Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.033
Filter
1.
Proc Natl Acad Sci U S A ; 121(19): e2321438121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687782

ABSTRACT

Successful CRISPR/Cas9-based gene editing in skeletal muscle is dependent on efficient propagation of Cas9 to all myonuclei in the myofiber. However, nuclear-targeted gene therapy cargos are strongly restricted to their myonuclear domain of origin. By screening nuclear localization signals and nuclear export signals, we identify "Myospreader," a combination of short peptide sequences that promotes myonuclear propagation. Appending Myospreader to Cas9 enhances protein stability and myonuclear propagation in myoblasts and myofibers. AAV-delivered Myospreader dCas9 better inhibits transcription of toxic RNA in a myotonic dystrophy mouse model. Furthermore, Myospreader Cas9 achieves higher rates of gene editing in CRISPR reporter and Duchenne muscular dystrophy mouse models. Myospreader reveals design principles relevant to all nuclear-targeted gene therapies and highlights the importance of the spatial dimension in therapeutic development.


Subject(s)
CRISPR-Cas Systems , Cell Nucleus , Gene Editing , Genetic Therapy , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Gene Editing/methods , Animals , Mice , Muscle, Skeletal/metabolism , Cell Nucleus/metabolism , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/genetics , Humans , Nuclear Localization Signals/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Disease Models, Animal , Myoblasts/metabolism
2.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38488622

ABSTRACT

The nuclear translocation of YAP1 is significantly implicated in the proliferation, stemness, and metastasis of cancer cells. Although the molecular basis underlying YAP1 subcellular distribution has been extensively explored, it remains to be elucidated how the nuclear localization signal guides YAP1 to pass through the nuclear pore complex. Here, we define a globular type of nuclear localization signal composed of folded WW domains, named as WW-NLS. It directs YAP1 nuclear import through the heterodimeric nuclear transport receptors KPNA-KPNB1, bypassing the canonical nuclear localization signal that has been well documented in KPNA/KPNB1-mediated nuclear import. Strikingly, competitive interference with the function of the WW-NLS significantly attenuates YAP1 nuclear translocation and damages stemness gene activation and sphere formation in malignant breast cancer cells. Our findings elucidate a novel globular type of nuclear localization signal to facilitate nuclear entry of WW-containing proteins including YAP1.


Subject(s)
Cell Nucleus , Nuclear Localization Signals , YAP-Signaling Proteins , Humans , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Proteins/metabolism , WW Domains , YAP-Signaling Proteins/chemistry , YAP-Signaling Proteins/metabolism , alpha Karyopherins/metabolism , beta Karyopherins/metabolism
3.
FEBS Lett ; 598(7): 801-817, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369616

ABSTRACT

Secretory proteins of Plasmodium exhibit differential spatial and functional activity within the host cell nucleus. However, the nuclear localization signals (NLSs) for these proteins remain largely uncharacterized. In this study, we have identified and characterized two NLSs in the circumsporozoite protein of Plasmodium falciparum (Pf-CSP). Both NLSs in the Pf-CSP contain clusters of lysine and arginine residues essential for specific interactions with the conserved tryptophan and asparagine residues of importin-α, facilitating nuclear translocation of Pf-CSP. While the two NLSs of Pf-CSP function independently and are both crucial for nuclear localization, a single NLS of Pf-CSP leads to weak nuclear localization. These findings shed light on the mechanism of nuclear penetrability of secretory proteins of Plasmodium proteins.


Subject(s)
Nuclear Localization Signals , Plasmodium falciparum , Nuclear Localization Signals/genetics , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/metabolism , alpha Karyopherins/metabolism , Active Transport, Cell Nucleus , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Cell Nucleus/metabolism
4.
Mol Ther ; 32(4): 920-934, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38341611

ABSTRACT

CRISPR-Cas9 is the most commonly used genome-editing tool in eukaryotic cells. To modulate Cas9 entry into the nucleus to enable control of genome editing, we constructed a light-controlled CRISPR-Cas9 system to control exposure of the Cas9 protein nuclear localization signal (NLS). Although blue-light irradiation was found to effectively control the entry of Cas9 protein into the nucleus with confocal microscopy observation, effective gene editing occurred in controls with next-generation sequencing analysis. To further clarify this phenomenon, a CRISPR-Cas9 editing system without the NLS and a CRISPR-Cas9 editing system containing a nuclear export signal were also constructed. Interestingly, both Cas9 proteins could achieve effective editing of target sites with significantly reduced off-target effects. Thus, we speculated that other factors might mediate Cas9 entry into the nucleus. However, NLS-free Cas9 was found to produce effective target gene editing even following inhibition of cell mitosis to prevent nuclear import caused by nuclear membrane disassembly. Furthermore, multiple nucleus-localized proteins were found to interact with Cas9, which could mediate the "hitchhiking" of NLS-free Cas9 into the nucleus. These findings will inform future attempts to construct controllable gene-editing systems and provide new insights into the evolution of the nucleus and compatible protein functions.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Associated Protein 9/genetics , Nuclear Localization Signals/genetics
5.
J Gen Virol ; 105(1)2024 01.
Article in English | MEDLINE | ID: mdl-38261399

