Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.906
Filter
1.
Nutrients ; 16(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732634

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent pediatric liver disorder, primarily attributed to dietary shifts in recent years. NAFLD is characterized by the accumulation of lipid species in hepatocytes, leading to liver inflammation that can progress to steatohepatitis, fibrosis, and cirrhosis. Risk factors contributing to NAFLD encompass genetic variations and metabolic disorders such as obesity, diabetes, and insulin resistance. Moreover, transgenerational influences, resulting in an imbalance of gut microbial composition, epigenetic modifications, and dysregulated hepatic immune responses in offspring, play a pivotal role in pediatric NAFLD development. Maternal nutrition shapes the profile of microbiota-derived metabolites in offspring, exerting significant influence on immune system regulation and the development of metabolic syndrome in offspring. In this review, we summarize recent evidence elucidating the intricate interplay between gut microbiota, epigenetics, and immunity in fetuses exposed to maternal nutrition, and its impact on the onset of NAFLD in offspring. Furthermore, potential therapeutic strategies targeting this network are also discussed.


Subject(s)
Epigenesis, Genetic , Gastrointestinal Microbiome , Maternal Nutritional Physiological Phenomena , Non-alcoholic Fatty Liver Disease , Prenatal Exposure Delayed Effects , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/etiology , Humans , Female , Pregnancy , Animals , Risk Factors
2.
Front Public Health ; 12: 1368483, 2024.
Article in English | MEDLINE | ID: mdl-38746002

ABSTRACT

Background: The association between air pollution, lung function, gastroesophageal reflux disease, and Non-alcoholic fatty liver disease (NAFLD) remains inconclusive. Previous studies were not convincing due to confounding factors and reverse causality. We aim to investigate the causal relationship between air pollution, lung function, gastroesophageal reflux disease, and NAFLD using Mendelian randomization analysis. Methods: In this study, univariate Mendelian randomization analysis was conducted first. Subsequently, Steiger testing was performed to exclude the possibility of reverse association. Finally, significant risk factors identified from the univariate Mendelian analysis, as well as important factors affecting NAFLD from previous observational studies (type 2 diabetes and body mass index), were included in the multivariable Mendelian randomization analysis. Results: The results of the univariable Mendelian randomization analysis showed a positive correlation between particulate matter 2.5, gastroesophageal reflux disease, and NAFLD. There was a negative correlation between forced expiratory volume in 1 s, forced vital capacity, and NAFLD. The multivariable Mendelian randomization analysis indicated a direct causal relationship between gastroesophageal reflux disease (OR = 1.537, p = 0.011), type 2 diabetes (OR = 1.261, p < 0.001), and NAFLD. Conclusion: This Mendelian randomization study confirmed the causal relationships between air pollution, lung function, gastroesophageal reflux, and NAFLD. Furthermore, gastroesophageal reflux and type 2 diabetes were identified as independent risk factors for NAFLD, having a direct causal connection with the occurrence of NAFLD.


Subject(s)
Air Pollution , Gastroesophageal Reflux , Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease , Humans , Gastroesophageal Reflux/genetics , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Air Pollution/adverse effects , Risk Factors , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Respiratory Function Tests , Particulate Matter/adverse effects , Male , Female , Causality
3.
Free Radic Biol Med ; 220: 78-91, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38697492

ABSTRACT

BACKGROUND & AIMS: Our previous study has demonstrated that Telomeric repeat-binding factor 2-interacting protein 1(Terf2ip), played an important role in hepatic ischemia reperfusion injury. This study is aimed to explore the function and mechanism of Terf2ip in non-alcoholic steatohepatitis (NASH). METHODS: The expression of Terf2ip was detected in liver tissue samples obtained from patients diagnosed with NASH. Mice NASH models were constructed by fed with high-fat diet (HFD) or methionine/choline deficient diet (MCD) in Terf2ip knockout and wild type (WT) mice. To further investigate the role of Terf2ip in NASH, adeno-associated viruses (AAV)-Terf2ip was administrated to mice. RESULTS: We observed a significant down-regulation of Terf2ip levels in the livers of NASH patients and mice NASH models. Terf2ip deficiency was associated with an exacerbation of hepatic steatosis in mice under HFD or MCD. Additionally, Terf2ip deficiency impaired lipophagy and fatty acid oxidation (FAO) in NASH models. Mechanically, we discovered that Terf2ip bound to the promoter region of Sirt1 to regulate Sirt1/AMPK pathway activation. As a result, Terf2ip deficiency was shown to inhibit lipophagy through the AMPK pathway, while the activation of Sirt1 alleviated steatohepatitis in the livers of mice. Finally, re-expression of Terf2ip in hepatocyes alleviated liver steatosis, inflammation, and restored lipophagy. CONCLUSIONS: These results revealed that Terf2ip played a protective role in the progression of NASH through regulating lipophagy and FAO by binding to Sirt1 promoter. Our findings provided a potential therapeutic target for the treatment of NASH.


