Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 201(7): 3381-3386, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36057764

ABSTRACT

Metabolic dysfunction is a critical step in the etiopathogenesis of Alzheimer's disease. In this progressive neurological disorder, impaired zinc homeostasis has a key role that needs to be clarified. The aim of this study was to investigate the effect of zinc deficiency and administration on hippocampal Nogo-A receptor and osteocalcin gene expression in rats injected with intracerebroventricular streptozotocin (icv-STZ). Forty male Wistar rats were divided into 5 groups in equal numbers: Sham 1 group received icv artificial cerebrospinal fluid (aCSF); Sham 2 group received icv a CSF and i.p. saline; STZ group received 3 mg/kg icv STZ; STZ-Zn-deficient group received 3 mg/kg icv STZ and fed a zinc-deprived diet; STZ-Zn-supplemented group received 3 mg/kg icv STZ and i.p. zinc sulfate (5 mg/kg/day). Hippocampus tissue samples were taken following the cervical dislocation of the animals under general anesthesia. Nogo-A receptor and osteocalcin gene expression levels were determined by real-time-PCR method. Zinc supplementation attenuated the increase in hippocampal Nogo-A receptor gene expression, which was significantly increased in zinc deficiency. Again, zinc supplementation upregulated the intrinsic protective mechanisms of the brain by activating osteocalcin-expressing cells in the brain. The results of the study show that zinc has critical effects on Nogo-A receptor gene expression and hippocampal osteocalcin gene expression levels in the memory-sensitive rat hippocampus that is impaired by icv-STZ injection. These results are the first to examine the effect of zinc deficiency and supplementation on hippocampal Nogo-A receptor and osteocalcin gene expression in icv-STZ injection in rats.


Subject(s)
Alzheimer Disease , Zinc , Rats , Male , Animals , Streptozocin/pharmacology , Rats, Wistar , Nogo Proteins/metabolism , Nogo Proteins/pharmacology , Osteocalcin/genetics , Osteocalcin/metabolism , Zinc/pharmacology , Zinc/metabolism , Alzheimer Disease/pathology , Hippocampus/metabolism , Disease Models, Animal , Maze Learning
2.
Autophagy ; 18(11): 2711-2730, 2022 11.
Article in English | MEDLINE | ID: mdl-35263212

ABSTRACT

Cerebral infarction induces angiogenesis in the thalamus and influences functional recovery. The mechanisms underlying angiogenesis remain unclear. This study aimed to investigate the role of RTN4/Nogo-A in mediating macroautophagy/autophagy and angiogenesis in the thalamus following middle cerebral artery occlusion (MCAO). We assessed secondary neuronal damage, angiogenesis, vascular autophagy, RTN4 and S1PR2 signaling in the thalamus. The effects of RTN4-S1PR2 on vascular autophagy and angiogenesis were evaluated using lentiviral and pharmacological approaches. The results showed that RTN4 and S1PR2 signaling molecules were upregulated in parallel with angiogenesis in the ipsilateral thalamus after MCAO. Knockdown of Rtn4 by siRNA markedly reduced MAP1LC3B-II conversion and levels of BECN1 and SQSTM1 in vessels, coinciding with enhanced angiogenesis in the ipsilateral thalamus. This effect coincided with rescued neuronal loss of the thalamus and improved cognitive function. Conversely, activating S1PR2 augmented vascular autophagy, along with suppressed angiogenesis and aggravated neuronal damage of the thalamus. Further inhibition of autophagic initiation with 3-methyladenine or spautin-1 enhanced angiogenesis while blockade of lysosomal degradation by bafilomycin A1 suppressed angiogenesis in the ipsilateral thalamus. The control of autophagic flux by RTN4-S1PR2 was verified in vitro. Additionally, ROCK1-BECN1 interaction along with phosphorylation of BECN1 (Thr119) was identified in the thalamic vessels after MCAO. Knockdown of Rtn4 markedly reduced BECN1 phosphorylation whereas activating S1PR2 increased its phosphorylation in vessels. These results suggest that blockade of RTN4-S1PR2 interaction promotes angiogenesis and secondary neural repair in the thalamus by suppressing autophagic activation and alleviating dysfunction of lysosomal degradation in vessels after cerebral infarction.Abbreviations: 3-MA: 3-methyladenine; ACTA2/ɑ-SMA: actin alpha 2, smooth muscle, aorta; AIF1/Iba1: allograft inflammatory factor 1; BafA1: bafilomycin A1; BMVECs: brain microvascular endothelial cells; BrdU: 5-bromo-2'-deoxyuridine; CLDN11/OSP: claudin 11; GFAP: glial fibrillary acidic protein; HUVECs: human umbilical vein endothelial cells; LAMA1: laminin, alpha 1; MAP2: microtubule-associated protein 2; MBP2: myelin basic protein 2; MCAO: middle cerebral artery occlusion; PDGFRB/PDGFRß: platelet derived growth factor receptor, beta polypeptide; RECA-1: rat endothelial cell antigen-1; RHOA: ras homolog family member A; RHRSP: stroke-prone renovascular hypertensive rats; ROCK1: Rho-associated coiled-coil containing protein kinase 1; RTN4/Nogo-A: reticulon 4; RTN4R/NgR1: reticulon 4 receptor; S1PR2: sphingosine-1-phosphate receptor 2; SQSTM1: sequestosome 1.