ABSTRACT

Adenovirus protein VII (pVII) plays a crucial role in the nuclear localization of genomic DNA following viral infection and contains nuclear localization signal (NLS) sequences for the importin (IMP)-mediated nuclear import pathway. However, functional analysis of pVII in adenoviruses to date has failed to fully determine the underlying mechanisms responsible for nuclear import of pVII. Therefore, in the present study, we extended our analysis by examining the nuclear trafficking of adenovirus pVII from a non-human species, psittacine siadenovirus F (PsSiAdV). We identified a putative classical (c)NLS at pVII residues 120-128 (120PGGFKRRRL128). Fluorescence polarization and electrophoretic mobility shift assays demonstrated direct, high-affinity interaction with both IMPα2 and IMPα3 but not IMPß. Structural analysis of the pVII-NLS/IMPα2 complex confirmed a classical interaction, with the major binding site of IMPα occupied by K124 of pVII-NLS. Quantitative confocal laser scanning microscopy showed that PsSiAdV pVII-NLS can confer IMPα/ß-dependent nuclear localization to GFP. PsSiAdV pVII also localized in the nucleus when expressed in the absence of other viral proteins. Importantly, in contrast to what has been reported for HAdV pVII, PsSiAdV pVII does not localize to the nucleolus. In addition, our study demonstrated that inhibition of the IMPα/ß nuclear import pathway did not prevent PsSiAdV pVII nuclear targeting, indicating the existence of alternative pathways for nuclear localization, similar to what has been previously shown for human adenovirus pVII. Further examination of other potential NLS signals, characterization of alternative nuclear import pathways, and investigation of pVII nuclear targeting across different adenovirus species is recommended to fully elucidate the role of varying nuclear import pathways in the nuclear localization of pVII.


Subject(s)
Siadenovirus , Active Transport, Cell Nucleus , Protein Transport , Nuclear Localization Signals/genetics , Karyopherins
6.
Fish Shellfish Immunol ; 144: 109274, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072135

ABSTRACT

Interferon-gamma (IFN-γ) is an inflammatory cytokine that plays a crucial role in regulating both innate and cell-mediated immune responses by binding to a receptor complex made up of IFNGR1 and IFNGR2. In this study, the complete cDNA of IFN-γ and IFNGR1 from Nibea albiflora were cloned and functionally characterized (named NaIFN-γ and NaIFNGR1), whose complete cDNA sequences were 1593 bp and 2792 bp, encoding 201 and 399 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis showed that the concluded amino acids sequences of NaIFN-γ and NaIFNGR1 shared high identity with their teleost orthologues including the IFN-γ signature and nuclear localization signal (NLS) motif in NaIFN-γ and FN Ⅲ domain in NaIFNGR1. Real-time PCR showed that NaIFN-γ and NaIFNGR1 constitutively expressed in all tested tissues, such as the head-kidney, spleen, liver, kidney, gill, muscle, blood, and intestine with the highest expression of NaIFN-γ and NaIFNGR1 appearing in the liver and gill, respectively. After experiencing stimulation with Polyinosinic-polycytidylic acid (Poly (I:C)), Vibrio alginolyticus (V. alginolyticus) or Vibrio parahaemolyticus (V. parahaemolyticus), NaIFN-γ and NaIFNGR1 mRNA were up-regulated with the time-dependent model. Due to the presence of a nuclear localization signal (NLS), the subcellular localization revealed that NaIFN-γ dispersed throughout the cytoplasm and nucleus. NaIFNGR1, as a member of Cytokine receptor family B, was primarily expressed on the cell membrane. When NaIFN-γ and NaIFNGR1 were co-transfected, their fluorescence signals overlapped on the membrane of HEK 293T cells indicating the potential interaction between IFN-γ and IFNGR1. The GST-pull-down results further showed that NaIFN-γ could directly interact with the extracellular region of NaIFNGR1, further confirming the affinity between IFN-γ and IFNGR1. Taken together, the results firstly demonstrated that the NaIFN-γ ligand-receptor system existed in N.albiflora and played a pivotal part in N.albiflora's immune response against pathogenic bacterial infections, which contributed to the better understanding of the role of IFN-γ in the immunomodulatory mechanisms of teleost.


