Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.393
Filter
1.
J Acoust Soc Am ; 155(5): 3267-3273, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38742961

ABSTRACT

Music is complex. There are risks to hearing health associated with playing due to excessive sound exposure. Face the Music is an on-going cross-sectional project to assess the risks to unamplified classical musicians. Key findings over the first fifteen years are presented based on the research undertaken with a leading conservatoire on more than 5000 classical music students. The work covers hearing health surveillance, education and awareness, sound exposure, and new technology. The future of the research programme is discussed along with opportunities in objective hearing health assessment and new acoustic solutions. A lot has changed in fifteen years, but the research was driven by a change in United Kingdom legislation. It is hoped that the research results can inform future regulation.


Subject(s)
Hearing Loss, Noise-Induced , Music , Humans , Hearing Loss, Noise-Induced/prevention & control , Hearing Loss, Noise-Induced/etiology , Cross-Sectional Studies , Occupational Diseases/prevention & control , Occupational Diseases/psychology , Occupational Diseases/etiology , Occupational Exposure/adverse effects , Occupational Exposure/prevention & control , Risk Factors , United Kingdom , Risk Assessment , Noise, Occupational/adverse effects , Young Adult , Male , Female , Adult , Acoustics , Health Knowledge, Attitudes, Practice
2.
Sci Rep ; 14(1): 10762, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730002

ABSTRACT

Excessive occupational exposure to noise results in a well-recognized occupational hearing loss which is prevalent in many workplaces and now it is taken as a global problem. Therefore, this study aims to assess the prevalence of noise-induced hearing loss and associated factors among workers in the Bishoftu Central Air Base in Ethiopia. An institutional-based cross-sectional study was conducted among 260 central air base workers through face-to-face interviews, an environment noise survey, and an audiometric test for data collection. Data were entered by Epi-data version 3.1 and SPSS was used to analyze the data. Finally, a statistical analysis such as descriptive and binary logistic regression analysis was applied. A P-value < 0.05 at 95% CI was considered statistically significant. The overall prevalence of noise-induced hearing loss and hearing impairments was 24.6 and 30.9%, respectively. The highest prevalence of noise-induced hearing loss was recorded for workers who were exposed to noise levels greater than 90 dBA. Out of 132 workers exposed to the average noise level of 75 dB A, only 5% of workers were affected with noise-induced hearing loss, while 128 workers exposed to an average noise level equal to or greater than 90 dB A, 19.6% of workers were identified with noise-induced hearing loss. Regarding sex, around 21.9% of male workers were identified with noise-induced hearing loss. Workers who were exposed to a high noise level workplace previously or before the Central Air Base workplace were five times (AOR = 5.0, 95% CI 1.74-14.36) more likely affected by noise-induced hearing loss than those workers not previously exposed. Those workers who were exposed to greater or equal to 90dBA noise level were 4.98 times (AOR = 4.98, 95% CI 2.59-9.58) more likely to be exposed to noise-induced levels than those who were exposed to less than 90dBA noise level. Moreover, male air base workers were 3.5 times more likely exposed to hearing impairment than female workers (AOR = 3.5, 95% CI 1.01-12.0). This study identified that the prevalence of noise-induced hearing loss and hearing impairments was significantly high. So implementation of a hearing conservation program, giving noise education, and supplying adequate hearing protective devices (HPDs) are essentials.


Subject(s)
Hearing Loss, Noise-Induced , Noise, Occupational , Occupational Exposure , Humans , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/etiology , Ethiopia/epidemiology , Male , Adult , Prevalence , Female , Cross-Sectional Studies , Occupational Exposure/adverse effects , Noise, Occupational/adverse effects , Middle Aged , Young Adult , Risk Factors , Occupational Diseases/epidemiology , Occupational Diseases/etiology
3.
Cochrane Database Syst Rev ; 5: CD015066, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38757544

