1.73, 2.25 and 2.29 greater than in their diet, this increase is called an isotopic discrimination factor (Deltadelta(13)C = delta(13)C(snake) - delta(13)C(food)). Values of delta(15)N in snake tissues did not achieve equilibrium with the diets in any of the exposures and thus Delta(15)N could not be estimated. Values of metabolic turnover rates (m) for delta(13)C and delta(15)N were greater in liver than in muscle and blood, which were similar, and relative results remained the same if the fraction of (15)N and (13)C were modeled. Although caution is warranted because equilibrium values of stable isotopes in the snakes were not achieved, values of m were greater for delta(13)C than delta(15)N, resulting in shorter times to dietary equilibrium for delta(13)C upon a diet shift, and for both stable isotopes in all tissues, greater during an elimination than in an uptake shift in diet stable isotope signature. Multiple explanations for the observed differences between uptake and elimination shifts raise new questions about the relationship between animal and diet stable isotope concentrations. Based on this study, interpretation of feeding ecology using stable isotopes is highly dependent on the kind of stable isotope, tissue, direction of diet switch (uptake versus elimination), and the growth rate of the animal.


Subject(s)
Carbon Isotopes/administration & dosage , Carbon Isotopes/pharmacokinetics , Feeding Behavior/physiology , Mass Spectrometry/veterinary , Nitrogen Isotopes/administration & dosage , Nitrogen Isotopes/pharmacokinetics , Snakes/physiology , Animals , Mass Spectrometry/methods , Metabolic Clearance Rate , Organ Specificity , Tissue Distribution
16.
Rapid Commun Mass Spectrom ; 21(14): 2398-406, 2007.
Article in English | MEDLINE | ID: mdl-17582623

ABSTRACT

Denitrification and anaerobic ammonium oxidation (anammox) have been identified as biotic key processes of N2 formation during global nitrogen cycling. Based on the principle of a 15N tracer technique, new analytical expressions have been derived for a calculation of the fractions of N2 simultaneously released by anammox and denitrification. An omnipresent contamination with atmospheric N2 is also taken into account and is furthermore calculable in terms of a fraction. Two different mathematical approaches are presented which permit a precise calculation of the contribution of anammox, denitrification, and atmosphere to a combined N2 mixture. The calculation is based on a single isotopic analysis of a sampled N2 mixture and the determination of the 15N abundance of nitrite and nitrate (simplified approach) or of ammonium, nitrite, and nitrate (comprehensive approach). Calculations are even processable under conditions where all basal educts of anammox and denitrification (ammonium, nitrite, and nitrate) are differently enriched in 15N. An additional determination of concentrations of dissolved N compounds is unnecessary. Finally, the presented approach is transferable to studies focused on terrestrial environments where N2 is formed by denitrification and simultaneously by codenitrification or chemodenitrification.


Subject(s)
Algorithms , Mass Spectrometry/methods , Models, Chemical , Nitrogen Isotopes/administration & dosage , Nitrogen/chemistry , Atmospheric Pressure , Computer Simulation , Gases/chemistry , Isotope Labeling/methods , Nitrogen Isotopes/chemistry
17.
J Nutr ; 134(11): 3068-75, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15514277

ABSTRACT

The (15)N-isotope dilution technique ((15)N-IDT), with either pulse-dose oral administration or continuous i.v. administration of [(15)N]-l-leucine (carotid artery), both at 5 mg/(kg body weight . d), was used to measure ileal (postvalve T-cecum cannula) endogenous nitrogen recovery (ENR) in pigs (9 +/- 0.6 kg). Diets were cornstarch, enzyme-hydrolyzed casein with no (control) or high (4%) content of quebracho extract (Schinopsis spp.) rich in condensed tannins. Blood was sampled from a catheter in the external jugular vein. Mean plasma (15)N-enrichment at d 8-10 was higher (P = 0.0009) after i.v. than after oral administration [0.0356 vs. 0.0379 atom% excess (APE)]. Plasma (15)N-enrichment for i.v. infused pigs was 0.01117 APE higher (P < 0.0001) and for orally dosed pigs 0.0081 APE lower (P < 0.0001) at 11 h postprandial compared with 1 h postprandial. Apparent ileal N digestibility was higher (P < 0.0001) for the control (85.5%) than for the quebracho diet (69.5%). ENR was calculated from the ratio of (15)N-enrichment of plasma and digesta. The ENR for the quebracho diet was approximately 300% higher than for the control diet (6.03 vs. 1.94 g/kg dry matter intake, P < 0.001). The real N digestibility (92.2 +/- 0.4%) was equal for both diets (P = 0.1030) and both tracer methods (P = 0.9730). We concluded that oral administration of [(15)N]leucine provides reasonable estimates of ENR in pigs fed semipurified diets with high or low content of tannins; however, one must be careful in extrapolating this conclusion to studies with other protein sources or feeding frequencies.