Subject(s)
Fatty Acids , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Oxidation-Reduction , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Mice , Humans , Fatty Acids/metabolism , Male , Disease Models, Animal , Liver/metabolism , Liver/pathology , Diet, High-Fat/adverse effects , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Signal Transduction , Mice, Inbred C57BL , Lipid Metabolism/genetics
4.
Front Endocrinol (Lausanne) ; 15: 1282231, 2024.
Article in English | MEDLINE | ID: mdl-38756999

ABSTRACT

Introduction: Cigarettes containing nicotine (Nic) are a risk factor for the development of cardiovascular and metabolic diseases. We reported that Nic delivered via injections or e-cigarette vapor led to hepatic steatosis in mice fed with a high-fat diet. High-fructose corn syrup (HFCS) is the main sweetener in sugar-sweetened beverages (SSBs) in the US. Increased consumption of SSBs with HFCS is associated with increased risks of non-alcoholic fatty liver disease (NAFLD). Nicotinamide riboside (NR) increases mitochondrial nicotinamide adenine dinucleotide (NAD+) and protects mice against hepatic steatosis. This study evaluated if Nic plus Coca-Cola™ (Coke) with HFCS can cause hepatic steatosis and that can be protected by NR. Methods: C57BL/6J mice received twice daily intraperitoneal (IP) injections of Nic or saline and were given Coke (HFCS), or Coke with sugar, and NR supplementation for 10 weeks. Results: Our results show that Nic+Coke caused increased caloric intake and induced hepatic steatosis, and the addition of NR prevented these changes. Western blot analysis showed lipogenesis markers were activated (increased cleavage of the sterol regulatory element-binding protein 1 [SREBP1c] and reduction of phospho-Acetyl-CoA Carboxylase [p-ACC]) in the Nic+Coke compared to the Sal+Water group. The hepatic detrimental effects of Nic+Coke were mediated by decreased NAD+ signaling, increased oxidative stress, and mitochondrial damage. NR reduced oxidative stress and prevented mitochondrial damage by restoring protein levels of Sirtuin1 (Sirt1) and peroxisome proliferator-activated receptor coactivator 1-alpha (PGC1) signaling. Conclusion: We conclude that Nic+Coke has an additive effect on producing hepatic steatosis, and NR is protective. This study suggests concern for the development of NAFLD in subjects who consume nicotine and drink SSBs with HFCS.


Subject(s)
Mice, Inbred C57BL , Niacinamide , Nicotine , Pyridinium Compounds , Animals , Pyridinium Compounds/pharmacology , Mice , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Male , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Fatty Liver/prevention & control , Fatty Liver/metabolism , Fatty Liver/chemically induced , High Fructose Corn Syrup/adverse effects , Liver/metabolism , Liver/drug effects , Liver/pathology , Oxidative Stress/drug effects
5.
Commun Biol ; 7(1): 594, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760406

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3ß pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.


Subject(s)
Adenosine Deaminase , Diet, High-Fat , Mice, Knockout , Non-alcoholic Fatty Liver Disease , RNA-Binding Proteins , Signal Transduction , Animals , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/deficiency , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/etiology , Diet, High-Fat/adverse effects , Male , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Insulin Resistance , Mice, Obese , Obesity/metabolism , Obesity/genetics , Mice, Inbred C57BL , Liver/metabolism
6.
J Oleo Sci ; 73(5): 695-708, 2024.
Article in English | MEDLINE | ID: mdl-38692892