Subject(s)
Interferon-gamma , Perciformes , Animals , Nuclear Localization Signals/genetics , Amino Acid Sequence , Phylogeny , DNA, Complementary , Amino Acids/genetics
7.
Biochim Biophys Acta Proteins Proteom ; 1872(2): 140974, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38065227

ABSTRACT

NEIL glycosylases, including NEIL1, NEIL2, and NEIL3, play a crucial role in the base excision DNA repair pathway (BER). The classical importin pathway mediated by importin α/ß and cargo proteins containing nuclear localization sequences (NLS) is the most common transport mechanism of DNA repair proteins to the nucleus. Previous studies have identified putative NLSs located at the C-terminus of NEIL3 and NEIL1. Crystallographic, bioinformatics, calorimetric (ITC), and fluorescence assays were used to investigate the interaction between NEIL1 and NEIL3 putative NLSs and importin-α (Impα). Our findings showed that NEIL3 contains a typical cNLS, with medium affinity for the major binding site of Impα. In contrast, crystallographic analysis of NEIL1 NLS revealed its binding to Impα, but with high B-factors and a lack of electron density at the linker region. ITC and fluorescence assays indicated no detectable affinity between NEIL1 NLS and Impα. These data suggest that NEIL1 NLS is a non-classical NLS with low affinity to Impα. Additionally, we compared the binding mode of NEIL3 and NEIL1 with Mus musculus Impα to human isoforms HsImpα1 and HsImpα3, which revealed interesting binding differences for HsImpα3 variant. NEIL3 is a classical medium affinity monopartite NLS, while NEIL1 is likely to be an unclassical low-affinity bipartite NLS. The base excision repair pathway is one of the primary systems involved in repairing DNA. Thus, understanding the mechanisms of nuclear transport of NEIL proteins is crucial for comprehending the role of these proteins in DNA repair and disease development.


Subject(s)
DNA Glycosylases , alpha Karyopherins , Animals , Mice , Humans , alpha Karyopherins/genetics , alpha Karyopherins/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Cell Nucleus/metabolism , Nuclear Localization Signals/genetics , DNA Glycosylases/metabolism
8.
J Mol Evol ; 92(1): 21-29, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158403

ABSTRACT

The Praja family is an E3 ubiquitin ligase, promoting polyubiquitination and subsequent degradation of substrates. It comprises two paralogs, praja1 and praja2. Prior research suggests these paralogs have undergone functional divergence, with examples, such as their distinct roles in neurite outgrowth. However, the specific evolutionary trajectories of each paralog remain largely unexplored preventing mechanistic understanding of functional differences between paralogs. Here, we investigated the phylogeny and divergence of the vertebrate Praja family through molecular evolutionary analysis. Phylogenetic examination of the vertebrate praja revealed that praja1 and praja2 originated from the common ancestor of placentals via gene duplication, with praja1 evolving at twice the rate of praja2 shortly after the duplication. Moreover, a unique evolutionary trajectory for praja1 relative to other vertebrate Praja was indicated, as evidenced by principal component analysis on GC content, codon usage frequency, and amino acid composition. Subsequent motif/domain comparison revealed conserved N terminus and C terminus in praja1 and praja2, together with praja1-specific motifs, including nuclear localization signal and Ala-Gly-Ser repeats. The nuclear localization signal was demonstrated to be functional in human neuroblastoma SH-SY5Y cells using deletion mutant, while praja2 was exclusively expressed in the nucleus. These discoveries contribute to a more comprehensive understanding of the Praja family's phylogeny and suggest a functional divergence between praja1 and praja2. Specifically, the shift of praja1 into the nucleus implies the degradation of novel substrates located in the nucleus as an evolutionary consequence.


