Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.263
Filter
1.
Biol Pharm Bull ; 47(6): 1087-1105, 2024.
Article in English | MEDLINE | ID: mdl-38825462

ABSTRACT

Analysis of endogenous metabolites in various diseases is useful for searching diagnostic biomarkers and elucidating the molecular mechanisms of pathophysiology. The author and collaborators have developed some LC/tandem mass spectrometry (LC/MS/MS) methods for metabolites and applied them to disease-related samples. First, we identified urinary conjugated cholesterol metabolites and serum N-palmitoyl-O-phosphocholine serine as useful biomarkers for Niemann-Pick disease type C (NPC). For the purpose of intraoperative diagnosis of glioma patients, we developed the LC/MS/MS analysis methods for 2-hydroxyglutaric acid or cystine and found that they could be good differential biomarkers. For renal cell carcinoma, we searched for various biomarkers for early diagnosis, malignancy evaluation and recurrence prediction by global metabolome analysis and targeted LC/MS/MS analysis. In pathological analysis, we developed a simultaneous LC/MS/MS analysis method for 13 steroid hormones and applied it to NPC cells, we found 6 types of reductions in NPC model cells. For non-alcoholic steatohepatitis (NASH), model mice were prepared with special diet and plasma bile acids were measured, and as a result, hydrophilic bile acids were significantly increased. In addition, we developed an LC/MS/MS method for 17 sterols and analyzed liver cholesterol metabolites and found a decrease in phytosterols and cholesterol synthetic markers and an increase in non-enzymatic oxidative sterols in the pre-onset stage of NASH. We will continue to challenge themselves to add value to clinical practice based on cutting-edge analytical chemistry methodology.


Subject(s)
Biomarkers , Chromatography, Liquid/methods , Animals , Humans , Biomarkers/blood , Biomarkers/metabolism , Tandem Mass Spectrometry/methods , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/blood , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/diagnosis , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/blood , Glioma/metabolism , Glioma/diagnosis , Mice
2.
Biol Pharm Bull ; 47(5): 1058-1065, 2024.
Article in English | MEDLINE | ID: mdl-38825533

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is characterized by hepatic inflammation and fibrosis due to excessive fat accumulation. Monocyte chemoattractant protein-1 (MCP-1) is a key chemokine that infiltrates inflammatory cells into the liver during the development of NASH. Our previous studies demonstrated that a systemic deficiency of group IVA phospholipase A2 (IVA-PLA2), an enzyme that contributes to the production of lipid inflammatory mediators, protects mice against high-fat diet-induced hepatic fibrosis and markedly suppresses the CCl4-induced expression of MCP-1 in the liver. However, it remains unclear which cell types harboring IVA-PLA2 are involved in the elevated production of MCP-1. Hence, the present study assessed the types of cells responsible for IVA-PLA2-mediated production of MCP-1 using cultured hepatic stellate cells, endothelial cells, macrophages, and hepatocytes, as well as cell-type specific IVA-PLA2 deficient mice fed a high-fat diet. A relatively specific inhibitor of IVA-PLA2 markedly suppressed the expression of MCP-1 mRNA in cultured hepatic stellate cells, but the suppression of MCP-1 expression was partial in endothelial cells and not observed in monocytes/macrophages or hepatocytes. In contrast, a deficiency of IVA-PLA2 in collagen-producing cells (hepatic stellate cells), but not in other types of cells, reduced the high-fat diet-induced expression of MCP-1 and inflammatory cell infiltration in the liver. Our results suggest that IVA-PLA2 in hepatic stellate cells is critical for hepatic inflammation in the high-fat diet-induced development of NASH. This supports a potential therapeutic approach for NASH using a IVA-PLA2 inhibitor targeting hepatic stellate cells.


Subject(s)
Chemokine CCL2 , Diet, High-Fat , Group IV Phospholipases A2 , Hepatic Stellate Cells , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Up-Regulation , Animals , Diet, High-Fat/adverse effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver/pathology , Up-Regulation/drug effects , Male , Mice , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Group IV Phospholipases A2/genetics , Group IV Phospholipases A2/metabolism , Group IV Phospholipases A2/antagonists & inhibitors , Hepatocytes/metabolism , Hepatocytes/drug effects , Humans , Mice, Knockout , Collagen/metabolism , Collagen/biosynthesis , Macrophages/metabolism , Macrophages/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Cells, Cultured
3.
Front Endocrinol (Lausanne) ; 15: 1343853, 2024.
Article in English | MEDLINE | ID: mdl-38828414

