Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Struct Mol Biol ; 20(12): 1358-66, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24270878

ABSTRACT

The nuclear cap-binding complex (CBC) stimulates multiple steps in several RNA maturation pathways, but how it functions in humans is incompletely understood. For small, capped RNAs such as pre-snRNAs, the CBC recruits PHAX. Here, we identify the CBCAP complex, composed of CBC, ARS2 and PHAX, and show that both CBCAP and CBC-ARS2 complexes can be reconstituted from recombinant proteins. ARS2 stimulates PHAX binding to the CBC and snRNA 3'-end processing, thereby coupling maturation with export. In vivo, CBC and ARS2 bind similar capped noncoding and coding RNAs and stimulate their 3'-end processing. The strongest effects are for cap-proximal polyadenylation sites, and this favors premature transcription termination. ARS2 functions partly through the mRNA 3'-end cleavage factor CLP1, which binds RNA Polymerase II through PCF11. ARS2 is thus a major CBC effector that stimulates functional and cryptic 3'-end processing sites.


Subject(s)
Models, Genetic , Nuclear Cap-Binding Protein Complex/physiology , Nuclear Proteins/physiology , Nucleocytoplasmic Transport Proteins/physiology , Phosphoproteins/physiology , RNA 3' End Processing , HeLa Cells , Humans , Nuclear Cap-Binding Protein Complex/chemistry , Nuclear Cap-Binding Protein Complex/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Poly A/chemistry , Poly A/metabolism
3.
Nat Struct Mol Biol ; 20(12): 1367-76, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24270879

ABSTRACT

Nuclear processing and quality control of eukaryotic RNA is mediated by the RNA exosome, which is regulated by accessory factors. However, the mechanism of exosome recruitment to its ribonucleoprotein (RNP) targets remains poorly understood. Here we report a physical link between the human exosome and the cap-binding complex (CBC). The CBC associates with the ARS2 protein to form CBC-ARS2 (CBCA) and then further connects, together with the ZC3H18 protein, to the nuclear exosome targeting (NEXT) complex, thus forming CBC-NEXT (CBCN). RNA immunoprecipitation using CBCN factors as well as the analysis of combinatorial depletion of CBCN and exosome components underscore the functional relevance of CBC-exosome bridging at the level of target RNA. Specifically, CBCA suppresses read-through products of several RNA families by promoting their transcriptional termination. We suggest that the RNP 5' cap links transcription termination to exosomal RNA degradation through CBCN.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/physiology , Nuclear Cap-Binding Protein Complex/physiology , Exosome Multienzyme Ribonuclease Complex/chemistry , Exosome Multienzyme Ribonuclease Complex/metabolism , Humans , Immunoprecipitation , Nuclear Cap-Binding Protein Complex/chemistry , Nuclear Cap-Binding Protein Complex/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , RNA Stability , Transcription Termination, Genetic
4.
RNA ; 18(11): 1996-2011, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23002122

ABSTRACT

Nuclear cap binding protein complex (CBC) is a heterodimer of a small subunit (Cbc2 in yeast) that binds the m(7)G cap and a large subunit (Sto1 in yeast) that interacts with karyopherins. In order to probe the role of cap recognition in yeast CBC function, we introduced alanine mutations (Y24A, F91A, D120A, D122A, R129A, and R133A) and N-terminal deletions (NΔ21 and NΔ42) in the cap-binding pocket of Cbc2. These lesions had no effect on vegetative growth, but they ameliorated the cold-sensitivity of tgs1Δ cells that lack trimethylguanosine caps (a phenotype attributed to ectopic association of CBC with the m(7)G cap of the normally TMG-capped U1 snRNA), thereby attesting to their impact on cap binding in vivo. Further studies of the Cbc2-Y24A variant revealed synthetic lethality or sickness with null mutations of proteins involved in early steps of spliceosome assembly (Nam8, Mud1, Swt21, Mud2, Ist3, and Brr1) and with otherwise benign mutations of Msl5, the essential branchpoint binding protein. Whereas the effects of weakening CBC-cap interactions are buffered by other actors in the splicing pathway during mitotic growth, the NΔ42 allele causes a severe impediment to yeast sporulation and meiosis. RNA analysis revealed a selective defect in the splicing of MER3 and SAE3 transcripts in cbc2-NΔ42 diploids during attempted sporulation. An intronless MER3 cDNA fully restored sporulation and spore viability in the cbc2-NΔ42 strain, signifying that MER3 splicing is a limiting transaction. These studies reveal a new level of splicing control during meiosis that is governed by nuclear CBC.