ABSTRACT

This study was to investigate the effects of Smilax China L. saponins (SCS) on non-alcoholic fatty liver disease (NAFLD). Rats were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD, followed by SCS treatment for 8 weeks. The effect of SCS on liver injury was observed by H&E staining and the regulative mechanism of SCS on lipid formation was exposed by detecting Oil red O, insulin resistance (IR), and fatty acids synthesis (FAS). Furthermore, transcriptomics and metabolomics were performed to analyze the potential targets. The experimental results indicated that SCS exerted a positive curative effect in alleviating HFD-induced overweight, hepatic injury, steatosis, and lipid formation and accumulation in rats, and the preliminary mechanism studies showed that SCS could alleviate IR, inhibit FAS expression, and reduce Acetyl-CoA levels. Besides, the integrative analysis of transcriptomics and metabolomics exposed the targets of SCS to regulate lipid production likely being the sphingolipid metabolism and glycerophospholipid metabolism pathways. This study demonstrates that SCS significantly ameliorates lipid metabolic disturbance in rats with NAFLD by relieving insulin resistance, inhibiting the FAS enzymes, and regulating the sphingolipid and glycerophospholipid metabolism pathways.


Subject(s)
Diet, High-Fat , Insulin Resistance , Lipid Metabolism , Metabolomics , Non-alcoholic Fatty Liver Disease , Saponins , Smilax , Transcriptome , Animals , Smilax/chemistry , Saponins/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Male , Metabolomics/methods , Diet, High-Fat/adverse effects , Transcriptome/drug effects , Lipid Metabolism/drug effects , Rats , Rats, Sprague-Dawley , Sphingolipids/metabolism , Glycerophospholipids/metabolism , Liver/metabolism , Liver/drug effects , Disease Models, Animal
7.
Clin Nutr ; 43(6): 1503-1515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729079

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is related to muscle loss, but the precise mechanism underlying this association remains unclear. The aim of the present study was thus to determine the influence of maternal fatty liver and dietary choline deficiency during pregnancy and/or lactation periods on the skeletal muscle gene expression profile among 24-day-old male rat offspring. METHODS: Histological examination of skeletal muscle tissue specimens obtained from offspring of dams suffering from fatty liver, provided with proper choline intake during pregnancy and lactation (NN), fed a choline-deficient diet during both periods (DD), deprived of choline only during pregnancy (DN), or only during lactation (ND), was performed. The global transcriptome pattern was assessed using a microarray approach (Affymetrix® Rat Gene 2.1 ST Array Strip). The relative expression of selected genes was validated by real-time PCR (qPCR). RESULTS: Morphological differences in fat accumulation in skeletal muscle related to choline supply were observed. The global gene expression profile was consistent with abnormal morphological changes. Mettl21c gene was overexpressed in all choline-deficient groups compared to the NN group, while two genes, Cdkn1a and S100a4, were downregulated. Processes of protein biosynthesis were upregulated, and processes related to cell proliferation and lipid metabolism were inhibited in DD, DN, and ND groups compared to the NN group. CONCLUSIONS: Prenatal and early postnatal exposure to fatty liver and dietary choline deficiency leads to changes in the transcriptome profile in skeletal muscle of 24-day old male rat offspring and is associated with muscle damage, but the mechanism of it seems to be different at different developmental stages of life. Adequate choline intake during pregnancy and lactation can prevent severe muscle disturbance in the progeny of females suffering from fatty liver.


Subject(s)
Choline Deficiency , Choline , Lactation , Muscle, Skeletal , Prenatal Exposure Delayed Effects , Transcriptome , Animals , Female , Pregnancy , Muscle, Skeletal/metabolism , Male , Rats , Choline/administration & dosage , Maternal Nutritional Physiological Phenomena , Rats, Wistar , Diet , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology
8.
In Vivo ; 38(3): 990-999, 2024.
Article in English | MEDLINE | ID: mdl-38688597

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) is caused by various factors, including genetic and/or environmental factors, and has complicated pathophysiological features during the development of the disease. NAFLD/NASH is recognized as an unmet medical need, and NAFLD/NASH animal models are essential tools for developing new therapies, including potential drugs and biomarkers. In this review, we describe the pathological features of the NAFLD/NASH rat models, focusing on the histopathology of hepatic fibrosis. NAFLD/NASH rat models are divided into three categories: diet-induced, genetic, and combined models based on diet, chemicals, and genetics. Rat models of NASH with hepatic fibrosis are especially expected to contribute to the development of new therapies, such as drugs and biomarkers.