ABSTRACT

BACKGROUND: Global Burden of Disease studies identify hearing loss as the third leading cause of years lived with a disability. Their estimates point to large societal and individual costs from unaddressed hearing difficulties. Workplace noise is an important modifiable risk factor; if addressed, it could significantly reduce the global burden of disease. In practice, providing hearing protection devices (HPDs) is the most common intervention to reduce noise exposure at work. However, lack of fit of HPDs, especially earplugs, can greatly limit their effectiveness. This may be the case for 40% of users. Testing the fit and providing instructions to improve noise attenuation might be effective. In the past two decades, hearing protection fit-test systems have been developed and evaluated in the field. They are called field attenuation estimation systems. They measure the noise attenuation obtained by individual workers using HPDs. If there is a lack of fit, instruction for better fit is provided, and may lead to better noise attenuation obtained by HPDs. OBJECTIVES: To assess: (1) the effects of field attenuation estimation systems and associated training on the noise attenuation obtained by HPDs compared to no instruction or to less instruction in workers exposed to noise; and (2) whether these interventions promote adherence to HPD use. SEARCH METHODS: We used CENTRAL, MEDLINE, five other databases, and two trial registers, together with reference checking, citation searching, and contact with study authors to identify studies. We imposed no language or date restrictions. The latest search date was February 2024. SELECTION CRITERIA: We included randomised controlled trials (RCTs), cluster-RCTs, controlled before-after studies (CBAs), and interrupted time-series studies (ITSs) exploring HPD fit testing in workers exposed to noise levels of more than 80 A-weighted decibels (or dBA) who use hearing protection devices. The unit 'dBA' reports on the use of a frequency-weighting filter to adjust sound measurement results to better reflect how human ears process sound. The outcome noise attenuation had to be measured either as a personal attenuation rating (PAR), PAR pass rate, or both. PAR pass rate is the percentage of workers who passed a pre-established level of sufficient attenuation from their HPDs, identified on the basis of their individual noise exposure. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed study eligibility, risk of bias, and extracted data. We categorised interventions as fit testing of HPDs with instructions at different levels (no instructions, simple instructions, and extensive instructions). MAIN RESULTS: We included three RCTs (756 participants). We did not find any studies that examined whether fit testing and training contributed to hearing protector use, nor any studies that examined whether age, gender, or HPD experience influenced attenuation. We would have included any adverse effects if mentioned by the trial authors, but none reported them. None of the included studies blinded participants; two studies blinded those who delivered the intervention. Effects of fit testing of HPDs with instructions (simple or extensive) versus fit testing of HPDs without instructions Testing the fit of foam and premoulded earplugs accompanied by simple instructions probably does not improve their noise attenuation in the short term after the test (1-month follow-up: mean difference (MD) 1.62 decibels (dB), 95% confidence interval (CI) -0.93 to 4.17; 1 study, 209 participants; 4-month follow-up: MD 0.40 dB, 95% CI -2.28 to 3.08; 1 study, 197 participants; both moderate-certainty evidence). The intervention probably does not improve noise attenuation in the long term (MD 0.15 dB, 95% CI -3.44 to 3.74; 1 study, 103 participants; moderate-certainty evidence). Fit testing of premoulded earplugs with extensive instructions on the fit of the earplugs may improve their noise attenuation at the immediate retest when compared to fit testing without instructions (MD 8.34 dB, 95% CI 7.32 to 9.36; 1 study, 100 participants; low-certainty evidence). Effects of fit testing of HPDs with extensive instructions versus fit testing of HPDs with simple instructions Fit testing of foam earplugs with extensive instructions probably improves their attenuation (MD 8.62 dB, 95% CI 6.31 to 10.93; 1 study, 321 participants; moderate-certainty evidence) and also the pass rate of sufficient attenuation (risk ratio (RR) 1.75, 95% CI 1.44 to 2.11; 1 study, 321 participants; moderate-certainty evidence) when compared to fit testing with simple instructions immediately after the test. This is significant because every 3 dB decrease in noise exposure level halves the sound energy entering the ear. No RCTs reported on the long-term effectiveness of the HPD fit testing with extensive instructions. AUTHORS' CONCLUSIONS: HPD fit testing accompanied by simple instructions probably does not improve noise attenuation from foam and premoulded earplugs. Testing the fit of foam and premoulded earplugs with extensive instructions probably improves attenuation and PAR pass rate immediately after the test. The effects of fit testing associated with training to improve attenuation may vary with types of HPDs and training methods. Better-designed trials with larger sample sizes are required to increase the certainty of the evidence.


Subject(s)
Ear Protective Devices , Hearing Loss, Noise-Induced , Noise, Occupational , Occupational Exposure , Randomized Controlled Trials as Topic , Humans , Noise, Occupational/adverse effects , Noise, Occupational/prevention & control , Hearing Loss, Noise-Induced/prevention & control , Occupational Exposure/prevention & control , Occupational Exposure/adverse effects , Occupational Diseases/prevention & control
4.
BMJ Open ; 14(5): e079955, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760055

ABSTRACT

OBJECTIVES: This study aims to predict the risk of noise-induced hearing loss (NIHL) through a back-propagation neural network (BPNN) model. It provides an early, simple and accurate prediction method for NIHL. DESIGN: Population based, a cross sectional study. SETTING: Han, China. PARTICIPANTS: This study selected 3266 Han male workers from three automobile manufacturing industries. PRIMARY OUTCOME MEASURES: Information including personal life habits, occupational health test information and occupational exposure history were collected and predictive factors of NIHL were screened from these workers. BPNN and logistic regression models were constructed using these predictors. RESULTS: The input variables of BPNN model were 20, 16 and 21 important factors screened by univariate, stepwise and lasso-logistic regression. When the BPNN model was applied to the test set, it was found to have a sensitivity (TPR) of 83.33%, a specificity (TNR) of 85.92%, an accuracy (ACC) of 85.51%, a positive predictive value (PPV) of 52.85%, a negative predictive value of 96.46% and area under the receiver operating curve (AUC) is: 0.926 (95% CI: 0.891 to 0.961), which demonstrated the better overall properties than univariate-logistic regression modelling (AUC: 0.715) (95% CI: 0.652 to 0.777). The BPNN model has better predictive performance against NIHL than the stepwise-logistic and lasso-logistic regression model in terms of TPR, TNR, ACC, PPV and NPV (p<0.05); the area under the receiver operating characteristics curve of NIHL is also higher than that of the stepwise and lasso-logistic regression model (p<0.05). It was a relatively important factor in NIHL to find cumulative noise exposure, auditory system symptoms, age, listening to music or watching video with headphones, exposure to high temperature and noise exposure time in the trained BPNN model. CONCLUSIONS: The BPNN model was a valuable tool in dealing with the occupational risk prediction problem of NIHL. It can be used to predict the risk of an individual NIHL.


