Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.202
Filter
1.
Physiol Rep ; 12(11): e16053, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806440

ABSTRACT

Inflammation and oxidative stress upset memory. We explored influence of sodium nitroprusside (SNP) on memory deficits resulted from lipopolysaccharide (LPS).Groups include control, LPS, LPS + SNP 1 mg/kg, LPS + SNP 2 mg/kg, and LPS + SNP 3 mg/kg. Morris water maze and passive avoidance tests and biochemical measurements were carried out.In Morris water maze, LPS prolonged time and distance for finding the platform. In probe trial, it diminished time spent and traveled distance in the target zone. Injection of 2 and 3 mg/kg of SNP overturned the effect of LPS. In passive avoidance task, LPS postponed entrance into darkroom and reduced time spent in light room and incremented time spent in darkroom in 3, 24, and 72 h after electrical shock. All three doses of SNP restored the effects of LPS. Biochemical experiments confirmed that LPS elevated interleukin-6 and malondialdehyde concentration and declined total thiol content and superoxide dismutase and catalase activity in the hippocampus and cortex tissues. SNP particularly at a 3 mg/kg dose ameliorated LPS effects on these parameters.SNP attenuated memory disabilities resulting from LPS through modifying inflammation and boosting antioxidant defense.


Subject(s)
Lipopolysaccharides , Memory Disorders , Nitroprusside , Oxidative Stress , Rats, Wistar , Animals , Lipopolysaccharides/toxicity , Nitroprusside/pharmacology , Male , Oxidative Stress/drug effects , Rats , Memory Disorders/metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Avoidance Learning/drug effects , Maze Learning/drug effects , Hippocampus/metabolism , Hippocampus/drug effects
2.
Plant Cell Rep ; 43(6): 152, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806834

ABSTRACT

KEY MESSAGE: Sodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes. DS-seedlings endured 12% polyethylene glycol (PEG) in a 10% nutrient solution (NS) for 2 days, then transitioned to half-strength NS for 10 days alongside control plants. DS reduced total plant dry weight, chlorophyll a and b, Fv/Fm, leaf water potential (ΨI), and relative water content, but improved hydrogen peroxide (H2O2), proline, and NO content. The SNP reduced the DS-induced H2O2 generation by reducing thiol (-SH) and the carbonyl (-CO) groups. SNP increased not only NO but also the activity of L-cysteine desulfhydrase (L-DES), leading to the generation of H2S. Decreases in S-nitrosoglutathione reductase (GSNOR) and NADPH oxidase (NOX) suggest a potential regulatory mechanism in which S-nitrosylation [formation of S-nitrosothiol (SNO)] may influence protein function and signaling pathways during DS. Moreover, SNP improved ascorbate (AsA) and glutathione (GSH) and reduced oxidized glutathione (GSSG) levels in tomato plants under drought. Furthermore, the interaction of NO and H2S, mediated by L-DES activity, may serve as a vital cross-talk mechanism impacting plant responses to DS. Understanding these signaling interactions is crucial for developing innovative drought-tolerance strategies in crops.


Subject(s)
Droughts , Hydrogen Peroxide , Nitric Oxide , Nitroprusside , Solanum lycopersicum , Nitroprusside/pharmacology , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Hydrogen Peroxide/metabolism , Nitric Oxide/metabolism , Glutathione/metabolism , Antioxidants/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Stress, Physiological/drug effects , Seedlings/drug effects , Seedlings/physiology , Seedlings/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/physiology , Nitrosation/drug effects , Chlorophyll/metabolism
3.
Vis Neurosci ; 41: E002, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38725382

ABSTRACT

Animal models of retinal degeneration are critical for understanding disease and testing potential therapies. Inducing degeneration commonly involves the administration of chemicals that kill photoreceptors by disrupting metabolic pathways, signaling pathways, or protein synthesis. While chemically induced degeneration has been demonstrated in a variety of animals (mice, rats, rabbits, felines, 13-lined ground squirrels (13-LGS), pigs, chicks), few studies have used noninvasive high-resolution retinal imaging to monitor the in vivo cellular effects. Here, we used longitudinal scanning light ophthalmoscopy (SLO), optical coherence tomography, and adaptive optics SLO imaging in the euthermic, cone-dominant 13-LGS (46 animals, 52 eyes) to examine retinal structure following intravitreal injections of chemicals, which were previously shown to induce photoreceptor degeneration, throughout the active season of 2019 and 2020. We found that iodoacetic acid induced severe pan-retinal damage in all but one eye, which received the lowest concentration. While sodium nitroprusside successfully induced degeneration of the outer retinal layers, the results were variable, and damage was also observed in 50% of contralateral control eyes. Adenosine triphosphate and tunicamycin induced outer retinal specific damage with varying results, while eyes injected with thapsigargin did not show signs of degeneration. Given the variability of damage we observed, follow-up studies examining the possible physiological origins of this variability are critical. These additional studies should further advance the utility of chemically induced photoreceptor degeneration models in the cone-dominant 13-LGS.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Degeneration , Sciuridae , Tomography, Optical Coherence , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Cone Photoreceptor Cells/drug effects , Disease Models, Animal , Intravitreal Injections , Ophthalmoscopy , Nitroprusside/pharmacology , Female , Male
4.
Cells ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786065