Subject(s)
Disease Models, Animal , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Rats , Liver Cirrhosis/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/physiopathology , Liver Cirrhosis/genetics , Humans , Biomarkers , Liver/pathology , Liver/metabolism , Liver/physiopathology
9.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612504

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) includes several metabolic dysfunctions caused by dysregulation in the brain-gut-liver axis and, consequently, increases cardiovascular risks and fatty liver dysfunction. In MAFLD, type 2 diabetes mellitus, obesity, and metabolic syndrome are frequently present; these conditions are related to liver lipogenesis and systemic inflammation. This study aimed to review the connection between the brain-gut-liver axis and MAFLD. The inflammatory process, cellular alterations in hepatocytes and stellate cells, hypercaloric diet, and sedentarism aggravate the prognosis of patients with MAFLD. Thus, to understand the modulation of the physiopathology of MAFLD, it is necessary to include the organokines involved in this process (adipokines, myokines, osteokines, and hepatokines) and their clinical relevance to project future perspectives of this condition and bring to light new possibilities in therapeutic approaches. Adipokines are responsible for the activation of distinct cellular signaling in different tissues, such as insulin and pro-inflammatory cytokines, which is important for balancing substances to avoid MAFLD and its progression. Myokines improve the quantity and quality of adipose tissues, contributing to avoiding the development of MAFLD. Finally, hepatokines are decisive in improving or not improving the progression of this disease through the regulation of pro-inflammatory and anti-inflammatory organokines.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/etiology , Adipokines , Brain
10.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1310-1317, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621978

ABSTRACT

This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet. The mice in each group were given corresponding diets, but the drug intervention group was given low-, medium-, and high-dose ECD(10 mL·kg~(-1)·d~(-1)) by intragastric administration for six weeks on the basis of MCD diet feeding, and the mice could eat and drink freely during the whole experiment. At the end of the experiment, mice were fasted overnight(12 h) and were anesthetized with 20% urethane. Thereafter, the blood and liver tissue were collected. The serum was used to detect the levels of alanine aminotransferase(ALT), aspartate aminotransaminase(AST), interleukin-1ß(IL-1ß), interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Liver tissue was processed by hematoxylin-eosin(HE) staining and used for hepatic histological analysis and detection of the expression levels of genes and proteins related to nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4(Nrf2/GPX4) pathway by real-time quantitative reverse transcriptase-polymerase chain reaction(RT-qPCR) and Western blot analysis, respectively. The results showed that compared with the MCS group, the MCD group showed higher serum ALT and AST levels; the HE staining exhibited fat vacuoles and obvious inflammatory cell infiltration in liver tissue; serum IL-1ß, IL-6, and TNF-α levels were significantly increased, and the serum IL-10 level was significantly decreased. The mRNA expressions of fatty acid synthase(FASN), monocyte chemoattractant protein-1(MCP-1), and IL-1ß in liver tissue were significantly up-regulated, while those of GPX4, Nrf2, and NAD(P)H:quinine oxidoreductase(NQO1) were significantly down-regulated. Compared with the MCD group, the serum ALT and AST levels of ECD_M and ECD_H groups were significantly decreased, and the AST level in the ECD_L group was significantly decreased. The number of fat vacuoles and the degree of inflammatory cell infiltration in liver tissue were improved; serum IL-1ß, IL-6, and TNF-α levels were significantly decreased, but the serum IL-10 level was significantly increased only in the ECD_H group. The mRNA expressions of FASN, MCP-1, and IL-1ß in liver tissue were significantly down-regulated, and those of GPX4 and NQO1 were significantly up-regulated. The mRNA expressions of Nrf2 in ECD_M and ECD_H groups were significantly up-regulated. Western blot results showed that compared with the MCD group, the protein expression levels of Nrf2 and GPX4 in each group were significantly increased after ECD administration, and the protein expression level of FASN was significantly decreased; the protein expression of NQO1 was increased in ECD_M and ECD_H groups. In summary, ECD can reduce hepatic lipid accumulation, oxidative stress, liver inflammation, and liver injury in NASH mice, which may be related to the activation of the Nrf2/GPX4 pathway.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Male , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Methionine/metabolism , Methionine/pharmacology , Interleukin-10/genetics , Choline/metabolism , Choline/pharmacology , Choline/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Liver , Racemethionine/metabolism , Racemethionine/pharmacology , Diet , RNA, Messenger/metabolism
11.
FASEB J ; 38(7): e23579, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38568838