Subject(s)
Automobiles , Hearing Loss, Noise-Induced , Manufacturing Industry , Neural Networks, Computer , Occupational Diseases , Occupational Exposure , Humans , Hearing Loss, Noise-Induced/diagnosis , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/etiology , Cross-Sectional Studies , Male , China/epidemiology , Adult , Middle Aged , Risk Assessment/methods , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Occupational Exposure/adverse effects , Noise, Occupational/adverse effects , Logistic Models , Risk Factors , ROC Curve , East Asian People
5.
Article in Chinese | MEDLINE | ID: mdl-38802307

ABSTRACT

Objective: To analyze the characteristics of high-frequency average hearing loss in both ears of noise exposed workers in Tianjin in 2020, and quantitatively analyze the influencing factors of high-frequency hearing loss in both ears of workers. Methods: In March 2023, Collect and organize basic information about noise-hazardous enterprises and personal information of workers exposed to noise. Data from the Tianjin Occupational Disease and Health Hazard Factors Information Monitoring System from January 2020 to December 2020, and analyze the impact of basic information of employees, enterprise size, regional distribution, industry category, and economic type on the high-frequency average hearing loss of workers during work. Apply logistic regression to quantitatively analyze the influencing factors of abnormal high-frequency average hearing threshold of noise exposed workers. Results: The size, economic type, industry category, and regional distribution of enterprises, as well as the gender, age, length of service of workers, have an impact on the abnormal high-frequency average hearing threshold of noise exposed workers (χ(2)=733.56、3 497、27、1352.84、1197.62、2570.59、22.30、506.60, P<0.001) . Quantitative analysis using a logistic regression model showed that in the basic information of workers, noise exposed workers were male (OR=2.500, P<0.001) and aged 30-39, 40-49, and 50-59 years (OR=1.33, P<0.001; OR=1.68, P<0.001; OR=1.52, P< 0.001) , with a length of service of 4 to<10 years and≥10 years (OR=1.08, P<0.001; OR=1.615, P<0.001) being the influencing factors for high-frequency hearing loss in both ears of noise exposed workers; In terms of enterprise characteristics, medium-sized, small and micro enterprises (OR=1.12, P<0.001; OR=1.75, P<0.001; OR=2.09, P<0.001) , enterprises located in the fourth district around the city (OR=1.268, P<0.001) , and enterprises with economic types of collective economy, other economy, private economy, Hong Kong, Macao and Taiwan investment, shareholding system, and other industry economies (OR are all >1, P<0.001) are all factors affecting high-frequency hearing loss in noise exposed personnel. Conclusion: Noise is a common occupational hazard factor in Tianjin's enterprises, especially for workers in micro enterprises who face a high risk of hearing abnormalities. Therefore, enterprises need to strengthen the management and intervention of noise operations to prevent the occurrence of hearing loss in workers.


Subject(s)
Hearing Loss, Noise-Induced , Noise, Occupational , Occupational Exposure , Humans , Noise, Occupational/adverse effects , Male , Female , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/etiology , China/epidemiology , Occupational Exposure/adverse effects , Adult , Logistic Models , Risk Factors , Middle Aged , Occupational Diseases/epidemiology , Occupational Diseases/etiology
6.
BMC Public Health ; 24(1): 1044, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622576

ABSTRACT

BACKGROUND: There are numerous complex barriers and facilitators to continuously wearing hearing protection devices (HPDs) for noise-exposed workers. Therefore, the present study aimed to investigate the relationship between HPD wearing behavior and hearing protection knowledge and attitude, HPD wearing comfort, and work-related factors. METHOD: A cross-sectional study was conducted with 524 noise-exposed workers in manufacturing enterprises in Guangdong Province, China. Data were collected on hearing protection knowledge and attitudes, HPD wearing comfort and behavior, and work-related factors through a questionnaire. Using structural equation modeling (SEM), we tested the association among the study variables. RESULTS: Among the total workers, 69.47% wore HPD continuously, and the attitudes of hearing protection (26.17 ± 2.958) and total HPD wearing comfort (60.13 ± 8.924) were satisfactory, while hearing protection knowledge (3.54 ± 1.552) was not enough. SEM revealed that hearing protection knowledge had direct effects on attitudes (ß = 0.333, p < 0.01) and HPD wearing behavior (ß = 0.239, p < 0.01), and the direct effect of total HPD wearing comfort on behavior was ß = 0.157 (p < 0.01). The direct effect also existed between work shifts and behavior (ß=-0.107, p < 0.05). Indirect relationships mainly existed between other work-related factors, hearing protection attitudes, and HPD wearing behavior through knowledge. Meanwhile, work operation had a direct and negative effect on attitudes (ß=-0.146, p < 0.05), and it can also indirectly and positively affect attitudes through knowledge (ß = 0.08, p < 0.05). CONCLUSION: The behavior of wearing HPD was influenced by hearing protection knowledge, comfort in wearing HPD, and work-related factors. The results showed that to improve the compliance of noise-exposed workers wearing HPD continuously when exposed to noise, the HPD wearing comfort and work-related factors must be taken into consideration. In addition, we evaluated HPD wearing comfort in physical and functional dimensions, and this study initially verified the availability of the questionnaire scale of HPD wearing comfort.