ABSTRACT

Introduction: Metabolic dysfunction-associated fatty liver disease (MAFLD) is closely associated with serum fibroblast growth factor (FGF) 21; however, previous studies have typically focused on the static fasting state, and the relationships between postprandial FGF21 levels, postprandial metabolic status, and MAFLD remain unclear. Therefore, we measured postprandial lipids, inflammatory factors, and FGF21 levels in MAFLD and further analyzed their relationship using an oral fat tolerance test (OFTT). Patients and methods: In total, 103 non-diabetic adult volunteers, including 46 patients with MAFLD, were included in this study. All participants underwent the OFTT. Venous blood samples were collected at 0, 2, 4, and 6 h. Circulating total cholesterol (TC), triglyceride (TG), free fatty acid (FFA), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), hypersensitive-C reactive protein(hs-CRP) and FGF21 were assessed. Results: Serum FGF21 significantly increased in the fasting state (P < 0.05) and showed a biphasic change of first decreasing and then increasing in MAFLD during the OFTT. The postprandial levels of TG, TC, LDL-C, FFA, IL-6, TNF-α and hs-CRP were significantly increased in MAFLD (P < 0.05). After adjusting for multiple factors, the FGF21 incremental area under the curve (iAUC) was linearly correlated with the FFA iAUC, TG iAUC, and IL-6 iAUC (P < 0.05) and was an independent factor for MAFLD (P < 0.05, OR=1.403). Conclusion: Dyslipidemia and excessive inflammation in MAFLD are associated to FGF21 levels in the postprandial period. An abnormal postprandial FGF21 response may be an important mechanism of MAFLD.


Subject(s)
Fibroblast Growth Factors , Inflammation , Postprandial Period , Humans , Fibroblast Growth Factors/blood , Male , Female , Middle Aged , Adult , Inflammation/blood , Inflammation/metabolism , Lipids/blood , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/blood , Dietary Fats , Biomarkers/blood , Fatty Acids, Nonesterified/blood
4.
Commun Biol ; 7(1): 681, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831027

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH), previously called non-alcoholic steatohepatitis (NASH), is a growing concern worldwide, with liver fibrosis being a critical determinant of its prognosis. Monocyte-derived macrophages have been implicated in MASH-associated liver fibrosis, yet their precise roles and the underlying differentiation mechanisms remain elusive. In this study, we unveil a key orchestrator of this process: long chain saturated fatty acid-Egr2 pathway. Our findings identify the transcription factor Egr2 as the driving force behind monocyte differentiation into hepatic lipid-associated macrophages (hLAMs) within MASH liver. Notably, Egr2-deficiency reroutes monocyte differentiation towards a macrophage subset resembling resident Kupffer cells, hampering hLAM formation. This shift has a profound impact, suppressing the transition from benign steatosis to liver fibrosis, demonstrating the critical pro-fibrotic role played by hLAMs in MASH pathogenesis. Long-chain saturated fatty acids that accumulate in MASH liver emerge as potent inducers of Egr2 expression in macrophages, a process counteracted by unsaturated fatty acids. Furthermore, oral oleic acid administration effectively reduces hLAMs in MASH mice. In conclusion, our work not only elucidates the intricate interplay between saturated fatty acids, Egr2, and monocyte-derived macrophages but also highlights the therapeutic promise of targeting the saturated fatty acid-Egr2 axis in monocytes for MASH management.


Subject(s)
Cell Differentiation , Early Growth Response Protein 2 , Liver Cirrhosis , Macrophages , Monocytes , Non-alcoholic Fatty Liver Disease , Animals , Early Growth Response Protein 2/metabolism , Early Growth Response Protein 2/genetics , Mice , Monocytes/metabolism , Macrophages/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/genetics , Mice, Inbred C57BL , Male , Disease Models, Animal , Fatty Acids/metabolism , Liver/metabolism , Liver/pathology , Antigens, Ly
5.
Nat Commun ; 15(1): 4755, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834568

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a severe type of the non-alcoholic fatty liver disease (NAFLD). NASH is a growing global health concern due to its increasing morbidity, lack of well-defined biomarkers and lack of clinically effective treatments. Using metabolomic analysis, the most significantly changed active lipid sphingosine d18:1 [So(d18:1)] is selected from NASH patients. So(d18:1) inhibits macrophage HIF-2α as a direct inhibitor and promotes the inflammatory factors secretion. Male macrophage-specific HIF-2α knockout and overexpression mice verified the protective effect of HIF-2α on NASH progression. Importantly, the HIF-2α stabilizer FG-4592 alleviates liver inflammation and fibrosis in NASH, which indicated that macrophage HIF-2α is a potential drug target for NASH treatment. Overall, this study confirms that So(d18:1) promotes NASH and clarifies that So(d18:1) inhibits the transcriptional activity of HIF-2α in liver macrophages by suppressing the interaction of HIF-2α with ARNT, suggesting that macrophage HIF-2α may be a potential target for the treatment of NASH.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Macrophages , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Sphingosine , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Male , Macrophages/metabolism , Macrophages/drug effects , Humans , Mice , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Liver/metabolism , Liver/pathology , Liver/drug effects , Mice, Inbred C57BL , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Disease Models, Animal
6.
Sci Rep ; 14(1): 12829, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834647