ABSTRACT

Lifestyle interventions remain the treatment of choice for patients with obesity and metabolic complications, yet are difficult to maintain and often lead to cycles of weight loss and regain (weight cycling). Literature on weight cycling remains controversial and we therefore investigated the association between weight cycling and metabolic complications using preexistent obese mice. Ldlr-/-.Leiden mice received a high-fat diet (HFD) for 20 weeks to induce obesity. Subsequently, weight-cycled mice were switched between the healthy chow diet and HFD for four 2-week periods and compared to mice that received HFD for the total study period. Repeated weight cycling tended to decrease body weight and significantly reduced fat mass, whereas adipose tissue inflammation was similar relative to HFD controls. Weight cycling did not significantly affect blood glucose or plasma insulin levels yet significantly reduced plasma free fatty acid and alanine transaminase/aspartate transaminase levels. Hepatic macrovesicular steatosis was similar and microvesicular steatosis tended to be increased upon weight cycling. Weight cycling resulted in a robust decrease in hepatic inflammation compared to HFD controls while hepatic fibrosis and atherosclerosis development were not affected. These results argue against the postulate that repeated weight cycling leads to unfavorable metabolic effects, when compared to a continuous unhealthy lifestyle, and in fact revealed beneficial effects on hepatic inflammation, an important hallmark of non-alcoholic steatohepatitis.


Subject(s)
Liver , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Liver/metabolism , Mice, Obese , Weight Cycling , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/complications , Inflammation/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
12.
J Clin Invest ; 134(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557493

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) - previously described as nonalcoholic steatohepatitis (NASH) - is a major driver of liver fibrosis in humans, while liver fibrosis is a key determinant of all-cause mortality in liver disease independent of MASH occurrence. CCAAT/enhancer binding protein α (CEBPA), as a versatile ligand-independent transcriptional factor, has an important function in myeloid cells, and is under clinical evaluation for cancer therapy. CEBPA is also expressed in hepatocytes and regulates glucolipid homeostasis; however, the role of hepatocyte-specific CEBPA in modulating liver fibrosis progression is largely unknown. Here, hepatic CEBPA expression was found to be decreased during MASH progression both in humans and mice, and hepatic CEBPA mRNA was negatively correlated with MASH fibrosis in the human liver. CebpaΔHep mice had markedly enhanced liver fibrosis induced by a high-fat, high-cholesterol, high-fructose diet or carbon tetrachloride. Temporal and spatial hepatocyte-specific CEBPA loss at the progressive stage of MASH in CebpaΔHep,ERT2 mice functionally promoted liver fibrosis. Mechanistically, hepatocyte CEBPA directly repressed Spp1 transactivation to reduce the secretion of osteopontin, a fibrogenesis inducer of hepatic stellate cells. Forced hepatocyte-specific CEBPA expression reduced MASH-associated liver fibrosis. These results demonstrate an important role for hepatocyte-specific CEBPA in liver fibrosis progression, and may help guide the therapeutic discoveries targeting hepatocyte CEBPA for the treatment of liver fibrosis.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Hepatocytes/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Disease Models, Animal
13.
Arch Pharm (Weinheim) ; 357(4): e2300631, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574101

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a common liver disorder affecting a quarter of the global residents. Progression of NAFL into nonalcoholic steatohepatitis (NASH) may cause cirrhosis, liver cancer, and failure. Gut microbiota imbalance causes microbial components translocation into the circulation, triggering liver inflammation and NASH-related fibrosis. MicroRNAs (miRNAs) regulate gene expression via repressing target genes. Exosomal miRNAs are diagnostic and prognostic biomarkers for NAFL and NASH liver damage. Our work investigated the role of the gut microbiota in NAFLD pathogenesis via the lipopolysaccharide/toll-like receptor 4/Forkhead box protein O3 (LPS/TLR-4/FoxO3) pathway and certain miRNAs as noninvasive biomarkers for NAFL or its development to NASH. miRNA expression levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 50 NAFL patients, 50 NASH patients, and 50 normal controls. Plasma LPS, TLR-4, adiponectin, peroxisome proliferator-activated receptor γ (PPAR-γ), and FoxO3 concentrations were measured using enzyme-linked immunosorbent assay (ELISA). In NAFL and NASH patients, miR-122, miR-128, FoxO3, TLR-4, LPS, and PPAR-γ were upregulated while miR-200, miR-298, miR-342, and adiponectin were downregulated compared with the normal control. The examined miRNAs might distinguish NAFL and NASH patients from the normal control using receiver operating characteristic analysis. Our study is the first to examine these miRNAs in NAFLD. Our findings imply that these are potentially promising biomarkers for noninvasive early NAFL diagnosis and NASH progression. Understanding the LPS/TLR-4/FoxO3 pathway involvement in NAFL/NASH pathogenesis may aid disease management.