Subject(s)
Hearing Loss, Noise-Induced , Noise, Occupational , Humans , Hearing Loss, Noise-Induced/prevention & control , Cross-Sectional Studies , Latent Class Analysis , Noise, Occupational/adverse effects , Noise, Occupational/prevention & control , Ear Protective Devices , Hearing , Surveys and Questionnaires , China
7.
Obstet Gynecol Surv ; 79(4): 219-232, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640128

ABSTRACT

Importance: Pregnant women are exposed to both occupational and environmental noise during their pregnancy. The association between noise and adverse health outcomes is well known. Less is known about the relationship between noise and its effects on the embryo/fetus and pregnancy. Objectives: The purpose of the study is to review what is known about the effect(s) of environment and occupational noise during pregnancy on maternal and perinatal outcomes. Evidence Acquisition: Electronic databases (PubMed, CINAHL, and Embase) were searched from 1995-2023 with the only limitation being that the articles were in English. Studies were selected that examined associations between environmental and occupational noise and pregnancy outcome, maternal outcome, or perinatal outcome. Results: There were 233 articles identified. After reviewing all abstracts and selected full texts, 25 publications were used as the basis of this review. Multiple studies have been undertaken evaluating the effects of noise on embryonal/fetal growth, fetal development, maternal hypertension, gestational diabetes, and maternal anxiety and depression. The overall effects of occupational and environmental exposure on both fetal and maternal outcomes remain uncertain. Conclusions: Further high-quality studies are needed to determine the association between noise and pregnancy outcomes. Relevance: Even though this review suggests a relationship between noise and maternal/fetal outcomes, confirmation will require well designed future studies.


Subject(s)
Diabetes, Gestational , Noise, Occupational , Pre-Eclampsia , Pregnancy Complications , Pregnancy , Female , Humans , Pregnancy Outcome , Noise, Occupational/adverse effects , Pregnancy Complications/epidemiology , Pregnancy Complications/etiology
8.
PLoS One ; 19(4): e0301144, 2024.
Article in English | MEDLINE | ID: mdl-38625962

ABSTRACT

INTRODUCTION: Noise exposure during pregnancy may affect a child's auditory system, which may disturb fetal learning and language development. We examined the impact of occupational noise exposure during pregnancy on children's language acquisition at the age of one. METHODS: A cohort study was conducted among women working in the food industry, as kindergarten teachers, musicians, dental nurses, or pharmacists who had a child aged <1 year. The analyses covered 408 mother-child pairs. Language acquisition was measured using the Infant-Toddler Checklist. An occupational hygienist assessed noise exposure individually as no (N = 180), low (70-78 dB; N = 108) or moderate/high exposure (>79 dB; N = 120). RESULTS: Among the boys, the adjusted mean differences in language acquisition scores were -0.4 (95% CI -2.5, 1.8) for low, and -0.7 (95% CI -2.9, 1.4) for moderate/high exposure compared to no exposure. Among the girls the respective scores were +0.1 (95% CI -2.2, 2.5) and -0.1 (95% CI -2.3, 2.2). Among the children of kindergarten teachers, who were mainly exposed to human noise, low or moderate exposure was associated with lower language acquisition scores. The adjusted mean differences were -3.8 (95% CI -7.2, -0.4) for low and -4.9 (95% CI -8.6, -1.2) for moderate exposure. CONCLUSIONS: In general, we did not detect an association between maternal noise exposure and children's language acquisition among one-year-old children. However, the children of kindergarten teachers exposed to human noise had lower language acquisition scores than the children of the non-exposed participants. These suggestive findings merit further investigation by level and type of exposure.


Subject(s)
Noise, Occupational , Occupational Exposure , Male , Pregnancy , Infant , Humans , Female , Cohort Studies , Noise, Occupational/adverse effects , Language Development , Maternal Exposure/adverse effects
9.
Environ Pollut ; 349: 123945, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38604306

ABSTRACT

Noise pollution has grown to be a major public health issue worldwide. We sought to profile serum metabolite expression changes related to occupational noise exposure by untargeted metabolomics, as well as to evaluate the potential roles of serum metabolites in occupational noise-associated arterial stiffness (AS). Our study involved 30 noise-exposed industrial personnel (Lipo group) and 30 noise-free controls (Blank group). The untargeted metabolomic analysis was performed by employing a UPLC-HRMS. The associations of occupational noise and significant differential metabolites (between Blank/Lipo groups) with AS were evaluated using multivariable-adjusted generalized linear models. We performed the least absolute shrinkage and selection operator regression analysis to further screen for AS's risk metabolites. We explored 177 metabolites across 21 categories significantly differentially expressed between Blank/Lipo groups, and these metabolites were enriched in 20 metabolic pathways. Moreover, 15 metabolites in 4 classes (including food, glycerophosphocholine, sphingomyelin [SM] and triacylglycerols [TAG]) were adversely associated with AS (all P < 0.05). Meanwhile, five metabolites (homostachydrine, phosphatidylcholine (PC) (32:1e), PC (38:6p), SM (d41:2) and TAG (45:1) have been proven to be useful predictors of AS prevalence. However, none of these 15 metabolites were found to have a mediating influence on occupational noise-induced AS. Our study reveals specific metabolic changes caused by occupational noise exposure, and several metabolites may have protective effects on AS. However, the roles of serum metabolites in noise-AS association remain to be validated in future studies.


Subject(s)
Metabolome , Occupational Exposure , Vascular Stiffness , Humans , Adult , Male , Middle Aged , Noise, Occupational/adverse effects , Metabolomics
10.
Pediatr Dent ; 46(2): 108-114, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38664909

ABSTRACT

Purpose: To evaluate the noise levels recorded in a hospital-based pediatric dental clinic and evaluate the occupational exposure personnel have to potentially hazardous levels of noise. Methods: A SoundAdvisor™ Sound Level Meter Model 831C was used to gather 19 days of background sound data (equivalent continuous sound levels, measured as LAeq) in the open bay, quiet room, sedation suite, and operating room settings. A Spartan™ Wireless Noise Dosimeter Model 730 (Larson Davis) was utilized to capture data about personal noise exposure of pediatric dental residents over 81 clinic sessions. Personal noise exposure was compared to the Occupational Safety and Health Administration (OSHA) stand- ard. Results: Background A-weighted sound pressure level was significantly less for the open bay than in the operating room, quiet room, and oral sedation setting (P<0.05), while the operating room was significantly less than the oral sedation setting (P=0.038). Personal LAeq was significantly less for the open bay than the quiet room (P=0.007) and oral sedation settings (P=0.007). There was a significantly larger percentage of time above 80 dBA captured in the oral sedation suite compared to the open bay (P=0.010) or operating room (P=0.023). Conclusions: Daily occupational noise exposure did not exceed the thresholds set forth by OSHA. Sedation and quiet room treatment settings were noted to be the loudest pediatric dental clinical environments.