Subject(s)
Amino Acid Substitution , DNA Helicases/genetics , Meiosis , Nuclear Cap-Binding Protein Complex/genetics , RNA Splicing , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/physiology , Amino Acid Motifs , Base Sequence , Binding Sites , DNA Helicases/metabolism , Epistasis, Genetic , Gene Knockout Techniques , Introns , Methyltransferases/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Nuclear Cap-Binding Protein Complex/physiology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing Factors , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Recombinases/genetics , Recombinases/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/metabolism , Splicing Factor U2AF , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/physiology
5.
Curr Top Microbiol Immunol ; 326: 139-50, 2008.
Article in English | MEDLINE | ID: mdl-18630751

ABSTRACT

The plant hormone abscisic acid (ABA) intricately regulates a multitude of processes during plant growth and development. Recent studies have established a connection between genes participating in various steps of cellular RNA metabolism and the ABA signal transduction machinery. In this chapter we focus on the plant nuclear mRNA cap binding proteins, CBP20 and CBP80. We summarize and report recent findings on their effects on cellular signal transduction networks and mRNA processing events. ABA hypersensitive 1 (abh1) harbors a gene disruption in the Arabidopsis CBP80 gene. Loss-of-function mutation of ABH1 can also result in an early flowering phenotype in the Arabidopsis accession C24. abh1 revealed noncoding cis-natural antisense transcripts (cis-NATs) at the CONSTANS locus in wild-type plants with elevated cis-NAT expression in the mutant. abh1 also revealed an influence on the splicing of the MADS box transcription factor Flowering Locus C pre-mRNA, which may result in the regulation of flowering time. Furthermore, new experiments analyzing complementation of cpb20 with site-directed cpb20 mutants provide evidence that the CAP binding activity of CBP20 is essential for the observed cbp-associated phenotypes. In conclusion, mutants in genes participating in RNA processing provide excellent tools to uncover novel molecular mechanisms for the regulation of RNA metabolism and of signal transduction networks in wild-type plants.


Subject(s)
Abscisic Acid/metabolism , Microarray Analysis , Plant Proteins/physiology , Plants/metabolism , RNA Cap-Binding Proteins/physiology , RNA, Messenger/metabolism , RNA, Plant/metabolism , Signal Transduction , Gene Expression , Gene Expression Regulation, Plant , Genes, Plant , Nuclear Cap-Binding Protein Complex/physiology , Plant Development , Plant Physiological Phenomena , RNA-Binding Proteins
6.
J Biol Chem ; 281(7): 4517-22, 2006 Feb 17.
Article in English | MEDLINE | ID: mdl-16317009

ABSTRACT

Poly(A)-specific ribonuclease (PARN) is a cap-interacting and poly(A)-specific 3'-exoribonuclease. Here we have investigated how the cap binding complex (CBC) affects human PARN activity. We showed that CBC, via its 80-kDa subunit (CBP80), inhibited PARN, suggesting that CBC can regulate mRNA deadenylation. The CBC-mediated inhibition of PARN was cap-independent, and in keeping with this, the CBP80 subunit alone inhibited PARN. Our data suggested a new function for CBC, identified CBC as a potential regulator of PARN, and emphasized the importance of communication between the two extreme ends of the mRNA as a key strategy to regulate mRNA degradation. Based on our data, we have proposed a model for CBC-mediated regulation of PARN, which relies on an interaction between CBP80 and PARN. Association of CBC with PARN might have importance in the regulated recruitment of PARN to the nonsense-mediated decay pathway during the pioneer round of translation.


Subject(s)
Exoribonucleases/antagonists & inhibitors , Nuclear Cap-Binding Protein Complex/physiology , RNA, Messenger/metabolism , Exoribonucleases/physiology , Humans , Polyadenylation , Protein Subunits , RNA Caps/physiology
7.
RNA ; 9(6): 654-62, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12756324

ABSTRACT

In eukaryotes, the m(7)GpppN cap structure is added to all nascent RNA polymerase II transcripts, and serves important functions at multiple steps of RNA metabolism. The predominantly nuclear cap-binding complex (CBC) binds to the cap during RNA synthesis. The predominantly cytoplasmic eukaryotic initiation factor 4F (eIF4F) is thought to replace CBC after export of mature mRNA to the cytoplasm, and mediates the bulk of cellular translation. Yeast as well as mammalian CBC interacts in vitro with eIF4G, a subunit of eIF4F. In this work, we investigate a potential role of this interaction during translation in yeast. We identify a mutation (DR548/9AA) in Tif4631p, one of two isoforms of yeast eIF4G, that abolishes its binding to CBC. Cells expressing this mutant protein as the sole source of eIF4G grow at wild-type rates, and bulk cellular translation, as assessed by metabolic labeling and polysome profile analysis, is unchanged. Importantly, we find that the DR548/9AA mutation neither diminishes nor delays the translation of newly induced reporter mRNA. Finally, microarray analysis reveals marked transcriptome alterations in CBC subunit deletion strains, whereas eIF4G point mutants have essentially a wild-type transcriptome composition. Collectively, these data suggest that in yeast, the phenotypic consequences of CBC deletions are separable from its interaction with eIF4G, and that the CBC-eIF4G interaction is dispensable for a potential "pioneering round" of translation in yeast.


Subject(s)
Eukaryotic Initiation Factor-4G/metabolism , Gene Expression Regulation, Fungal , Nuclear Cap-Binding Protein Complex/metabolism , Protein Biosynthesis , Saccharomyces cerevisiae/genetics , Binding Sites , Eukaryotic Initiation Factor-4G/genetics , Nuclear Cap-Binding Protein Complex/physiology , Oligonucleotide Array Sequence Analysis , Phenotype , Point Mutation , RNA, Messenger/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...