Subject(s)
MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Lipopolysaccharides/pharmacology , Adiponectin/metabolism , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Structure-Activity Relationship , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers/metabolism , Liver/metabolism
14.
Lipids Health Dis ; 23(1): 99, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575962

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is an emerging threat for public health with diet being a major risk factor in disease development and progression. However, the effects of habitual food consumption on fatty liver are still inconclusive as well as the proposed role of the individuals' metabolic profiles. Therefore, the aim of our study is to examine the associations between diet and NAFLD with an emphasis on the influence of specific metabotypes in the general population. METHODS: A total of 689 participants (304 men and 385 women) of the KORA-Fit (S4) survey, a follow-up study of the population-based KORA cohort study running in the Region of Augsburg, Germany, were included in this analysis. Dietary information was derived from repeated 24-h food lists and a food frequency questionnaire. The intake of energy and energy-providing nutrients were calculated using the national food composition database. The presence of fatty liver was quantified by the fatty liver index (FLI), and metabotypes were calculated using K-means clustering. Multivariable linear regression models were used for the analysis of habitual food groups and FLI; for the evaluation of macronutrients, energy substitution models were applied. RESULTS: A higher consumption of nuts and whole grains, and a better diet quality (according to Alternate Healthy Eating Index and Mediterranean Diet Score) were associated with lower FLI values, while the intake of soft drinks, meat, fish and eggs were associated with a higher FLI. The isocaloric substitution of carbohydrates with polyunsaturated fatty acids was associated with a decreased FLI, while substitution with monounsaturated fatty acids and protein showed increased FLI. Statistically significant interactions with the metabotype were observed for most food groups. CONCLUSION: The consumption of plant-based food groups, including nuts and whole grains, and diet quality, were associated with lower FLI values, whereas the intake of soft drinks and products of animal origin (meat, fish, eggs) were associated with a higher FLI. The observed statistically significant interactions with the metabotype for most food groups could help to develop targeted prevention strategies on a population-based level if confirmed in independent prospective studies.


Subject(s)
Diet, Mediterranean , Non-alcoholic Fatty Liver Disease , Male , Animals , Humans , Female , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/etiology , Cohort Studies , Follow-Up Studies , Prospective Studies , Diet , Eating
15.
Nutrients ; 16(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38674860

ABSTRACT

Silymarin, salvianolic acids B, and puerarin were considered healthy food agents with tremendous potential to ameliorate non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which they interact with gut microbiota to exert benefits are largely unknown. After 8 weeks of NAFLD modeling, C57BL/6J mice were randomly divided into five groups and fed a normal diet, high-fat diet (HFD), or HFD supplemented with a medium or high dose of Silybum marianum extract contained silymarin or polyherbal extract contained silymarin, salvianolic acids B, and puerarin for 16 weeks, respectively. The untargeted metabolomics and 16S rRNA sequencing were used for molecular mechanisms exploration. The intervention of silymarin and polyherbal extract significantly improved liver steatosis and recovered liver function in the mice, accompanied by an increase in probiotics like Akkermansia and Blautia, and suppressed Clostridium, which related to changes in the bile acids profile in feces and serum. Fecal microbiome transplantation confirmed that this alteration of microbiota and its metabolites were responsible for the improvement in NAFLD. The present study substantiated that alterations of the gut microbiota upon silymarin and polyherbal extract intervention have beneficial effects on HFD-induced hepatic steatosis and suggested the pivotal role of gut microbiota and its metabolites in the amelioration of NAFLD.