ABSTRACT

In various neurodegenerative conditions, inflammation plays a significant role in disrupting the blood-brain barrier (BBB), contributing to disease progression. Nitric oxide (NO) emerges as a central regulator of vascular function, with a dual role in inflammation, acting as both a pro- and anti-inflammatory molecule. This study investigates the effects of the NO donor sodium nitroprusside (SNP) in protecting the BBB from lipopolysaccharide (LPS)-induced inflammation, using bEnd.3 endothelial cells as a model system. Additionally, Raw 264.7 macrophages were employed to assess the effects of LPS and SNP on their adhesion to a bEnd.3 cell monolayer. Our results show that LPS treatment induces oxidative stress, activates the JAK2/STAT3 pathway, and increases pro-inflammatory markers. SNP administration effectively mitigates ROS production and IL-6 expression, suggesting a potential anti-inflammatory role. However, SNP did not significantly alter the adhesion of Raw 264.7 cells to bEnd.3 cells induced by LPS, probably because it did not have any effect on ICAM-1 expression, although it reduced VCAM expression. Moreover, SNP did not prevent BBB disruption. This research provides new insights into the role of NO in BBB disruption induced by inflammation.


Subject(s)
Blood-Brain Barrier , Inflammation , Lipopolysaccharides , Nitroprusside , Lipopolysaccharides/pharmacology , Nitroprusside/pharmacology , Animals , Mice , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , RAW 264.7 Cells , Inflammation/pathology , Reactive Oxygen Species/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Oxidative Stress/drug effects , STAT3 Transcription Factor/metabolism , Cell Adhesion/drug effects , Interleukin-6/metabolism , Signal Transduction/drug effects , Intercellular Adhesion Molecule-1/metabolism , Macrophages/drug effects , Macrophages/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
5.
J Nanobiotechnology ; 22(1): 199, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654266

ABSTRACT

Considering the high recrudescence and the long-lasting unhealed large-sized wound that affect the aesthetics and cause dysfunction after resection of maxillofacial malignant skin tumors, a groundbreaking strategy is urgently needed. Photothermal therapy (PTT), which has become a complementary treatment of tumors, however, is powerless in tissue defect regeneration. Therefore, a novel multifunctional sodium nitroprusside and Fe2+ ions loaded microneedles (SNP-Fe@MNs) platform was fabricated by accomplishing desirable NIR-responsive photothermal effect while burst releasing nitric oxide (NO) after the ultraviolet radiation for the ablation of melanoma. Moreover, the steady releasing of NO in the long term by the platform can exert its angiogenic effects via upregulating multiple related pathways to promote tissue regeneration. Thus, the therapeutic dilemma caused by postoperative maxillofacial skin malignancies could be conquered through promoting tumor cell apoptosis via synergistic PTT-gas therapy and subsequent regeneration process in one step. The bio-application of SNP-Fe@MNs could be further popularized based on its ideal bioactivity and appealing features as a strategy for synergistic therapy of other tumors occurred in skin.


Subject(s)
Melanoma , Nitric Oxide , Photothermal Therapy , Skin Neoplasms , Animals , Photothermal Therapy/methods , Mice , Skin Neoplasms/therapy , Melanoma/therapy , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Cell Line, Tumor , Needles , Humans , Nitroprusside/pharmacology , Apoptosis/drug effects , Skin , Iron/chemistry , Ultraviolet Rays
6.
Biomater Adv ; 160: 213851, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642517

ABSTRACT

Burns are a significant public health issue worldwide, resulting in prolonged hospitalization, disfigurement, disability and, in severe cases, death. Among them, deep second-degree burns are often accompanied by bacterial infections, insufficient blood flow, excessive skin fibroblasts proliferation and collagen deposition, all of which contribute to poor wound healing and scarring following recovery. In this study, SNP/MCNs-SKN-chitosan-ß-glycerophosphate hydrogel (MSSH), a hydrogel composed of a temperature-sensitive chitosan-ß-glycerophosphate hydrogel matrix (CGH), mesoporous carbon nanospheres (MCNs), nitric oxide (NO) donor sodium nitroprusside (SNP) and anti-scarring substance shikonin (SKN), is intended for use as a biomedical material. In vitro tests have revealed that MSSH has broad-spectrum antibacterial abilities and releases NO in response to near-infrared (NIR) laser to promote angiogenesis. Notably, MSSH can inhibit excessive proliferation of fibroblasts and effectively reduce scarring caused by deep second-degree burns, as demonstrated by in vitro and in vivo tests.