ABSTRACT

The present cross-sectional study aimed to explore the relationship between systemic inflammatory indices (SIIs) and anthropometric measures, metabolic, and liver function biomarkers in patients with non-alcoholic fatty liver disease (NAFLD). This study was carried out on 238 NAFLD patients with overweight or obesity, aged 18-55 years. Anthropometric measurements were done and body mass index (BMI), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) were estimated. Metabolic factors including serum glucose, lipid profile, liver function biomarkers, and complete blood cell count were assessed after a 24-h fasting state. SIIs including the ratios of neutrophil to lymphocyte (NLR), monocytes to lymphocyte (MLR), platelet to lymphocyte (PLR), and monocytes to high-density lipoprotein cholesterol (MHR) were calculated. Results indicate that apart from PLR, all of the SIIs significantly changed by increasing steatosis severity (all p < 0.05). Moreover, changes in NLR showed a significant association with anthropometric indices including waist circumference (p = 0.032), BMI (p = 0.047), and WHtR (p = 0.002), as well as levels of fasting blood sugar (p = 0.045), triglycerides, (p = 0.025) and low-density lipoprotein cholesterol (p = 0.006). The findings also indicate the relations between lipid profile and all studied SIIs, notably MHR and MLR. All of the SIIs exhibited associations with some liver function indices as well. MHR was positively correlated with the metabolic risk factors of NAFLD while, oppositely, PLR was considered as a preventive marker of NAFLD.


Subject(s)
Body Mass Index , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/metabolism , Adult , Male , Female , Middle Aged , Cross-Sectional Studies , Adolescent , Young Adult , Inflammation/blood , Inflammation/metabolism , Biomarkers/blood , Liver/metabolism , Liver/pathology , Anthropometry , Obesity/complications , Obesity/metabolism , Obesity/blood , Liver Function Tests , Blood Glucose/metabolism , Waist-Hip Ratio
7.
Front Endocrinol (Lausanne) ; 15: 1371444, 2024.
Article in English | MEDLINE | ID: mdl-38836220

ABSTRACT

Objective: Individuals with hypopituitarism (HPs) have an increased risk of developing non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) due to growth hormone deficiency (GHD). We aimed to investigate the possible mechanisms underlying the relationship between GHD and NAFLD using proteomic and metabolomic insights. Methods: Serum metabolic alternations were assessed in male HPs using untargeted metabolomics. A rat model of HP was established through hypophysectomy, followed by recombinant human growth hormone (rhGH) intervention. The mechanisms underlying GHD-mediated NAFLD were elucidated through the application of label-free proteomics and phosphorylation proteomics. Results: Metabolomic analysis revealed that biomarkers of mitochondrial dysfunction and oxidative stress, such as alanine, lactate, and creatine, were significantly elevated in HPs compared to age-matched controls. In rats, hypophysectomy led to marked hepatic steatosis, lipid peroxidation, and reduced glutathione (GSH), which were subsequently modulated by rhGH replacement. Proteomic analysis identified cytochrome P450s, mitochondrial translation elongation, and PPARA activating genes as the major distinguishing pathways in hypophysectomized rats. The processes of fatty acid transport, synthesis, oxidation, and NADP metabolism were tightly described. An enhanced regulation of peroxisome ß-oxidation and ω-oxidation, together with a decreased NADPH regeneration, may exacerbate oxidative stress. Phosphoproteome data showed downregulation of JAK2-STAT5B and upregulation of mTOR signaling pathway. Conclusions: This study identified proteo-metabolomic signatures associated with the development of NAFLD in pituitary GHD. Evidence was found of oxidative stress imbalance resulting from abnormal fatty acid oxidation and NADPH regeneration, highlighting the role of GH deficiency in the development of NAFLD.