Subject(s)
Depsides , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Isoflavones , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Silymarin , Animals , Gastrointestinal Microbiome/drug effects , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/drug therapy , Diet, High-Fat/adverse effects , Isoflavones/pharmacology , Male , Mice , Silymarin/pharmacology , Benzofurans/pharmacology , Liver/metabolism , Liver/drug effects , Disease Models, Animal , Bile Acids and Salts/metabolism , Plant Extracts/pharmacology
16.
Sci Rep ; 14(1): 9537, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664485

ABSTRACT

Recent evidence shows the beneficial effects of Baltic Sea diet score (BSDS) and healthy Nordic diet index (HNDI) on chronic diseases, however, there is no evidence to investigate them on the risk of non-alcoholic fatty liver disease (NAFLD). The purpose of this study was to investigate the associations between BSDS and HNDI with the risk of NAFLD. In this case-control study, 552 people in good health and 340 people with NAFLD over the age of 18 took part. The evaluation of BSDS and HNDI employed a validated 168-item semi-quantitative food frequency questionnaire (FFQ). Binary logistic regression was used to determine how OBS and NAFLD are related. The mean BSDS and HNDI were 16.00 ± 2.49 and 11.99 ± 2.61, respectively. The final model's confounder adjustment revealed that greater HNDI adherence scores gave protection against the occurrence of NAFLD (odds ratio [OR]: 0.42; 95% confidence interval [CI] 0.18-0.98; P for trend = 0.043). In addition, those with the highest BSDS scores had significantly lower risks of developing NAFLD compared to subjects with the lowest scores (OR = 0.48, 95% CI 0.32-0.89; p for trend = 0.003). Our findings showed that following a healthy Nordic diet can significantly prevent the risk of developing NAFLD, and suggest that the highly nutritious components of the Nordic diet are beneficial for the prevention of NAFLD.


Subject(s)
Diet, Healthy , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/etiology , Male , Female , Case-Control Studies , Middle Aged , Adult , Risk Factors , Diet/adverse effects , Aged , Odds Ratio
17.
Biomolecules ; 14(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38672490

ABSTRACT

Vitamin D (vit D) and fish oil (FO) both offer unique health benefits, however, their combined effects have not been evaluated in obesity and nonalcoholic fatty liver disease (NAFLD). Hence, we hypothesized that vit D and FO supplementation would have additive effects in reducing obesity-associated inflammation and NAFLD. Male C57BL6 mice were split into four groups and fed a high fat (HF) diet supplemented with a low (HF; +200 IU vit D) or high dose of vitamin D (HF + D; +1000 IU vit D); combination of vit D and FO (HF-FO; +1000 IU vit D); or only FO (HF-FO; +200 IU vit D) for 12 weeks. We measured body weight, food intake, glucose tolerance, and harvested epididymal fat pad and liver for gene expression analyses. Adiposity was reduced in groups supplemented with both FO and vit D. Glucose clearance was higher in FO-supplemented groups compared to mice fed HF. In adipose tissue, markers of fatty acid synthesis and oxidation were comparable in groups that received vit D and FO individually in comparison to HF. However, the vit D and FO group had significantly lower fatty acid synthesis and higher oxidation compared to the other groups. Vit D and FO also significantly improved fatty acid oxidation, despite similar fatty acid synthesis among the four groups in liver. Even though we did not find additive effects of vit D and FO, our data provide evidence that FO reduces markers of obesity in the presence of adequate levels of vit D.


Subject(s)
Diet, High-Fat , Fish Oils , Mice, Inbred C57BL , Obesity , Vitamin D , Animals , Male , Fish Oils/pharmacology , Fish Oils/administration & dosage , Vitamin D/pharmacology , Vitamin D/administration & dosage , Vitamin D/metabolism , Obesity/metabolism , Mice , Diet, High-Fat/adverse effects , Dietary Supplements , Liver/metabolism , Liver/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Mice, Obese , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Body Weight/drug effects
18.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673981

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a term that entails a broad spectrum of conditions that vary in severity. Its development is influenced by multiple factors such as environment, microbiome, comorbidities, and genetic factors. MASLD is closely related to metabolic syndrome as it is caused by an alteration in the metabolism of fatty acids due to the accumulation of lipids because of an imbalance between its absorption and elimination in the liver. Its progression to fibrosis is due to a constant flow of fatty acids through the mitochondria and the inability of the liver to slow down this metabolic load, which generates oxidative stress and lipid peroxidation, triggering cell death. The development and progression of MASLD are closely related to unhealthy lifestyle habits, and nutritional epigenetic and genetic mechanisms have also been implicated. Currently, lifestyle modification is the first-line treatment for MASLD and nonalcoholic steatohepatitis; weight loss of ≥10% produces resolution of steatohepatitis and fibrosis regression. In many patients, body weight reduction cannot be achieved; therefore, pharmacological treatment should be offered in particular populations.