Subject(s)
Noise, Occupational , Occupational Exposure , Pediatric Dentistry , Humans , Noise, Occupational/adverse effects , Dental Clinics , United States Occupational Safety and Health Administration , United States , Child , Operating Rooms , Internship and Residency
11.
Article in Chinese | MEDLINE | ID: mdl-38677990

ABSTRACT

Objective: Three occupational health risk assessment methods were used to assess the occupational health risk of noise exposed posts in an automobile manufacturing enterprise. According to the results, the selection of risk assessment methods and risk management of such occupational noise enterprises were provided. Methods: Form April to November 2021, The occupational health field survey was carried out in an automobile manufacturing industry in Tianjin. The occupational health MES risk assessment method, occupational health risk index risk assessment method and Australian occupational hazard risk assessment method were used to evaluate the occupational health risk of noise-exposed posts in this enterprise, and the evaluation results of different methods were analyzed and compared. Results: The average value of L(Aeq, 8 h) in the four workshops of automobile manufacturing industry was 82.95 dB (A) , and the noise detection exceeding rate was 22.41% (26/116) . The LAeq, 8h and exceeding rate noise of welding workshop were higher than those of other workshops (χ(2)=23.56, 32.94, P<0.01) . The three occupational health risk assessment methods have the same risk assessment results for the four major workshops. The assembly and painting workshops are level 4 risk (possible risk) , and the stamping and welding workshops are level 3 risk (significant risk) . Conclusion: Occupational noise has certain potential hazards to workers in automobile manufacturing enterprises. Therefore, in the future work, corresponding organizational management measures should be taken to improve the working environment and reduce the actual exposure level of workers in order to protect the health of occupational workers.


Subject(s)
Automobiles , Noise, Occupational , Occupational Exposure , Occupational Health , Humans , Risk Assessment/methods , Noise, Occupational/adverse effects , Manufacturing Industry
12.
Sci Rep ; 14(1): 7058, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528033

ABSTRACT

In the present study, an attempt has been made to assess the impact of vehicular noise upon the 3-wheeler tempo drivers and to know whether there is any relationship between hearing loss and cumulative noise exposure. For this purpose, 3-wheeler tempo drivers (Exposed group) and non-commercial light motor vehicle car drivers (Unexposed group) were chosen as study subjects. Three traffic routes were selected to assess the noise level during waiting and running time in the exposed and unexposed groups. Among all three routes, the highest mean noise level (Leq) was observed on the Chowk to Dubagga route for waiting and en-route noise measurement. It was measured as 84.13 dB(A) and 86.36 dB(A) for waiting and en-route periods of 7.68 ± 3.46 and 31.05 ± 6.6 min, respectively. Cumulative noise exposure was found to be significantly different (p < 0.001) in all age groups of exposed and unexposed drivers. Audiometric tests have been performed over both exposed and unexposed groups. The regression analysis has been done keeping hearing loss among tempo drivers as the dependent variable and age (years) and Energy (Pa2 Hrs) as the independent variable using three different criteria of hearing loss definitions, i.e., World Health Organization, National Institute for Occupational Safety and Health (NIOSH), Occupational Safety and Health Administration criteria. Among these three criteria, the NIOSH criterion of hearing loss best explained the independent variables. It could explain the total variation in dependent variable by independent variable quite well, i.e., 68.1%. The finding showed a linear relationship between cumulative noise exposures (Pa2 Hrs) and the exposed group's hearing loss (dB), i.e., hearing loss increases with increasing noise dose. Based on the findings, two model equations were developed to identify the safe and unsafe noise levels with exposure time.


Subject(s)
Deafness , Hearing Loss, Noise-Induced , Noise, Occupational , Occupational Diseases , Occupational Exposure , Humans , Hearing Loss, Noise-Induced/diagnosis , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/etiology , Cities , Noise, Occupational/adverse effects , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Regression Analysis , India/epidemiology
13.
Environ Sci Pollut Res Int ; 31(16): 24129-24138, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436861

ABSTRACT

The study aimed to evaluate the impact of occupational noise on hearing loss among healthcare workers using audiometry. A longitudinal study was conducted with a six-month follow-up period in a hospital with 21 participants, divided into high-noise-exposure (HNE) and low-noise-exposure (LNE) groups. Mean noise levels were higher in the HNE group (70.4 ± 4.5 dBA), and hearing loss was measured using pure-tone audiometry at baseline and follow-up. The HNE group had significantly higher mean threshold levels at frequencies of 0.25 kHz, 0.5 kHz, 4.0 kHz, and an average of 0.5, 1, 2, and 4 kHz (all p-values < 0.05) after the follow-up period. After adjusting for confounding factors, the HNE group had significantly higher hearing loss levels at 0.25 kHz, 0.5 kHz, and average frequencies of 0.5, 1, 2, and 4 kHz compared to the LNE group at the second measurement. Occupational noise levels above 65 dBA over six months were found to cause significant threshold changes at frequencies of 0.25 kHz, 0.5 kHz, and an average of 0.5-4.0 kHz. This study highlights the risk of noise-induced hearing loss among healthcare workers and emphasizes the importance of implementing effective hearing conservation programs in the workplace. Regular monitoring and assessment of noise levels and hearing ability, along with proper use of personal protective equipment, are crucial steps in mitigating the impact of occupational noise exposure on the hearing health of healthcare workers.