Subject(s)
Hypopituitarism , Metabolomics , Non-alcoholic Fatty Liver Disease , Oxidative Stress , Proteomics , Animals , Male , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Rats , Hypopituitarism/metabolism , Hypopituitarism/etiology , Rats, Sprague-Dawley , Human Growth Hormone/deficiency , Human Growth Hormone/metabolism , Humans
8.
Cell Commun Signal ; 22(1): 315, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849890

ABSTRACT

BACKGROUND: Aberrant inflammatory responses drive the initiation and progression of various diseases, and hyperactivation of NLRP3 inflammasome is a key pathogenetic mechanism. Pharmacological inhibitors of NLRP3 represent a potential therapy for treating these diseases but are not yet clinically available. The natural product butein has excellent anti-inflammatory activity, but its potential mechanisms remain to be investigated. In this study, we aimed to evaluate the ability of butein to block NLRP3 inflammasome activation and the ameliorative effects of butein on NLRP3-driven diseases. METHODS: Lipopolysaccharide (LPS)-primed bone-marrow-derived macrophages were pretreated with butein and various inflammasome stimuli. Intracellular potassium levels, ASC oligomerization and reactive oxygen species production were also detected to evaluate the regulatory mechanisms of butein. Moreover, mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis were used to test whether butein has protective effects on these NLRP3-driven diseases. RESULTS: Butein blocks NLRP3 inflammasome activation in mouse macrophages by inhibiting ASC oligomerization, suppressing reactive oxygen species production, and upregulating the expression of the antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2). Importantly, in vivo experiments demonstrated that butein administration has a significant protective effect on the mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis. CONCLUSION: Our study illustrates the connotation of homotherapy for heteropathy, i.e., the application of butein to broaden therapeutic approaches and treat multiple inflammatory diseases driven by NLRP3.


Subject(s)
Chalcones , Inflammasomes , Lipopolysaccharides , Macrophages , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Chalcones/pharmacology , Chalcones/therapeutic use , Mice , Reactive Oxygen Species/metabolism , Inflammasomes/metabolism , Macrophages/metabolism , Macrophages/drug effects , Lipopolysaccharides/pharmacology , Male , Disease Models, Animal , Colitis/chemically induced , Colitis/pathology , Colitis/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology
9.
Clin Transl Sci ; 17(6): e13760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847320

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the severe form of non-alcoholic fatty liver disease which has a high potential to progress to cirrhosis and hepatocellular carcinoma, yet adequate effective therapies are lacking. Hypoadiponectinemia is causally involved in the pathogenesis of MASH. This study investigated the pharmacological effects of adiponectin replacement therapy with the adiponectin-derived peptide ALY688 (ALY688-SR) in a mouse model of MASH. Human induced pluripotent stem (iPS) cell-derived hepatocytes were used to test cytotoxicity and signaling of unmodified ALY688 in vitro. High-fat diet with low methionine and no added choline (CDAHF) was used to induce MASH and test the effects of ALY688-SR in vivo. Histological MASH activity score (NAS) and fibrosis score were determined to assess the effect of ALY688-SR. Transcriptional characterization of mice through RNA sequencing was performed to indicate potential molecular mechanisms involved. In cultured hepatocytes, ALY688 efficiently induced adiponectin-like signaling, including the AMP-activated protein kinase and p38 mitogen-activated protein kinase pathways, and did not elicit cytotoxicity. Administration of ALY688-SR in mice did not influence body weight but significantly ameliorated CDAHF-induced hepatic steatosis, inflammation, and fibrosis, therefore effectively preventing the development and progression of MASH. Mechanistically, ALY688-SR treatment markedly induced hepatic expression of genes involved in fatty acid oxidation, whereas it significantly suppressed the expression of pro-inflammatory and pro-fibrotic genes as demonstrated by transcriptomic analysis. ALY688-SR may represent an effective approach in MASH treatment. Its mode of action involves inhibition of hepatic steatosis, inflammation, and fibrosis, possibly via canonical adiponectin-mediated signaling.


Subject(s)
Adiponectin , Disease Models, Animal , Hepatocytes , Non-alcoholic Fatty Liver Disease , Animals , Adiponectin/metabolism , Adiponectin/pharmacology , Adiponectin/deficiency , Mice , Humans , Hepatocytes/metabolism , Hepatocytes/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Diet, High-Fat/adverse effects , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/pathology , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Metabolic Diseases/prevention & control , Metabolic Diseases/etiology , Liver/metabolism , Liver/drug effects , Liver/pathology , Fatty Liver/prevention & control , Fatty Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/pathology
10.
Front Endocrinol (Lausanne) ; 15: 1400448, 2024.
Article in English | MEDLINE | ID: mdl-38846493