Subject(s)
Autophagy , Infarction, Middle Cerebral Artery , Nogo Proteins , Sphingosine-1-Phosphate Receptors , Animals , Humans , Rats , Autophagy/physiology , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/complications , Neovascularization, Pathologic/metabolism , Nogo Proteins/metabolism , Nogo Proteins/pharmacology , rho-Associated Kinases/metabolism , rho-Associated Kinases/pharmacology , Sequestosome-1 Protein/metabolism , Thalamus/metabolism
3.
Curr Neurovasc Res ; 18(3): 271-278, 2021.
Article in English | MEDLINE | ID: mdl-34544340

ABSTRACT

BACKGROUND: Nogo-66 antagonistic peptide (NEP1-40) offers the potential to improve spinal cord injury (SCI). OBJECTIVE: To explore the effect of NEP1-40 overexpression on neural stem cells (NSCs) regulating the axon regeneration of injured neurons. METHODS: We isolated NSCs from brain tissues of pregnant rat fetuses and used Nestin immunofluorescence to identify them. The NEP1-40 overexpressing NSCs were constructed by transfection with the NEP1-40-overexpressing vector. The expression of NSCs differentiation associated markers, including Tuj-1, GFAP, Oligo2, and MBP, were detected by RT-PCR, western blotting, and immunofluorescence. NeuN immunofluorescence staining was used to measure the number of neurons. And western blotting was used to detect the phosphorylation levels of LIMK1/2, cofilin, and MLC-2 and the protein levels of GAP-43, MAP-2, and APP. RESULTS: The NEP1-40 overexpression promoted the expression level of Tuj-1, Oligo2, and MBP, and increased the number of Tuj-1, Oligo2, and MBP positive cells. NEP1-40-overexpressing NSCs (NEP-NSCs) improved NeuN positive cells of co-culture with injured neurons. And NEP-NSCs also increased the protein levels of axon regeneration indicators (GAP-43, MAP-2) and decreased APP protein level. In addition, the phosphorylation level of LIMK1/2, cofilin, and MLC-2 were markedly decreased in NEP-NSCs. CONCLUSION: NEP1-40 overexpression enhanced the ability of NSCs differentiation into neurons and promoted axon regeneration by inhibiting the Nogo-A/NgR1 signaling pathway. This study provides an alternative gene modified transplantation NSCs for the SCI treatment.


Subject(s)
Neural Stem Cells , Spinal Cord Injuries , Animals , Axons , Nerve Regeneration , Nogo Proteins/metabolism , Nogo Proteins/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy
4.
Cell Mol Neurobiol ; 38(8): 1557-1563, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30218404

ABSTRACT

Overcoming neurite inhibition is integral for restoring neuronal connectivity after CNS injury. Actin dynamics are critical for neurite growth cone formation and extension. The tropomyosin family of proteins is a regarded as master regulator of actin dynamics. This study investigates tropomyosin isoform 3.1 (Tpm3.1) as a potential candidate for overcoming an inhibitory substrate, as it is known to influence neurite branching and outgrowth. We designed a microfluidic device that enables neurons to be grown adjacent to an inhibitory substrate, Nogo-66. Results show that neurons, overexpressing hTpm3.1, have an increased propensity to overcome Nogo-66 inhibition. We propose Tpm3.1 as a potential target for promoting neurite growth in an inhibitory environment in the central nervous system.


Subject(s)
Hippocampus/cytology , Lab-On-A-Chip Devices , Neuronal Outgrowth , Neurons/metabolism , Tropomyosin/metabolism , Animals , Humans , Neuronal Outgrowth/drug effects , Neurons/drug effects , Nogo Proteins/pharmacology , Reproducibility of Results
5.
Neurosci Bull ; 32(6): 577-584, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27761788

ABSTRACT

Nogo-66 plays a central role in the myelin-mediated inhibition of neurite outgrowth. Tau is a microtubule-associated protein involved in microtubule assembly and stabilization. It remains unverified whether tau interacts directly with growth factor receptors, or engages in cross-talk with regeneration inhibitors like Nogo-66. Here, we report that plasmid overexpression of tau significantly elevated the protein levels of total tau, phosphorylated tau, and microtubule-affinity regulating kinase (MARK). Nogo-66 transiently elevated the total tau protein level and persistently reduced the level of p-S262 tau (tau phosphorylated at serine 262), whereas it had little influence on the level of p-T205 tau (tau phosphorylated at threonine 205). Nogo-66 significantly decreased the protein level of MARK. Hymenialdisine, an inhibitor of MARK, significantly reduced the level of p-S262 tau. Overexpression of tau rescued the Nogo-66-induced inhibition of neurite outgrowth in neuroblastoma 2a (N2a) cells and primary cortical neurons. However, concomitant inhibition of MARK abolished the rescue of neurite outgrowth by tau in N2a cells. We conclude that dephosphorylation of tau at S262 is able to regulate Nogo-66 signaling, and that overexpression of tau can rescue the Nogo-66-induced inhibition of neurite outgrowth in vitro.


Subject(s)
Neurites/drug effects , Neurons/cytology , Neurons/drug effects , Nogo Proteins/pharmacology , tau Proteins/metabolism , Analysis of Variance , Animals , Azepines/pharmacology , Cells, Cultured , Cerebral Cortex/cytology , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Female , Gene Expression Regulation/drug effects , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice , Neuroblastoma/pathology , Protein Serine-Threonine Kinases/metabolism , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley , Time Factors , Transfection , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...