Subject(s)
Liver Cirrhosis , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/etiology , Fatty Liver/metabolism , Fatty Liver/etiology , Fatty Liver/therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress , Life Style , Animals , Metabolic Syndrome/metabolism , Metabolic Syndrome/therapy , Metabolic Syndrome/etiology , Liver/metabolism , Liver/pathology
19.
Endocrinol Diabetes Metab ; 7(3): e00485, 2024 May.
Article in English | MEDLINE | ID: mdl-38685702

ABSTRACT

BACKGROUND: The prevalence and healthcare cost of metabolic dysfunction-associated steatotic liver disease (MASLD) has increased alongside the epidemic surge in obesity and Type 2 diabetes. Weight loss through lifestyle modification remains the primary effective therapy for MASLD. Incorporation of mobile technology in lifestyle interventions has been previously found to be efficacious and cost-effective in facilitating weight loss. However, there is a paucity of studies that have successfully translated lifestyle research into clinical service for weight loss to alleviate disease burden. Our study aimed to describe the process of translating a mobile technology-enabled trial into a tertiary hospital outpatient dietetics service for patients with MASLD. METHODS: The Iowa Model of Evidence-Based Practice to Improve Quality Care was used as a framework for this paper to guide implementation at the organizational level. RESULTS: Regular engagement of key operational staff and the hospital management team facilitated open discussions of the challenges faced and enabled rapid implementation of strategies that contributed to the smooth piloting of the service. A service adoption rate of 81% was achieved. Preliminary outcome evaluation found that the percentage of patients achieving ≥ 5% weight loss from baseline at 6 months was comparable at 54% and 52% for the service and trial groups, respectively. CONCLUSIONS: Evaluation of the implementation process found that a hybrid model of care (in-person consultation supplemented with app coaching) preserved interpersonal connections while maximizing the convenience and scalability of mobile app-enabled service. Although high digital acceptance and adoption rates propelled by COVID-19-supported telehealth, it is prudent to assess patient's access to technology and digital literacy and offer resources to help them benefit from telehealth services.


Subject(s)
Telemedicine , Weight Loss , Humans , Telemedicine/methods , Male , Female , Middle Aged , COVID-19 , Translational Research, Biomedical , Weight Reduction Programs/methods , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/etiology , Mobile Applications , Obesity/therapy , Obesity/complications
20.
Biol Pharm Bull ; 47(5): 978-987, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38631865

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a subtype of nonalcoholic fatty liver disease (NAFLD) characterized by hepatic steatosis and evidence of hepatocyte injury (ballooning) and inflammation, with or without liver fibrosis. In this study, after 12 weeks of induction, the mice were treated with emodin succinyl ethyl ester (ESEE) for four weeks at doses of 10/30/90 mg/kg/d. The blood analysis of experimental endpoints showed that ESEE exhibited significant therapeutic effects on the progression of disorders of glycolipid metabolism and the induced liver injury in the model animals. Histopathological diagnosis of the liver and total triglyceride measurements revealed that ESEE had a significant therapeutic effect on the histopathological features of nonalcoholic fatty liver disease/hepatitis, such as cellular steatosis and activation of intrahepatic inflammation. Additionally, ESEE was able to improve hepatocyte fat deposition, steatosis, and the course of intrahepatic inflammatory activity. Furthermore, it showed some inhibitory effect on liver fibrosis in the model animals. In summary, this study confirms the therapeutic effects of ESEE on the NAFLD/NASH model in C57BL/6J mice induced by a high-fat, high cholesterol, and fructose diet. These effects were observed through improvements in liver function, inhibition of fibrosis, and inflammatory responses. Changes in blood glucose levels, blood lipid metabolism, liver histopathological staining, liver fibrosis staining, and related pathological scores further supported the therapeutic effects of ESEE. Therefore, this study has important implications for the exploration of novel drugs for nonalcoholic fatty liver disease.


Subject(s)
Diet, High-Fat , Emodin , Fructose , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Male , Emodin/pharmacology , Emodin/therapeutic use , Emodin/analogs & derivatives , Liver/drug effects , Liver/pathology , Liver/metabolism , Diet, High-Fat/adverse effects , Mice , Triglycerides/blood , Cholesterol/blood , Disease Models, Animal , Blood Glucose/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...