Subject(s)
Hearing Loss, Noise-Induced , Noise, Occupational , Occupational Diseases , Occupational Exposure , Humans , Longitudinal Studies , Noise, Occupational/adverse effects , Hearing Loss, Noise-Induced/epidemiology , Personnel, Hospital , Hearing
14.
Int Tinnitus J ; 27(2): 119-125, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38507624

ABSTRACT

BACKGROUND: Noise-Induced Hearing Loss (NIHL) is a prevalent occupational hazard among healthcare professionals, including medical students. Despite its detrimental effects, the awareness and utilization of hearing protection measures among medical students in Saudi Arabia remain understudied. OBJECTIVE: Is to determine the level of awareness and understanding of NIHL among medical students in Saudi Arabia, as well as their knowledge and usage of hearing protection measures and to identify potential barriers and facilitators for hearing protection utilization. METHODS: A mixed-methods approach was employed, involving a questionnaire survey and semi-structured interviews. The survey collected data on demographics, knowledge of NIHL, and hearing protection practices among medical students. Subsequently, a semi-structured interview was conducted to obtain in-depth insights into the students' experiences, attitudes, and beliefs regarding NIHL and the use of hearing protection. RESULTS: The level about NIHL was 59.32%. Better access to information is associated with increased odds of awareness (odds ratio=3.07, p=0.012). Having relatives with hearing loss increases the odds of awareness (odds ratio =2.49, p=0.034). Individuals with hearing loss or impairment have higher odds of awareness (odds ratio =2.27, p=0.046). Ear Pain, temporary hearing loss, tinnitus, or ringing in the ear: These factors are not significantly associated with awareness of noise-induced hearing loss (p>0.05). Using hearing aids is strongly associated with increased odds of awareness (odds ratio =3.94, p=0.006).The quantitative analysis provided statistical information on the prevalence rates and factors influencing hearing protection usage, while the qualitative analysis uncover nuanced perspectives and experiences. CONCLUSION: This research will contribute to the understanding of NIHL and hearing protection practices among medical students in Saudi Arabia. Improving hearing protection awareness and practices among medical students can ultimately reduce the incidence of NIHL and promote a healthier work environment within the healthcare sector.


Subject(s)
Deafness , Hearing Loss, Noise-Induced , Noise, Occupational , Students, Medical , Tinnitus , Humans , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/prevention & control , Saudi Arabia/epidemiology , Tinnitus/etiology , Hearing , Noise, Occupational/adverse effects , Noise, Occupational/prevention & control
15.
J Occup Environ Hyg ; 21(5): 342-352, 2024 05.
Article in English | MEDLINE | ID: mdl-38489754

ABSTRACT

Traffic enforcers are exposed to various occupational health and safety hazards, including noise pollution, which may lead to occupational hearing loss. This cross-sectional study aimed to estimate the prevalence of hearing loss and to assess the relationship between occupational noise exposure level (ONEL) and abnormalities in air conduction thresholds among Metropolitan Manila Development Authority (MMDA) employees along Epifanio delos Santos Avenue, Philippines. Eight-hour ONELs were measured among 108 participants working with greater than 5 years of service. Participants had hearing evaluations using pure tone audiometry (PTA) to calculate the prevalence of hearing loss. Generalized linear models with a Poisson distribution were fitted to estimate the association between ONEL and audiologic abnormalities, controlling for confounding factors. Approximately 16% of employees had hearing loss. The prevalence of hearing loss was higher with ONEL exposures greater than 85 A-weighted decibels (dBA), with traffic enforcers exposed to higher ONELs than office workers. ONELs greater than 85 dBA were related to audiologic abnormalities at different frequencies in PTA. The prevalence of audiologic abnormalities at 4000 Hz and 6000 Hz was 48% higher (adjusted prevalence ratio [aPR], 1.48; 95% CI, 1.12-1.96) and 25% higher (aPR, 1.25; 95% CI, 1.00-1.55), respectively, among participants with ONELs greater than 85 dBA than with ONELs less than or equal to 85 dBA. Participants exposed to ONELs greater than 85 dBA, more likely traffic enforcers, may have increased risk of audiologic abnormalities. Regular ONEL monitoring is warranted for occupational risk assessment of traffic enforcers. A hearing conservation program may need to be considered for this population. Additional studies are needed to determine trends in hearing deterioration among traffic enforcers.