Subject(s)
Neuroblastoma , Nuclear Localization Signals , Animals , Humans , Phylogeny , Nuclear Localization Signals/genetics , Vertebrates/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Evolution, Molecular
9.
Protein Sci ; 33(2): e4876, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38108201

ABSTRACT

Nucleocytoplasmic transport regulates the passage of proteins between the nucleus and cytoplasm. In the best characterized pathway, importin (IMP) α bridges cargoes bearing basic, classical nuclear localization signals (cNLSs) to IMPß1, which mediates transport through the nuclear pore complex. IMPα recognizes three types of cNLSs via two binding sites: the major binding site accommodates monopartite cNLSs, the minor binding site recognizes atypical cNLSs, while bipartite cNLSs simultaneously interact with both major and minor sites. Despite the growing knowledge regarding IMPα-cNLS interactions, our understanding of the evolution of cNLSs is limited. We combined bioinformatic, biochemical, functional, and structural approaches to study this phenomenon, using polyomaviruses (PyVs) large tumor antigens (LTAs) as a model. We characterized functional cNLSs from all human (H)PyV LTAs, located between the LXCXE motif and origin binding domain. Surprisingly, the prototypical SV40 monopartite NLS is not well conserved; HPyV LTA NLSs are extremely heterogenous in terms of structural organization, IMPα isoform binding, and nuclear targeting abilities, thus influencing the nuclear accumulation properties of full-length proteins. While several LTAs possess bipartite cNLSs, merkel cell PyV contains a hybrid bipartite cNLS whose upstream stretch of basic amino acids can function as an atypical cNLS, specifically binding to the IMPα minor site upon deletion of the downstream amino acids after viral integration in the host genome. Therefore, duplication of a monopartite cNLS and subsequent accumulation of point mutations, optimizing interaction with distinct IMPα binding sites, led to the evolution of bipartite and atypical NLSs binding at the minor site.


Subject(s)
Antigens, Neoplasm , Nuclear Localization Signals , alpha Karyopherins , Humans , Active Transport, Cell Nucleus/physiology , alpha Karyopherins/genetics , alpha Karyopherins/chemistry , alpha Karyopherins/metabolism , Amino Acid Sequence , Antigens, Neoplasm/metabolism , Cell Nucleus/metabolism , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism
10.
FEBS Lett ; 598(2): 199-209, 2024 01.
Article in English | MEDLINE | ID: mdl-38158756

ABSTRACT

Human cytomegalovirus DNA polymerase processivity factor UL44 is transported into the nucleus by importin (IMP) α/ß through a classical nuclear localization signal (NLS), and this region is susceptible to cdc2-mediated phosphorylation at position T427. Whilst phosphorylation within and close to the UL44 NLS regulates nuclear transport, the details remain elusive, due to the paucity of structural information regarding the role of negatively charged cargo phosphate groups. We addressed this issue by studying the effect of UL44 T427 phosphorylation on interaction with several IMPα isoforms by biochemical and structural approaches. Phosphorylation decreased UL44/IMPα affinity 10-fold, and a comparative structural analysis of UL44 NLS phosphorylated and non-phosphorylated peptides complexed with mouse IMPα2 revealed the structural rearrangements responsible for phosphorylation-dependent inhibition of UL44 nuclear import.


Subject(s)
Cell Nucleus , Cytomegalovirus , Animals , Humans , Mice , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , DNA-Directed DNA Polymerase/metabolism , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Phosphorylation
11.
Endocrinology ; 165(2)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38151968

ABSTRACT

Mutations in CDKN1C, encoding p57KIP2, a canonical cell cycle inhibitor, underlie multiple pediatric endocrine syndromes. Despite this central role in disease, little is known about the structure and function of p57KIP2 in the human pancreatic beta cell. Since p57KIP2 is predominantly nuclear in human beta cells, we hypothesized that disease-causing mutations in its nuclear localization sequence (NLS) may correlate with abnormal phenotypes. We prepared RIP1 insulin promoter-driven adenoviruses encoding deletions of multiple disease-associated but unexplored regions of p57KIP2 and performed a comprehensive structure-function analysis of CDKN1C/p57KIP2. Real-time polymerase chain reaction and immunoblot analyses confirmed p57KIP2 overexpression, construct size, and beta cell specificity. By immunocytochemistry, wild-type (WT) p57KIP2 displayed nuclear localization. In contrast, deletion of a putative NLS at amino acids 278-281 failed to access the nucleus. Unexpectedly, we identified a second downstream NLS at amino acids 312-316. Further analysis showed that each individual NLS is required for nuclear localization, but neither alone is sufficient. In summary, p57KIP2 contains a classical bipartite NLS characterized by 2 clusters of positively charged amino acids separated by a proline-rich linker region. Variants in the sequences encoding these 2 NLS sequences account for functional p57KIP2 loss and beta cell expansion seen in human disease.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p57 , Insulin-Secreting Cells , Nuclear Localization Signals , Humans , Amino Acid Sequence , Amino Acids/metabolism , Cell Nucleus/metabolism , Insulin-Secreting Cells/metabolism , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics
12.
Sci Rep ; 13(1): 19668, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37951956