Subject(s)
Burns , Cicatrix , Hydrogels , Naphthoquinones , Wound Healing , Burns/drug therapy , Burns/pathology , Wound Healing/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Cicatrix/prevention & control , Cicatrix/pathology , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Naphthoquinones/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Fibroblasts/drug effects , Chitosan/pharmacology , Chitosan/chemistry , Temperature , Mice , Humans , Nitric Oxide/metabolism , Nitroprusside/pharmacology , Cell Proliferation/drug effects
7.
J Plant Res ; 137(3): 521-543, 2024 May.
Article in English | MEDLINE | ID: mdl-38460108

ABSTRACT

The present study examined the regulatory mechanism of hydrogen sulfide (H2S) and nitric oxide (NO) in nickel (Ni) stressed cyanobacteria viz., Nostoc muscorum and Anabaena sp. by analyzing growth, photosynthetic pigments, biochemical components (protein and carbohydrate), exopolysaccharides (EPS), inorganic nitrogen content, and activity of enzymes comprised in nitrogen metabolism and Ni accumulation. The 1 µM Ni substantially diminished growth by 18% and 22% in N. muscorum and Anabaena sp. respectively, along with declining the pigment contents (Chl a/Car ratio and phycobiliproteins), and biochemical components. It also exerted negative impacts on inorganic uptake of nitrate and nitrite contents; nitrate reductase and nitrite reductase; and ammonium assimilating enzymes (glutamine synthetase, glutamate synthase, and glutamate dehydrogenase exhibited a reverse trend) activities. Nonetheless, the adverse impact of Ni can be mitigated through the exogenous supplementation of NaHS [sodium hydrosulfide (8 µM); H2S donor] and SNP [sodium nitroprusside (10 µM); NO donor] which showed substantial improvement on growth, pigments, nitrogen metabolism, and EPS layer and noticeably occurred as a consequence of a substantial reduction in Ni accumulation content which minimized the toxicity effects. The accumulation of Ni on both the cyanobacterial cell surface (EPS layer) are confirmed by the SEM-EDX analysis. Further, the addition of NO scavenger (PTIO; 20 µM) and inhibitor of NO (L-NAME; 100 µM); and H2S scavenger (HT; 20 µM) and H2S inhibitor (PAG; 50 µM) reversed the positive responses of H2S and NO and damages were more prominent under Ni stress thereby, suggesting the downstream signaling of H2S on NO-mediated alleviation. Thus, this study concludes the crosstalk mechanism of H2S and NO in the mitigation of Ni-induced toxicity in rice field cyanobacteria.


Subject(s)
Hydrogen Sulfide , Nickel , Nitric Oxide , Nitrogen , Oryza , Nitric Oxide/metabolism , Nickel/metabolism , Hydrogen Sulfide/metabolism , Nitrogen/metabolism , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Nostoc muscorum/metabolism , Polysaccharides, Bacterial/metabolism , Anabaena/metabolism , Anabaena/drug effects , Anabaena/growth & development , Stress, Physiological , Nitroprusside/pharmacology
8.
Exp Physiol ; 109(5): 779-790, 2024 May.
Article in English | MEDLINE | ID: mdl-38445814

ABSTRACT

Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.


Subject(s)
Calcium Channel Blockers , Calcium Channels, T-Type , Endothelium, Vascular , Nifedipine , Nitrophenols , Humans , Male , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/drug effects , Aged , Calcium Channel Blockers/pharmacology , Nifedipine/pharmacology , Pilot Projects , Double-Blind Method , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Dihydropyridines/pharmacology , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/pharmacology , Blood Pressure/drug effects , Blood Pressure/physiology , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Organophosphorus Compounds/pharmacology , Acetylcholine/pharmacology , Leg/blood supply , Nitroprusside/pharmacology , Middle Aged
9.
BMC Plant Biol ; 24(1): 95, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331719

ABSTRACT

BACKGROUND: Spirodela polyrrhiza is a simple floating aquatic plant with great potential in synthetic biology. Sodium nitroprusside (SNP) stimulates plant development and increases the biomass and flavonoid content in some plants. However, the molecular mechanism of SNP action is still unclear. RESULTS: To determine the effect of SNP on growth and metabolic flux in S. polyrrhiza, the plants were treated with different concentrations of SNP. Our results showed an inhibition of growth, an increase in starch, soluble protein, and flavonoid contents, and enhanced antioxidant enzyme activity in plants after 0.025 mM SNP treatment. Differentially expressed transcripts were analysed in S. polyrrhiza after 0.025 mM SNP treatment. A total of 2776 differentially expressed genes (1425 upregulated and 1351 downregulated) were identified. The expression of some genes related to flavonoid biosynthesis and NO biosynthesis was upregulated, while the expression of some photosynthesis-related genes was downregulated. Moreover, SNP stress also significantly influenced the expression of transcription factors (TFs), such as ERF, BHLH, NAC, and WRKY TFs. CONCLUSIONS: Taken together, these findings provide novel insights into the mechanisms of underlying the SNP stress response in S. polyrrhiza and show that the metabolic flux of fixed CO2 is redirected into the starch synthesis and flavonoid biosynthesis pathways after SNP treatment.