ABSTRACT

Background and aims: According to previous studies, triglyceride-glucose (TyG) is related to chronic kidney disease (CKD), but no studies have explored the correlation between TyG and CKD among adults with metabolic dysfunction-associated fatty liver disease (MAFLD). We aimed to explore the associations of the TyG index with CKD among adults with MAFLD. Methods: In this retrospective observational cohort study, data from 11,860 participants who underwent a minimum of three health assessments between 2008 and 2015 were retrospectively collected. Participants were followed up until the final medical visit or health examination. CKD refers to an eGFR < 60 mL/min per 1·73 m2 or the occurrence of two or more incidents of proteinuria. Results: Within a median 10·02-year follow-up period, 2005 (16·9%) participants reported developing CKD. Multivariate Cox regression models indicated a noticeable correlation between the TyG index and CKD incidence (HR per unit increase, 1.19; 95% CI: 1.09-1.29) and between the TyG index and CKD incidence (HR per SD increase, 1.12; 95% CI: 1.06-1.18). The CKD incidence increased by 1.8 times in participants in the highest TyG index quartile relative to patients in the lowest quartile of the TyG index quartile (HR 1·18, 95% CI: 1.01-1.38, P = 0.007). According to subgroup analysis, an elevated TyG index is likely to become more harmful to participants younger than 60 years (P for interaction = 0.035). Conclusion: An elevated TyG index may increase CKD incidence among MAFLD adults, particularly among younger people. Early intervention may help reduce the incidence of CKD.


Subject(s)
Blood Glucose , Renal Insufficiency, Chronic , Triglycerides , Humans , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/epidemiology , Male , Female , Middle Aged , Triglycerides/blood , Retrospective Studies , Follow-Up Studies , Adult , Blood Glucose/analysis , Blood Glucose/metabolism , Incidence , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Aged , Risk Factors
11.
Commun Biol ; 7(1): 594, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760406

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3ß pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.


Subject(s)
Adenosine Deaminase , Diet, High-Fat , Mice, Knockout , Non-alcoholic Fatty Liver Disease , RNA-Binding Proteins , Signal Transduction , Animals , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/deficiency , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/etiology , Diet, High-Fat/adverse effects , Male , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Insulin Resistance , Mice, Obese , Obesity/metabolism , Obesity/genetics , Mice, Inbred C57BL , Liver/metabolism
12.
Zhongguo Zhen Jiu ; 44(5): 539-45, 2024 May 12.
Article in Chinese | MEDLINE | ID: mdl-38764104

ABSTRACT

OBJECTIVE: To observe the effect and mechanism of electroacupuncture (EA) on non-canonical pathway of hepatocellular pyroptosis in nonalcoholic fatty liver disease (NAFLD). METHODS: Sixty male SD rats were randomly divided into a normal diet group (n=15) and a high fat modeling group (n=45). The rats in the high fat modeling group were fed with customized high fat diet for 8 weeks to establish NAFLD model. Thirty successfully modeled rats were selected and randomly divided into a model group (n=10), an EA group (n=10) and a non-acupoint with shallow needling group (n=10), and 10 rats were randomly selected from the normal diet group as the control group additionally. In the EA group, EA was applied at bilateral "Fenglong" (ST 40) and "Ganshu" (BL 18), with disperse-dense wave, in frequency of 4 Hz/20 Hz and in intensity of 3 mA. In the non-acupoint with shallow needling group, shallow needling was delivered at points 5 mm from bilateral "Fenglong" (ST 40) and "Ganshu" (BL 18), the EA stimulation parameters were same as the EA group. The intervention was given once a day, 20 min a time, 5 days a week for 4 weeks in the two groups. After intervention, the liver morphology was observed by oil red "O" staining, the serum levels of lipopolysaccharide (LPS), interleukin (IL)-1ß, IL-18 and tumor necrosis factor-α (TNF-α) were detected by ELISA, the protein expression of gasdermin D (GSDMD), GSDMD-N, cysteine aspartic acid specific protease-11 (Caspase-11), IL-1ß, IL-18 and TNF-α in liver tissue were detected by Western blot, the mRNA expression of GSDMD, Caspase-11, IL-1ß, IL-18 and TNF-α in liver tissue was detected by real-time PCR in rats of each group. RESULTS: In the model group, vacuoles in different size were found in the hepatocellular cytoplasm, and the fat droplets were in schistose accumulation. Compared with the model group, the hepatocellular fat droplets and the degree of hepatic steatosis were reduced in the EA group and the non-acupoint with shallow needling group. Compared with the control group, the serum levels of LPS, IL-1ß, IL-18 and TNF-α were increased (P<0.01), the protein and mRNA expression of GSDMD, Caspase-11, IL-1ß, IL-18, TNF-α as well as the protein expression of GSDMD-N in the liver tissue were increased (P<0.01) in the model group. Compared with the model group, the serum levels of LPS, IL-1ß, IL-18 and TNF-α were decreased (P<0.01), the protein and mRNA expression of GSDMD, IL-1ß, IL-18 and TNF-α in the liver tissue were decreased (P<0.01), the protein expression of GSDMD-N and the mRNA expression of Caspase-11 in the liver tissue were decreased (P<0.01) in the EA group and the non-acupoint with shallow needling group. Compared with the model group, the protein expression of Caspase-11 in the liver tissue was decreased (P<0.01) in the EA group. Compared with the non-acupoint with shallow needling group, the serum levels of LPS, IL-1ß, IL-18 and TNF-α were decreased (P<0.01), the protein and mRNA expression of GSDMD, Caspase-11, IL-1ß and IL-18 in the liver tissue were decreased (P<0.01), the protein expression of GSDMD-N and the mRNA expression of TNF-α in the liver tissue were decreased (P<0.01) in the EA group. CONCLUSION: EA can inhibit hepatocellular pyroptosis in NAFLD rats, and its mechanism may be related to reducing the serum level of LPS, and down-regulating the expression of the non-canonical pathway related factors i.e. GSDMD, GSDMD-N, Caspase-11, IL-1ß, IL-18 and TNF-α.