Subject(s)
Audiometry, Pure-Tone , Hearing Loss, Noise-Induced , Noise, Occupational , Occupational Exposure , Humans , Noise, Occupational/adverse effects , Cross-Sectional Studies , Adult , Male , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/etiology , Occupational Exposure/adverse effects , Female , Middle Aged , Philippines/epidemiology , Prevalence , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Young Adult
16.
Int Arch Occup Environ Health ; 97(4): 365-375, 2024 May.
Article in English | MEDLINE | ID: mdl-38421415

ABSTRACT

BACKGROUND: High-frequency hearing loss (HFHL) stands as a prevalent occupational morbidity globally, with numerous associated risk factors, some of which are modifiable. In the context of a comprehensive hearing conservation program, the initial steps involve early screening and identification of workers with these modifiable risk factors, aiming to reduce the prevalence of hearing loss. Our objective was to estimate the prevalence of HFHL and determine its predictors among mine workers. METHODS: We conducted a cross-sectional study among 226 mine workers in ten open-cast mines in Gujarat state, the western part of India, in November 2020. We collected data on socio-demography, addiction, occupation history and comorbidities, along with anthropometric, blood pressure, and blood sugar measurements. Audiometric evaluations using a portable diagnostic audiometer were employed to assess HFHL, defined as a hearing threshold exceeding 25 decibels (dB) at high frequencies (3000, 4000, 6000, and 8000 Hz). A generalized linear model (GLM) with a binomial family was performed to determine the predictors significantly predicting HFHL after adjusting for confounding variables. RESULTS: The prevalence of HFHL was 35% (95% CI: 29-42%) in our study setting. Office workers demonstrated a prevalence of 19%, whereas other job categories displayed a higher prevalence of 42%, resulting in a significant prevalence difference of 23% and a prevalence ratio of 2.2. The GLM analysis revealed that variables, such as noise exposure during work [adjusted prevalence ratio (aPR) 2.3 (95% CI: 1.2-4.7, p = 0.018)] and noise exposure duration [aPR 1.1 (95% CI: 1.0-1.1, p = 0.042)], were significant predictors of HFHL. CONCLUSIONS: In our study setting, mine workers exhibited a high prevalence of HFHL, with exposure to workplace noise and duration being modifiable predictors. Because HFHL advances slowly and is generally undetected by the individual, we recommend periodic testing using audiometry to identify it among mine workers and, if possible, shifting them from mining activities to office. Furthermore, we advocate for the implementation of a comprehensive hearing conservation program to the extent possible.


Subject(s)
Hearing Loss, Noise-Induced , Miners , Noise, Occupational , Occupational Diseases , Occupational Exposure , Humans , Hearing Loss, High-Frequency/complications , Hearing Loss, High-Frequency/epidemiology , Cross-Sectional Studies , Prevalence , Hearing Loss, Noise-Induced/diagnosis , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/etiology , India/epidemiology , Occupational Diseases/etiology , Hearing , Noise, Occupational/adverse effects , Occupational Exposure/adverse effects
17.
Int J Occup Saf Ergon ; 30(2): 471-479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38351569

ABSTRACT

Objectives. This study aimed to examine the influence of office noise and multitasking on decision confidence, overconfidence, satisfaction, calibration and affective well-being. Detrimental effects of noise and multitasking on perceived annoyance and concentration are well documented. Little is known about whether decision confidence and well-being during decisions are also affected. Methods. The study was a between-subjects laboratory experiment (n = 109) involving a noise condition with office noise presented through headphones (A-weighted equivalent sound pressure level of LAeq = 60 dB), a multitasking condition with an email-sorting task as the primary task and a control condition. Results. Compared to the control condition, subjects in the noise and multitasking conditions exhibited overestimation of confidence. There was also a significant decrease in well-being for people in the noise condition. Calibration was not affected. Conclusion. In the case of noise, well-being is affected even before the thresholds of workplace legislation are reached. Undue overconfidence can have detrimental effects upon subsequent decisions and risk-taking. Findings suggest that there should be greater consideration of environmental influences during decision-making in work environments.


Subject(s)
Decision Making , Noise, Occupational , Humans , Male , Female , Adult , Noise, Occupational/adverse effects , Task Performance and Analysis , Workplace/psychology , Personal Satisfaction
18.
BMC Public Health ; 24(1): 541, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383328

ABSTRACT

INTRODUCTION: An increasing number of original studies suggested that occupational noise exposure might be associated with the risk of hypertension, but the results remain inconsistent and inconclusive. In addition, the attributable fraction (AF) of occupational noise exposure has not been well quantified. We aimed to conduct a large-scale occupational population-based study to comprehensively investigate the relationship between occupational noise exposure and blood pressure and different hypertension subtypes and to estimate the AF for hypertension burden attributable to occupational noise exposure. METHODS: A total of 715,135 workers aged 18-60 years were included in this study based on the Key Occupational Diseases Surveillance Project of Guangdong in 2020. Multiple linear regression was performed to explore the relationships of occupational noise exposure status, the combination of occupational noise exposure and binaural high frequency threshold on average (BHFTA) with systolic and diastolic blood pressure (SBP, DBP). Multivariable logistic regression was used to examine the relationshipassociation between occupational noise exposure status, occupational noise exposure combined with BHFTA and hypertension. Furthermore, the attributable risk (AR) was calculated to estimate the hypertension burden attributed to occupational exposure to noise. RESULTS: The prevalence of hypertension among occupational noise-exposed participants was 13·7%. SBP and DBP were both significantly associated with the occupational noise exposure status and classification of occupational noise exposure combined with BHFTA in the crude and adjusted models (all P < 0·0001). Compared with workers without occupational noise exposure, the risk of hypertension was 50% greater among those exposed to occupational noise in the adjusted model (95% CI 1·42-1·58). For participants of occupational noise exposed with BHFTA normal, and occupational noise exposed with BHFTA elevated, the corresponding risks of hypertension were 48% (1·41-1·56) and 56% (1·46-1·63) greater than those of occupational noise non-exposed with BHFTA normal, respectively. A similar association was found in isolated systolic hypertension (ISH) and prehypertension. Subgroup analysis by sex and age showed that the positive associations between occupational noise exposure and hypertension remained statistically significant across all subgroups (all P < 0.001). Significant interactions between occupational noise status, classification of occupational noise exposure combined with BHFTA, and age in relation to hypertension risk were identified (all P for interaction < 0.001). The associations of occupational noise status, classification of occupational noise exposure combined with BHFTA and hypertension were most pronounced in the 18-29 age groups. The AR% of occupational noise exposure for hypertension was 28·05% in the final adjusted model. CONCLUSIONS: Occupational noise exposure was positively associated with blood pressure levels and the prevalence of hypertension, ISH, and prehypertension in a large occupational population-based study. A significantly increased risk of hypertension was found even in individuals with normal BHFTA exposed to occupational noise, with a further elevated risk observed in those with elevated BHFTA. Our findings provide epidemiological evidence for key groups associated with occupational noise exposure and hypertension, and more than one-fourth of hypertension cases would have been prevented by avoiding occupational noise exposure.