Subject(s)
Plants , Transcriptome , Nitroprusside/pharmacology , Antioxidants , Gene Expression Profiling , Flavonoids , Starch
10.
Biomed Mater ; 19(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38387050

ABSTRACT

Sodium nitroprusside (SNP), U.S approved drug has been used in clinical emergency as a hypertensive drug for more than a decade. It is well established for its various biomedical applications such as angiogenesis, wound healing, neurological disorders including anti-microbial applications etc. Apart from that, SNP have been considered as excellent biomedical materials for its use as anti-cancer agent because of its behavior as NO-donor. Recent reports suggest that incorporation of metals in SNP/encapsulation of SNP in metal nanoparticles (metal nitroprusside analogues) shows better therapeutic anti-cancer activity. Although there are numerous reports available regarding the biological applications of SNP and metal-based SNP analogue nanoparticles, unfortunately there is not a single comprehensive review which highlights the anti-cancer activity of SNP and its derivative metal analogues in detail along with the future perspective. To this end, the present review article focuses the recent development of anti-cancer activity of SNP and metal-based SNP analogues, their plausible mechanism of action, current status. Furthermore, the future perspectives and challenges of these biomedical materials are also discussed. Overall, this review article represents a new perspective in the area of cancer nanomedicine that will attract a wider spectrum of scientific community.


Subject(s)
Cardiovascular Agents , Neoplasms , Nitroprusside/metabolism , Nitroprusside/pharmacology , Nitroprusside/therapeutic use , Metals , Neoplasms/drug therapy
11.
Eur J Neurosci ; 59(7): 1604-1620, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359910

ABSTRACT

Levodopa (L-DOPA) is the classical gold standard treatment for Parkinson's disease. However, its chronic administration can lead to the development of L-DOPA-induced dyskinesias (LIDs). Dysregulation of the nitric oxide-cyclic guanosine monophosphate pathway in striatal networks has been linked to deficits in corticostriatal transmission in LIDs. This study investigated the effects of the nitric oxide (NO) donor sodium nitroprusside (SNP) on behavioural and electrophysiological outcomes in sham-operated and 6-hydroxydopamine-lesioned rats chronically treated with vehicle or L-DOPA, respectively. In sham-operated animals, systemic administration of SNP increased the spike probability of putative striatal medium spiny neurons (MSNs) in response to electrical stimulation of the primary motor cortex. In 6-hydroxydopamine-lesioned animals, SNP improved the stepping test performance without exacerbating abnormal involuntary movements. Additionally, SNP significantly increased the responsiveness of putative striatal MSNs in the dyskinetic striatum. These findings highlight the critical role of the NO signalling pathway in facilitating the responsiveness of striatal MSNs in both the intact and dyskinetic striata. The study suggests that SNP has the potential to enhance L-DOPA's effects in the stepping test without exacerbating abnormal involuntary movements, thereby offering new possibilities for optimizing Parkinson's disease therapy. In conclusion, this study highlights the involvement of the NO signalling pathway in the pathophysiology of LIDs.


Subject(s)
Dyskinesias , Parkinson Disease , Rats , Animals , Levodopa/adverse effects , Nitroprusside/pharmacology , Oxidopamine/toxicity , Medium Spiny Neurons , Nitric Oxide/metabolism , Dyskinesias/metabolism , Corpus Striatum/metabolism , Disease Models, Animal , Antiparkinson Agents/adverse effects
12.
Fluids Barriers CNS ; 21(1): 12, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279178

ABSTRACT

BACKGROUND: Inside the incompressible cranium, the volume of cerebrospinal fluid is directly linked to blood volume: a change in either will induce a compensatory change in the other. Vasodilatory lowering of blood pressure has been shown to result in an increase of intracranial pressure, which, in normal circumstances should return to equilibrium by increased fluid efflux. In this study, we investigated the effect of blood pressure lowering on fluorescent cerebrospinal fluid tracer absorption into the systemic blood circulation. METHODS: Blood pressure lowering was performed by an i.v. administration of nitric oxide donor (sodium nitroprusside, 5 µg kg-1 min-1) or the Ca2+-channel blocker (nicardipine hydrochloride, 0.5 µg kg-1 min-1) for 10, and 15 to 40 min, respectively. The effect of blood pressure lowering on cerebrospinal fluid clearance was investigated by measuring the efflux of fluorescent tracers (40 kDa FITC-dextran, 45 kDa Texas Red-conjugated ovalbumin) into blood and deep cervical lymph nodes. The effect of nicardipine on cerebral hemodynamics was investigated by near-infrared spectroscopy. The distribution of cerebrospinal fluid tracers (40 kDa horse radish peroxidase,160 kDa nanogold-conjugated IgG) in exit pathways was also analyzed at an ultrastructural level using electron microscopy. RESULTS: Nicardipine and sodium nitroprusside reduced blood pressure by 32.0 ± 19.6% and 24.0 ± 13.3%, while temporarily elevating intracranial pressure by 14.0 ± 7.0% and 18.2 ± 15.0%, respectively. Blood pressure lowering significantly increased tracer accumulation into dorsal dura, deep cervical lymph nodes and systemic circulation, but reduced perivascular inflow along penetrating arteries in the brain. The enhanced tracer efflux by blood pressure lowering into the systemic circulation was markedly reduced (- 66.7%) by ligation of lymphatic vessels draining into deep cervical lymph nodes. CONCLUSIONS: This is the first study showing that cerebrospinal fluid clearance can be improved with acute hypotensive treatment and that the effect of the treatment is reduced by ligation of a lymphatic drainage pathway. Enhanced cerebrospinal fluid clearance by blood pressure lowering may have therapeutic potential in diseases with dysregulated cerebrospinal fluid  flow.