Subject(s)
Diet , Digestion , Ileum/metabolism , Nitrogen Isotopes/administration & dosage , Nitrogen/metabolism , Swine/metabolism , Anacardiaceae/chemistry , Animals , Caseins , Indicator Dilution Techniques , Nitrogen Isotopes/blood , Starch , Tannins/administration & dosage
18.
Clin Nutr ; 23(2): 153-60, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15030954

ABSTRACT

BACKGROUND & AIMS: Most stable-isotope methods to evaluate whole body protein metabolism in patients are invasive and difficult to use in children. In this study protein metabolism was evaluated with the non-invasive [15N]glycine single oral dose method in critically ill children and the value of the method is discussed. METHODS: [15N]glycine (100mg) was given orally to children (mean age 5.5 years; range 0.6-15.5 years) with meningococcal septic shock (MSS, n = 8), pneumonia (n = 5), and to healthy, fed and post-absorptive children (n = 10). Urine was collected during 9h, total amount of NH(3), labelled NH(3) and nitrogen were measured, and protein turnover, synthesis and breakdown were calculated using urinary NH(3) as end-product. RESULTS: Mean protein turnover in children with MSS, pneumonia and fed and post-absorptive healthy children was 0.63+/-0.13, 0.38+/-0.10, 0.28+/-0.03 and 0.28+/-0.02g N/kg/9h, respectively. Mean protein synthesis was 0.55+/-0.12, 0.29+/-0.09, 0.18+/-0.02, 0.20+/-0.02g N/kg/9h, respectively. Mean protein breakdown was 0.56+/-0.14, 0.28+/-0.12, 0.08+/-0.03, 0.28+/-0.02g N/kg/9h, respectively. Protein turnover, synthesis and breakdown were significantly increased in MSS patients compared to fed healthy children (P <0.01) and post-absorptive children (P <0.05). Protein turnover, protein synthesis, protein breakdown were significantly correlated with disease severity and body temperature (P <0.05). CONCLUSION: Results of whole body protein metabolism measured with the [15N]glycine single oral dose method in children with MSS and in healthy children were in line with expectations based on results obtained in earlier reports and with different methods.


Subject(s)
Critical Illness , Glycine , Proteins/metabolism , Child , Child, Preschool , Female , Glycine/administration & dosage , Humans , Infant , Male , Meningococcal Infections/metabolism , Nitrogen Isotopes/administration & dosage , Pneumonia, Bacterial/metabolism , Shock, Septic/metabolism , Shock, Septic/microbiology
19.
J Dairy Sci ; 86(7): 2416-27, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12906060