Subject(s)
Hearing Loss, Noise-Induced , Hypertension , Noise, Occupational , Occupational Diseases , Occupational Exposure , Prehypertension , Humans , Noise, Occupational/adverse effects , Cross-Sectional Studies , Hypertension/epidemiology , Hypertension/etiology , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Occupational Diseases/epidemiology , Hearing Loss, Noise-Induced/etiology , China/epidemiology
19.
BMC Public Health ; 24(1): 371, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38317177

ABSTRACT

BACKGROUND: The impact of occupational noise exposure on various diseases, including ear and cardiovascular diseases, has been studied extensively. Nevertheless, the connection between osteoarthritis (OA) and rheumatoid arthritis (RA) and occupational noise exposure remains largely unexplored in real-world scenarios. This study assessed the association between occupational noise exposure and the prevalence of two types of arthritis. METHODS: This study used database data from 2005 to 2012 and 2015-March 2020 from the prepandemic National Health and Nutrition Examination Survey (NHANES) related to occupational noise exposure and arthritis. Multivariate logistic regression analysis was used to estimate the association between occupational noise exposure and RA/OA, adjusting for age, gender, race, education level, marital status, the ratio of family income to poverty, trouble sleeping, smoking status, alcohol consumption, diabetes, hypertension, body mass index (BMI), metabolic equivalents (METs), and thyroid disease. RESULTS: This study included 11,053 participants. Multivariate logistic regression analysis demonstrated that previous exposure to occupational noise was positively associated with self-reported RA (OR = 1.43, 95% CI = 1.18-1.73) and OA (OR = 1.25, 95% CI = 1.07-1.46). Compared to individuals without a history of occupational noise exposure, those with an exposure duration of 1 year or greater exhibited higher odds of prevalent RA, though there was no apparent exposure response relationship for noise exposure durations longer than 1 year. The results of our subgroup analyses showed a significant interaction between age and occupational noise exposure on the odds of self-reported prevalent OA. CONCLUSIONS: Our findings suggest an association between occupational noise exposure and the prevalence of RA and OA. Nevertheless, further clinical and basic research is warranted to better explore their associations.


Subject(s)
Arthritis, Rheumatoid , Noise, Occupational , Osteoarthritis , Humans , Nutrition Surveys , Noise, Occupational/adverse effects , Cross-Sectional Studies , Arthritis, Rheumatoid/epidemiology , Osteoarthritis/epidemiology , Osteoarthritis/etiology
20.
Article in Chinese | MEDLINE | ID: mdl-38311944

ABSTRACT

Objective: To investigate the occupational noise hazards in five machinery manufacturing enterprises, and to evaluate the individual noise reduction values and influencing factors of workers wearing hearing protection device (HPD) by individual fit testing. Methods: From November 2021 to January 2022, 5 machinery manufacturing enterprises in Bao'an District of Shenzhen were selected to conduct an occupational health survey to understand the noise exposure level of workers. The 3MTM E-A-RfitTM fitness test system was used to test the baseline individual sound attenuation value level (PAR) of the daily wear of the ear protecters for 485 workers in typical noise working positions. Workers whose PAR values could not meet the requirements of noise reduction at work were instructed to wear and repeated tests were conducted. PAR results of the workers before and after the intervention were collected and analyzed. Results: The noise workers who received the suitability test were mainly distributed in 24 types of work, the job noise exposure level was 80.2 dB (A) ~ 95.0 dB (A), and the job noise excess rate was 52.5% (138/263). The median baseline PAR [M (Q(1), Q(3)) ] for 485 workers was 6.0 (0.0, 14.0) dB. The baseline PAR of male workers, those with more than 15 years of working experience, those with more than 15 years of using ear guards, those who considered ear guards comfortable to wear, those with college degree or above, and those exposed to noise level 90 dB (A) were higher, and the difference was statistically significant (P<0.05). A total of 275 workers (56.7%) did not pass the baseline PAR test, and there was no statistically significant difference in the intervention rate of workers in different noise groups (P>0.05). PAR in subjects who did not pass baseline after intervention increased from 0.0 (0.0, 3.0) dB to 15.0 (12.0, 18.2) dB. Conclusion: The workplace noise hazard of machinery manufacturing enterprises is serious, and there is a great difference between the baseline PAR and the nominal value of the hearing guard worn by the noise exposed workers. The intervention measures can effectively improve the protective effect of wearing ear protectors.


Subject(s)
Hearing Loss, Noise-Induced , Noise, Occupational , Occupational Diseases , Occupational Exposure , Humans , Male , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/prevention & control , Ear Protective Devices , Occupational Diseases/prevention & control , Hearing , Noise, Occupational/adverse effects , Noise, Occupational/prevention & control , Occupational Exposure/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...