Subject(s)
Lymphatic Vessels , Nicardipine , Blood Pressure , Nitroprusside/pharmacology , Nitroprusside/metabolism , Nicardipine/metabolism , Lymphatic Vessels/metabolism , Brain/blood supply , Cerebrospinal Fluid/physiology
13.
Acta Biomater ; 176: 379-389, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38216108

ABSTRACT

Nitric oxide (NO)-based gas therapy approaches are promising in the treatment of infections; however, these strategies are hindered by poor delivery to the target site, which leads to unsatisfactory effects. In this study, we developed a NO-controlled platform (SCM@HA) via NO-generating mesoporous silica nanoparticles co-doped with sodium nitroprusside and copper sulphide to control NO production under near-infrared (NIR)-laser irradiation. Irradiation with an 808 nm NIR laser rapidly triggered the release of NO from the particles to actualise gas therapy. Photothermal therapy (PTT) also increased the local microenvironment temperature, and the close relationship between chemodynamic therapy (CDT) and temperature suggests that the increasing temperature facilitates in its working. The hydroxyl radicals generated by CDT can destroy the structure of bacteria in acidic environments. The germicidal activity of the nanoparticles was determined by the combined action of PTT, CDT, and NO-based gas therapy. The nanoparticles showed bactericidal activity in vitro against bacterial strains Staphylococcus aureus (S. aureus) and Salmonella typhimurium (S. typhimurium). Finally, the anti-infective efficacy in vivo in S. aureus-infected mouse model was demonstrated. Thus, the synergistic antimicrobial effects of NO-generating silica nanoparticles have good potential for the non-antibiotic treatment of bacterial infections in wounds. STATEMENT OF SIGNIFICANCE: Bacterial infections and resistance are challenging health threats. Therefore, the development of an antibiotic-independent method is essential for the treatment of wound bacterial infections. In this study, NO-generating nanoparticles loaded with sodium nitroprusside in copper sulphide-doped mesoporous silica were prepared to control the long-term release of NO using near-infrared laser, which has good efficacy of PTT and CDT. The bactericidal effects of as-prepared nanoparticles against S. aureus and S. typhimurium have been well elucidated. This study proposes a feasible method in the field of NO-based therapy, thus paving the way that will benefit for the treatment of bacterial infections in wounds.


Subject(s)
Nanoparticles , Staphylococcal Infections , Animals , Mice , Nitric Oxide , Copper/pharmacology , Nitroprusside/pharmacology , Staphylococcus aureus , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Nanoparticles/therapeutic use , Silicon Dioxide/pharmacology , Sulfides
14.
Placenta ; 145: 51-59, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38064938

ABSTRACT

INTRODUCTION: Infants with congenital diaphragmatic hernia (CDH) often develop pulmonary hypertension but frequently fail to respond to vasodilator therapy, for instance because of an altered pulmonary vasoreactivity. Investigating such alterations in vivo is impossible. We hypothesised that these alterations are also present in fetoplacental vessels, since both vasculatures are exposed to the same circulating factors (e.g. endothelin-1) and respond similarly to certain stimuli (e.g. hypoxia). As proof-of-concept, we compared fetoplacental vasoreactivity between healthy and CDH-affected placentas. METHODS: Fetoplacental vascular function of healthy and antenatally diagnosed left-sided CDH fetuses was assessed by wire myography. Placental expression of enzymes and receptors involved in the altered vasoreactive pathways was measured using quantitative PCR. RESULTS: CDH arteries (n = 6) constricted more strongly to thromboxane A2 agonist U46619 (p < 0.001) and dilated less to bradykinin (p = 0.01) and nitric oxide (NO)-donor sodium nitroprusside (p = 0.04) than healthy arteries (n = 8). Vasodilation to prostacyclin analogue iloprost and adenylate cyclase stimulator forskolin, and vasoconstriction to endothelin-1 were not different between both groups. Angiotensin II did not induce vasoconstriction. Phosphodiesterase inhibitors sildenafil and milrinone did not affect responses to sodium nitroprusside, forskolin, or U46619. The mRNA expression of guanylate cyclase 1 soluble subunit alpha 1 (p = 0.003) and protein kinase cyclic guanine monophosphate (cGMP)-dependent 1 (p = 0.02) were reduced in CDH versus healthy placentas. DISCUSSION: The identified changes in the thromboxane and NO-cGMP pathways in the fetoplacental vasculature correspond with currently described alterations in the pulmonary vasculature in CDH. Therefore, fetoplacental arteries may provide an opportunity to predict pulmonary therapeutic responses in infants with CDH.