Subject(s)
Acupuncture Points , Electroacupuncture , Non-alcoholic Fatty Liver Disease , Pyroptosis , Rats, Sprague-Dawley , Animals , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Male , Rats , Humans , Liver/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Hepatocytes/metabolism , Disease Models, Animal , Interleukin-1beta/metabolism , Interleukin-1beta/blood
13.
Chem Biol Drug Des ; 103(5): e14532, 2024 May.
Article in English | MEDLINE | ID: mdl-38725089

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that causes severe liver damage, fibrosis, and scarring. Despite its potential to progress to cirrhosis or hepatic failure, approved drugs or treatments are currently unavailable. We developed 4,4-diallyl curcumin bis(2,2-hydroxymethyl)propanoate, also known as 35e, which induces upregulation of mitochondrial proteins including carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II, heat shock protein 60, and translocase of the outer mitochondrial membrane 20. Among these proteins, the upregulated expression of CPT-I was most prominent. CPT-I plays a crucial role in transporting carnitine across the mitochondrial inner membrane, thereby initiating mitochondrial ß-oxidation of fatty acids. Given recent research showing that CPT-I activation could be a viable pathway for NASH treatment, we hypothesized that 35e could serve as a potential agent for treating NASH. The efficacy of 35e in treating NASH was evaluated in methionine- and choline-deficient (MCD) diet- and Western diet (WD)-induced models that mimic human NASH. In the MCD diet-induced model, both short-term (2 weeks) and long-term (7 weeks) treatment with 35e effectively regulated elevated serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) concentrations and histological inflammation. However, the antisteatotic effect of 35e was obtained only in the short-term treatment group. As a comparative compound in the MCD diet-induced model, curcumin treatment did not produce significant regulatory effects on the liver triglyceride/total cholesterol, serum ALT/AST, or hepatic steatosis. In the WD-induced model, 35e ameliorated hepatic steatosis and hepatic inflammation, while increasing serum AST and hepatic lipid content. A decrease in epididymal adipose tissue weight and serum free fatty acid concentration suggested that 35e may promote lipid metabolism or impede lipid accumulation. Overall, 35e displayed significant antilipid accumulation and antifibrotic effects in the two complementary mice models. The development of new curcumin derivatives with the ability to induce CPT-I upregulation could further underscore their efficacy as anti-NASH agents.


Subject(s)
Curcumin , Disease Models, Animal , Methionine , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Methionine/metabolism , Methionine/deficiency , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/therapeutic use , Mice , Male , Diet, Western/adverse effects , Mice, Inbred C57BL , Carnitine O-Palmitoyltransferase/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Propionates/pharmacology , Propionates/therapeutic use , Propionates/metabolism , Humans , Choline/metabolism , Choline/pharmacology
14.
Clin Exp Pharmacol Physiol ; 51(6): e13869, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725222