ABSTRACT

A trial with four ruminally and duodenally cannulated, late-lactation dairy cows was conducted to investigate the effect of dietary carbohydrate (CHO) composition and availability on ruminal ammonia N utilization and transfer into milk protein. Two diets were fed at 8-h intervals in a crossover design. The diets differed in CHO composition: the ruminally fermentable non-structural carbohydrates (RFSS) diet (barley and molasses) contained a larger proportion of ruminally available CHO in the nonstructural carbohydrate fractions and the ruminally fermentable fiber (RFNDF) diet (corn, beet pulp, and brewer's grains) contained a larger proportion of CHO in ruminally available fiber. Nitrogen-15 was used to label ruminal ammonia N and consequently microbial and milk N. Fermentation acids, enzyme activities, and microbial protein production in the rumen were not affected by diet. Ruminal ammonia concentration was lowered by RFNDF. Ruminal and total tract digestibility of nutrients did not differ between diets except that apparent ruminal degradability of crude protein was lower for RFNDF compared with RFSS. Partitioning of N losses between urine and feces was also not affected by diet. Milk yield and fat and protein content were not affected by treatment. Average concentration of milk urea N was lower for RFNDF than for RFSS. Proportion of milk protein N originating from ruminal microbial N (based on the areas under the 15N-enrichment curves) was higher for RFNDF than for RFSS. Cumulative recovery of 15N in milk protein was 13% higher for RFNDF than for RFSS indicating enhanced transfer of 15N-ammonia into milk protein with the former diet. The results suggested that, compared to diets containing higher levels of ruminally fermentable starch, diets providing higher concentration of ruminally fermentable fiber may enhance transfer of ruminal ammonia and microbial N into milk protein.


Subject(s)
Ammonia/chemistry , Cattle/metabolism , Dietary Carbohydrates/administration & dosage , Milk Proteins/biosynthesis , Nitrogen/metabolism , Rumen/metabolism , Animal Feed , Animals , Bacteria/metabolism , Beta vulgaris , Dietary Carbohydrates/analysis , Dietary Fiber/administration & dosage , Dietary Fiber/analysis , Dietary Fiber/metabolism , Digestion , Female , Fermentation , Hordeum , Hydrogen-Ion Concentration , Lactation , Milk/chemistry , Molasses , Nitrogen Isotopes/administration & dosage , Rumen/chemistry , Rumen/microbiology , Starch/administration & dosage , Zea mays
20.
Exp Lung Res ; 28(7): 535-42, 2002.
Article in English | MEDLINE | ID: mdl-12396247

ABSTRACT

Conventional diagnosis of the pulmonary tract uses physical methods such as spirometry and oscillometry. However, the inhalation of a chemical diagnostic agent ought to provide novel ways of more specific diagnosis, for instance of inflammatory states of the bronchial and lung mucosa. The stable isotope technique using a (15)N-labeled substrate appears to be a suitable tool for this application. In a pilot study, defined amounts of the amino acid L-[guanidino-(15)N(2)]arginine monohydrochloride (aqueous solution, 20 atom % (15)N) were inhaled as a diagnostic agent by healthy volunteers and pulmonary patients suffering from asthma bronchiale. The amino acid is resorbed and partly metabolized to (15)NO. The exhaled air was collected under defined conditions in 10-L breath bags and analyzed for NO using chemiluminescence. Under standardized test conditions, healthy persons (n = 6) exhaled 0.97 +/- 0.08 micromol NO/m(3) and asthmatic patients (n = 7) 1.17 +/- 0.14 micromol NO/m(3). A better distinction was expected comparing the (15)NO exhalation. The (15)N abundance of NO was determined using a Cryotrap gas chromatography - mass spectrometry set-up. Between 30 and 80 minutes after inhaling 700 mg [(15)N]arginine, a maximum with a plateau of the (15)NO abundance was found in the exhaled air. At this time, healthy and asthmatic subjects exhibited clear differences in their exhaled (15)NO amounts. Under standardized test conditions, the healthy persons (n = 6) exhaled 102.3 +/- 6.7 nmol (15)NO/m(3), whereas asthmatic patients (n = 7) exhaled only 76.1 +/- 10.9 nmol (15)NO/m(3). It is concluded that (15)NO yielded after the inhalation of (15)N-labeled arginine could be a potential marker for demonstrating pathophysiological changes in the lung epithelium. This method could pave a new diagnostic principle of "inhalative breath test."


Subject(s)
Arginine , Asthma/diagnosis , Nitrogen Isotopes , Administration, Inhalation , Adolescent , Aged , Arginine/administration & dosage , Arginine/metabolism , Breath Tests , Female , Gas Chromatography-Mass Spectrometry , Humans , Male , Middle Aged , Nitric Oxide/analysis , Nitric Oxide/metabolism , Nitrogen Isotopes/administration & dosage , Nitrogen Isotopes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...