Subject(s)
Hernias, Diaphragmatic, Congenital , Humans , Animals , Female , Pregnancy , Nitroprusside/pharmacology , Colforsin , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Endothelin-1 , Nitric Oxide/metabolism , Disease Models, Animal , Placenta/metabolism , Fetus/metabolism
15.
J Adv Res ; 56: 43-56, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36958586

ABSTRACT

INTRODUCTION: Chemodynamic therapy (CDT) holds great promise in achieving cancer therapy through Fenton and Fenton-like reactions, which generate highly toxic reactive species. However, CDT is limited by the lower amount of catalyst ions that can decompose already existing intracellular H2O2 and produce reactive oxygen species (ROS) to attain a therapeutic outcome. OBJECTIVES: To overcome these limitations, a tailored approach, which utilizes dual metals cations (Ag+, Fe2+) based silver pentacyanonitrosylferrate or silver nitroprusside (AgNP) were developed for Fenton like reactions that can specifically kill cancer cells by taking advantage of tumor acidic environment without used of any external stimuli. METHODS: A simple solution mixing procedure was used to synthesize AgNP as CDT agent. AgNP were structurally and morphologically characterized, and it was observed that a minimal dose of AgNP is required to destroy cancer cells with limited effects on normal cells. Moreover, comprehensive in vitro studies were conducted to evaluate antitumoral mechanism. RESULTS: AgNP have an effective ability to decompose endogenous H2O2 in cells. The decomposed endogenous H2O2 generates several different types of reactive species (•OH, O2•-) including peroxynitrite (ONOO-) species as apoptotic inducers that kill cancer cells, specifically. Cellular internalization data demonstrated that in short time, AgNP enters in lysosomes, avoid degradation and due to the acidic pH of lysosomes significantly generate high ROS levels. These data are further confirmed by the activation of different oxidative genes. Additionally, we demonstrated the biocompatibility of AgNP on mouse liver and ovarian organoids as an ex vivo model while AgNP showed the therapeutic efficacy on patient derived tumor organoids (PDTO). CONCLUSION: This work demonstrates the therapeutic application of silver nitroprusside as a multiple ROS generator utilizing Fenton like reaction. Thereby, our study exhibits a potential application of CDT against HGSOC (High Grade Serous Ovarian Cancer), a deadly cancer through altering the redox homeostasis.


Subject(s)
Neoplasms , Silver , Mice , Animals , Humans , Reactive Oxygen Species/metabolism , Silver/chemistry , Silver/pharmacology , Silver/therapeutic use , Nitroprusside/pharmacology , Nitroprusside/therapeutic use , Peroxynitrous Acid/therapeutic use , Hydrogen Peroxide/chemistry , Neoplasms/drug therapy
16.
J Clin Endocrinol Metab ; 109(2): e735-e744, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37672642

ABSTRACT

BACKGROUND: Arteries from boys with hypospadias demonstrate hypercontractility and impaired vasorelaxation. The role of sex hormones in these responses in unclear. AIMS: We compared effects of sex steroids on vascular reactivity in healthy boys and boys with hypospadias. METHODS: Excess foreskin tissue was obtained from 11 boys undergoing hypospadias repair (cases) and 12 undergoing routine circumcision (controls) (median age [range], 1.5 [1.2-2.7] years) and small resistance arteries were isolated. Vessels were mounted on wire myographs and vascular reactivity was assessed in the absence/presence of 17ß-estradiol, dihydrotestosterone (DHT), and testosterone. RESULTS: In controls, testosterone and 17ß-estradiol increased contraction (percent of maximum contraction [Emax]: 83.74 basal vs 125.4 after testosterone, P < .0002; and 83.74 vs 110.2 after estradiol, P = .02). 17ß-estradiol reduced vasorelaxation in arteries from controls (Emax: 10.6 vs 15.6 to acetylcholine, P < .0001; and Emax: 14.6 vs 20.5 to sodium nitroprusside, P < .0001). In hypospadias, testosterone (Emax: 137.9 vs 107.2, P = .01) and 17ß-estradiol (Emax: 156.9 vs 23.6, P < .0001) reduced contraction. Androgens, but not 17ß-estradiol, increased endothelium-dependent and endothelium-independent vasorelaxation in cases (Emax: 77.3 vs 51.7 with testosterone, P = .02; and vs 48.2 with DHT to acetylcholine, P = .0001; Emax: 43.0 vs 39.5 with testosterone, P = .02; and 39.6 vs 37.5 with DHT to sodium nitroprusside, P = .04). CONCLUSION: In healthy boys, testosterone and 17ß-estradiol promote a vasoconstrictor phenotype, whereas in boys with hypospadias, these sex hormones reduce vasoconstriction, with androgens promoting vasorelaxation. Differences in baseline artery function may therefore be sex hormone-independent and the impact of early-life variations in androgen exposure on vascular function needs further study.