ABSTRACT

Treatment with erythropoietin (EPO) can correct anaemia in chronic kidney disease (CKD) patients; however, up to 10% exhibit resistance or hyporesponsiveness to EPO. Non-alcoholic fatty liver disease (NAFLD), prevalent liver disease in CKD patients, may limit EPO response because of thrombopoietin deficiency, iron homeostasis disorder and inflammation. Therefore, we hypothesized NAFLD is a risk factor for EPO responsiveness. To test our hypothesis, we evaluated the effect of EPO in healthy rats and rats with NAFLD induced by a high-fat, high-carbohydrate (HFHC) diet. After 12 weeks on the HFHC diet, NAFLD rats showed lower erythroid response to EPO treatment than healthy rats. We, then, determined that the primary cause of EPO hyporesponsiveness could be iron deficiency associated with inflammation, which reduces erythroid cell production. Specifically, the concentrations of hepcidin, ferritin, transferrin and white blood cells in NAFLD rats were 12.8-, 16.4-, 2.51- and 1.40-fold higher than those in healthy rats, respectively. However, erythroid cell types in the bone marrow of NAFLD rats were significantly reduced. In conclusion, our data suggest that NAFLD could be a risk factor for EPO responsiveness, which is attributed to functional iron deficiency associated with inflammation.


Subject(s)
Erythropoietin , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Rats , Male , Rats, Sprague-Dawley , Diet, High-Fat/adverse effects , Hepcidins/metabolism
15.
Hepatol Commun ; 8(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38696369

ABSTRACT

BACKGROUND: Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS: Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS: In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS: Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.


Subject(s)
Disease Models, Animal , Gene Knockdown Techniques , Hepatocytes , Animals , Mice , Hepatocytes/metabolism , Liver/metabolism , Male , RNA, Small Interfering/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Mice, Inbred C57BL
16.
Gut Microbes ; 16(1): 2351620, 2024.
Article in English | MEDLINE | ID: mdl-38738766

ABSTRACT

Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.


Subject(s)
Enterococcus faecium , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Tyramine , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Humans , Enterococcus faecium/metabolism , Mice , Child , Tyramine/metabolism , Male , Female , Mice, Inbred C57BL , Liver/metabolism , Liver/microbiology , Pediatric Obesity/microbiology , Pediatric Obesity/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
17.
World J Gastroenterol ; 30(18): 2387-2390, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764762

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), once known as non-alcoholic fatty liver disease (NAFLD), represents a spectrum of liver disorders characterized by lipid accumulation within hepatocytes. The redefinition of NAFLD in 2023 marked a significant reposition in terminology, emphasizing a broader understanding of liver steatosis and its associated risks. MASLD is now recognized as a major risk factor for liver cirrhosis, hepatocellular carcinoma, and systemic complications such as cardiovascular diseases or systemic inflammation. Diagnostic challenges arise, particularly in identifying MASLD in lean individuals, necessitating updated diagnostic protocols and investing in non-invasive diagnostic tools. Therapeutically, there is an urgent need for effective treatments targeting MASLD, with emerging pharmacological options focusing on, among others, carbohydrate and lipid metabolism. Additionally, understanding the roles of bile acid metabolism, the microbiome, and dietary interventions in MASLD pathogenesis and management holds promise for innovative therapeutic approaches. There is a strong need to emphasize the importance of collaborative efforts in understanding, diagnosing, and managing MASLD to improve physicians' approaches and patient outcomes.


Subject(s)
Non-alcoholic Fatty Liver Disease , Terminology as Topic , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Risk Factors , Lipid Metabolism , Liver/pathology , Liver/metabolism , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/therapy , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Cirrhosis/diagnosis , Liver Cirrhosis/therapy , Liver Cirrhosis/pathology , Bile Acids and Salts/metabolism
19.
Nanoscale ; 16(20): 10048-10063, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38712552