Subject(s)
Acetylcholine , Hypospadias , Male , Humans , Infant , Nitroprusside/pharmacology , Hypospadias/surgery , Testosterone/pharmacology , Estradiol/pharmacology , Androgens/pharmacology , Dihydrotestosterone/pharmacology
17.
Article in English | MEDLINE | ID: mdl-37989399

ABSTRACT

Arterial pressure (Pa) regulation is essential to adequately distribute nutrients to metabolizing tissues, remove wastes and avoid lesions associated with hypertension. In vertebrates, short-term Pa regulation is achieved through the baroreflex, which elicits inversely proportional changes in heart rate (fH) and vascular resistance to restore Pa. The cardiac limb of this reflex has been reported in all vertebrate groups studied to date: teleosts, amphibians, snakes, lizards, crocodiles, birds and mammals - which led to the suggestion that the baroreflex is an ancient trait present in all vertebrate species. However, it is not clear whether more basal groups of vertebrates, such as cyclostomes, elasmobranchs and chondrosteans, manifest baroreflex regulation of fH. Thus, the aim of this study was to determine whether the white sturgeon (Acipenser transmontanus; Chondrostei: Acipenseridae) exhibits a cardiac baroreflex. To do so, we induced Pa perturbations through injections of phenylephrine, sodium nitroprusside (SNP) and saline solution (hypervolemia), and examined possible fH baroreflex responses. We also investigated whether fH responses triggered by fright and chemoreflex were present in this species, in order to confirm the potential of sturgeon to perform reflexive cardiac adjustments. The findings indicate that A. transmontanus exhibits reflex bradycardia in response to fright and chemoreceptor stimulation, illustrating its capacity for short-term cardiac regulation. However, this species does not display baroreflex control of fH across its physiological range. This dissociation suggests that while the nervous and cardiovascular systems of A. transmontanus are primed for rapid reflex responses, a cardiac baroreflex mechanism remains absent.


Subject(s)
Baroreflex , Cardiovascular System , Animals , Blood Pressure/physiology , Baroreflex/physiology , Reflex , Bradycardia , Phenylephrine/pharmacology , Heart Rate/physiology , Nitroprusside/pharmacology , Mammals
18.
Gen Physiol Biophys ; 42(6): 469-478, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37855238

ABSTRACT

This study aimed to examine the endothelial dependence of vasodilation induced by the phosphodiesterase inhibitor theophylline in isolated rat thoracic aortas and elucidate the underlying mechanism, with emphasis on endothelial nitric oxide (NO). The effects of various inhibitors and endothelial denudation on theophylline-induced vasodilation, and the effect of theophylline on vasodilation induced by NO donor sodium nitroprusside, cyclic guanosine monophosphate (cGMP) analog bromo-cGMP, and ß-agonist isoproterenol in endothelium-denuded aorta were examined. The effects of theophylline and sodium nitroprusside on cGMP formation were also examined. We examined the effect of theophylline on endothelial nitric oxide synthase (eNOS) phosphorylation and intracellular calcium levels. Theophylline-induced vasodilation was greater in endothelium-intact aortas than that in endothelium-denuded aortas. The NOS inhibitor, NW-nitro-L-arginine methyl ester; non-specific guanylate cyclase (GC) inhibitor, methylene blue; and NO-sensitive GC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one inhibited theophylline-induced vasodilation in endothelium-intact aortas. Theophylline increased the vasodilation induced by sodium nitroprusside, bromo-cGMP, and isoproterenol. Theophylline increased cGMP formation in endothelium-intact aortas, and sodium nitroprusside-induced cGMP formation in endothelium-denuded aortas. Moreover, theophylline increased stimulatory eNOS (Ser1177) phosphorylation and endothelial calcium levels, but decreased the phosphorylation of inhibitory eNOS (Thr495). These results suggested that theophylline-induced endothelium-dependent vasodilation was mediated by increased endothelial NO release and phosphodiesterase inhibition.