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous condition that encompasses a wide range of liver diseases that progresses from simple hepatic steatosis to the life-threatening state of cirrhosis. However, due to the heterogeneity of this disease, comprehensive analysis of several physicochemical and biological factors that drive its progression is necessary. Therefore, an in vitro platform is required that would enable real-time monitoring of these changes to better understand the progression of these diseases. The earliest stage of NAFLD, i.e. hepatic steatosis, is characterised by triglyceride accumulation in the form of lipid vacuoles in the cytosol of hepatocytes. This fatty acid accumulation is usually accompanied by hepatic inflammation, leading to tissue acidification and dysregulated expression of certain proteases such as matrix metalloproteinases (MMPs). Taking cues from the biological parameters of the disease, we report here a 3D in vitro GelMA/alginate microscaffold platform encapsulating a triple-marker (pH, MMP-3 and MMP-9) sensitive fluorescent nanoprobe for monitoring, and hence, distinguishing the fatty liver disease (hepatic steatosis) from healthy livers on the basis of pH change and MMP expression. The nanoprobe consists of a carbon nanoparticle (CNP) core, which exhibits intrinsic pH-dependent fluorescence properties, decorated either with an MMP-3 (NpMMP3) or MMP-9 (NpMMP9) sensitive peptide substrate. These peptide substrates are flanked with a fluorophore-quencher pair that separates on enzymatic cleavage, resulting in fluorescence emission. The cocktail of these nanoprobes generated multiple fluorescence signals corresponding to slightly acidic pH (blue) and overexpression of MMP-3 (green) and MMP-9 (red) enzymes in a 3D in vitro fatty liver model, whereas no/negligible fluorescence signals were observed in a healthy liver model. Moreover, this platform enabled us to mimic fatty liver disease in a more realistic manner. Therefore, this 3D in vitro platform encapsulating triple-marker sensitive fluorescent nanoprobes would facilitate the monitoring of the changes in pH and MMP expression, thereby enabling us to distinguish a healthy liver from a diseased liver and to study liver disease stages on the basis of these markers.


Subject(s)
Matrix Metalloproteinase 3 , Matrix Metalloproteinase 9 , Non-alcoholic Fatty Liver Disease , Matrix Metalloproteinase 9/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Humans , Hydrogen-Ion Concentration , Matrix Metalloproteinase 3/metabolism , Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Alginates/chemistry , Hep G2 Cells , Tissue Scaffolds/chemistry , Hepatocytes/metabolism
20.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 346-353, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38733190

ABSTRACT

Objective: To explore the clinical features of fatty liver disease (FLD) from non-alcoholic fatty liver disease (NAFLD) to metabolic dysfunction-associated fatty liver disease (MASLD), so as to elucidate its clinical application value under three renames. Methods: Patients who were hospitalized in the Department of Hepatology, Hospital of Traditional Chinese Medicine Affiliated to Xinjiang Medical University, from January 2020 to September 2023 and met the diagnosis of NAFLD, metabolic-associated fatty liver disease (MAFLD), or MASLD were selected as the research subjects. The clinical indicators differences among the three groups of patients were compared, mainly including general information (age, gender, body mass index, past history, etc.), serological indicators (liver and kidney function, blood lipids, blood sugar, coagulation function, etc.), non-invasive liver fibrosis indicators, fat attenuation parameters, etc. Measurement data were analyzed using ANOVA and the rank sum test, while count data were analyzed using the χ(2) test. Results: NAFLD, MAFLD, and MASLD prevalence rates among 536 cases were 64.0%, 93.7%, and 100%, respectively. 318 cases (59.3%) met the three fatty liver names at the same time among them. Male population proportions in NAFLD, MAFLD, and MASLD were 30.9%, 55.8%, and 53.9%, respectively. The alcohol consumption history proportion was 0, 36.7%, and 36.0%, respectively. The smoking history proportion was 7.0%, 31.9%, and 30.6%, respectively. The body mass index was (27.66 ± 3.97), (28.33 ± 3.63), and (27.90 ± 3.89) kg/m(2), respectively. The γ-glutamyltransferase levels were 26.6 (18.0, 47.0) U/L, 31.0 (20.0, 53.0) U/L, and 30.8 (19.8, 30.8) U/L, respectively. The high-density lipoprotein cholesterol levels were 1.07 (0.90, 1.23) mmol/L, 1.02 (0.86, 1.19) mmol/L, and 1.03 (0.87,1.21) mmol/L, respectively. Sequentially measured uric acid was (322.98 ± 84.51) µmol/L, (346.57 ± 89.49) µmol/L, and (344.89 ±89.67) µmol/L, respectively. Sequentially measured creatinine was 69.6 (62.9, 79.0) µmol/L, 73.0 (65.0, 83.5) µmol/L, and 73.0 (65.0, 83.0) µmol/L, respectively. The sequential analysis of obesity proportion was 74.3%, 81.7%, and 76.5%, respectively, with statistically significant differences (P<0.05). Conclusion: Compared with the NAFLD population, the MAFLD and MASLD populations were predominantly male, obese, and had a history of smoking and drinking. The levels of γ-glutamyltransferase, uric acid, and creatinine were slightly higher, while the levels of high-density lipoprotein cholesterol were lower. MASLD appeared in NAFLD and MAFLD on the basis of inheritance and progression, emphasizing once again the important role of metabolic factors in a fatty liver.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/epidemiology , Body Mass Index , Fatty Liver/metabolism , Fatty Liver/blood , Male , Female , Middle Aged , Metabolic Diseases/diagnosis , Metabolic Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...