Subject(s)
Nitric Oxide , Vasodilation , Rats , Animals , Theophylline/pharmacology , Isoproterenol/pharmacology , Nitroprusside/pharmacology , Phosphoric Diester Hydrolases/pharmacology , Calcium , Aorta, Thoracic , Aorta , Nitric Oxide Synthase Type III , Cyclic GMP/pharmacology , Cyclic GMP/physiology , Endothelium, Vascular
19.
PLoS One ; 18(10): e0292706, 2023.
Article in English | MEDLINE | ID: mdl-37812620

ABSTRACT

Sickle cell disease (SCD) is a genetic disorder that has been associated with priapism. The role of hydroxyurea, a common SCD therapy, in influencing the nitric oxide (NO)-cGMP pathway and its effect on priapism is unclear. To investigate the effect of hydroxyurea treatment on smooth muscle relaxation of corpus cavernosum induced by stimulation of the NO-cGMP pathway in SCD transgenic mice and endothelial NO synthase gene-deficient (eNOS-/-) mice, which are used as model of priapism associated with the low bioavailability of endothelial NO. Four-month-old wild-type (WT, C57BL/6), SCD transgenic, and eNOS-/- male mice were treated with hydroxyurea (100 mg/Kg/day) or its vehicle (saline) daily for three weeks via intraperitoneal injections. Concentration-response curves for acetylcholine (ACh), sodium nitroprusside (SNP), and electrical field stimulation (EFS) were generated using strips of mice corpus cavernosum. The SCD mice demonstrated an amplified CC relaxation response triggered by ACh, EFS, and SNP. The corpus cavernosum relaxation responses to SNP and EFS were found to be heightened in the eNOS-/- group. However, the hydroxyurea treatment did not alter these escalated relaxation responses to ACh, EFS, and SNP in the corpus cavernosum of the SCD group, nor the relaxation responses to EFS and SNP in the eNOS-/- group. In conclusion, hydroxyurea is not effective in treating priapism associated with SCD. It is likely that excess plasma hemoglobin and reactive oxygen species, which are reported in SCD, are reacting with NO before it binds to GCs in the smooth muscle of the corpus cavernosum, thus preventing the restoration of baseline NO/cGMP levels. Furthermore, the downregulation of eNOS in the penis may impair the pharmacological action of hydroxyurea at the endothelial level in SCD mice. This study emphasize the urgency for exploring alternative therapeutic avenues for priapism in SCD that are not hindered by high plasma hemoglobin and ROS levels.


Subject(s)
Anemia, Sickle Cell , Priapism , Humans , Mice , Male , Animals , Priapism/etiology , Priapism/complications , Nitric Oxide/metabolism , Hydroxyurea/pharmacology , Hydroxyurea/therapeutic use , Mice, Inbred C57BL , Penis , Nitroprusside/pharmacology , Nitroprusside/metabolism , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/metabolism , Mice, Transgenic , Muscle Relaxation , Acetylcholine/metabolism , Phenotype , Hemoglobins/metabolism
20.
Intern Emerg Med ; 18(8): 2223-2230, 2023 11.
Article in English | MEDLINE | ID: mdl-37755541

ABSTRACT

Impaired myocardial mechano-energetics efficiency (MEE) was shown to predict incident heart failure, but pathophysiological mechanisms linking impaired MEE with heart failure have not been elucidated. Endothelial dysfunction is a plausible candidate because it has been associated with heart failure. This study aims to investigate the association between MEE and endothelium-dependent vasodilation, among drug-naïve hypertensive individuals. 198 Drug-naïve hypertensive individuals participating in the CATAnzaro MEtabolic RIsk factors (CATAMERI) study were included. All participants underwent to an oral glucose tolerance test and to an echocardiogram for myocardial LVM-normalized mechano-energetic efficiency (MEEi) measurement. Endothelial-dependent and endothelial-independent vasodilatation were measured by strain-gauge plethysmography during intra-arterial infusion of acetylcholine and sodium nitroprusside, respectively. A multivariate linear regression analysis was conducted to investigate the independent association between maximal endothelial-dependent vasodilation and MEEi. Maximal ACh-stimulated forearm blood flow (FBF) was associated to decreased myocardial MEEi (ß = 0.205, p = 0.002) independently of well-established cardiovascular risk factors including age, sex, BMI, waist circumference, smoking status, total and HDL cholesterol, triglycerides, hsCRP, glucose tolerance status, and HOMA-IR index of insulin resistance. Conversely, no association was observed between SNP-stimulated vasodilation and MEEi. Endothelium-mediated vasodilation may contribute to reduce myocardial MEEi independently of several potential confounders. Because diminished myocardial MEE has been previously associated with incident heart failure, a non-invasive assessment of myocardial MEEi may improve the identification of individuals at higher cardiovascular risk who may benefit from the initiation of pharmacological treatments ameliorating the endothelial dysfunction.


Subject(s)
Heart Failure , Hypertension , Humans , Hypertension/complications , Nitroprusside/pharmacology , Nitroprusside/therapeutic use , Vasodilation , Risk Factors , Acetylcholine/pharmacology , Heart Failure/complications , Endothelium, Vascular/physiology , Vasodilator Agents/pharmacology , Vasodilator Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...