ABSTRACT

The human aryl hydrocarbon receptor (AHR) undergoes continuous shuttling between nucleus and cytoplasm. Binding to exogenous or endogenous ligands promotes its rapid nuclear import. The proposed mechanism for the ligand-dependent import is based on exposing the bipartite nuclear localisation signal (NLS) to members of the importin (IMP) superfamily. Among this, the molecular interactions involved in the basal import still need to be clarified. Utilizing fluorescently fused AHR variants, we recapitulated and characterized AHR localization and nucleo-cytoplasmic shuttling in living cells. Analysis of AHR variants carrying NLS point mutations demonstrated a mandatory role of first (13RKRRK17) and second (37KR-R40) NLS segments on the basal import of AHR. Further experiments indicated that ligand-induced import is mainly regulated through the first NLS, while the second NLS is supportive but not essential. Additionally, applying IMPα/ß specific inhibitors, ivermectin (IVM) and importazole (IPZ), slowed down the ligand-induced import and, correspondingly, decreased the basal nuclear accumulation of the receptor. In conclusion, our data show that ligand-induced and basal nuclear entry of AHR rely on the same mechanism but are controlled uniquely by the two NLS components.


Subject(s)
Nuclear Localization Signals , Receptors, Aryl Hydrocarbon , Humans , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Ligands , Active Transport, Cell Nucleus , Karyopherins/metabolism , Cell Nucleus/metabolism
13.
Biochem Biophys Res Commun ; 685: 149140, 2023 12 10.
Article in English | MEDLINE | ID: mdl-37918326

ABSTRACT

Previously, to generate genome-edited animals by introducing CRISPR-associated protein 9 (Cas9) into embryos, we developed the Technique for Animal Knockout system by Electroporation (TAKE). Additionally, by fluorescently labeling Cas9, we successfully visualized the Cas9 introduced into the pronuclei of embryos; however, whether Cas9 was introduced directly into the pronuclei by electric pulse or transferred from the cytoplasm by nuclear localization signal (NLS) remained unknown. Herein, we evaluated the localization of Cas9 with (Cas9-NLS) or without NLS (Cas9-noNLS) in mice embryos following electroporation by fusing them with GFP. Furthermore, we visually studied their effects on genome-editing rates in offspring by targeting tyrosinase gene. Fluorescence intensity in pronuclei of Cas9-NLS-electroporated embryos and genome-editing rates of offspring were significantly higher than those of Cas9-noNLS-electroporated embryos. Furthermore, fluorescence in Cas9-NLS-electroporated embryos in which pronuclei had not yet appeared 2.5 h after insemination was observed in the pronuclei of embryos appearing 3.5 h after electroporation. We demonstrated the effective transportation of Cas9 from the cytoplasm to pronuclei by the NLS following TAKE, which resulted in increased genome-editing rates in offspring. The TAKE along with fluorescently labeled nucleases can be used to verify nuclease delivery into individual embryos prior to embryo transfer for efficiently producing genome-edited animals.


Subject(s)
CRISPR-Cas Systems , Nuclear Localization Signals , Mice , Animals , CRISPR-Cas Systems/genetics , Nuclear Localization Signals/genetics , Mice, Knockout , Gene Editing/methods , Electroporation/methods
14.
Biochem Biophys Res Commun ; 682: 274-280, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37832384

ABSTRACT

Trypanosoma cruzi is a parasitic protozoa causative of Chagas disease. As part of our interest in studying the basic biology of this microorganism, this work reports our observations related to the characterization of motifs and structural domains present in two fibrillarin isoforms (TcFib1 and TcFib2) that were found to be necessary for the nuclear targeting of these nucleolar proteins. Previous characterization of these proteins indicated that they share 68.67% of identical amino acids and are both expressed as nucleolar proteins in T. cruzi epimastigotes. Using an approach based on the transfection of recombinant genes encoding fluorescent fibrillarin-EGFP fusion proteins, this study found evidence for the presence of 4 motifs or protein domains that help target these proteins to the nucleus: The GAR domain and carboxyl terminus in both TcFibs, as well as two lysines and a computationally predicted cNLS in TcFib1. As a distinctive feature, the GAR domain of TcFib2 proved to be essential for the nuclear localization of this protein paralog. Such a difference between TcFib1 and Tcfib2 nuclear localization signals can be explained as the presence of two partially related nuclear import pathways for the two fibrillarin homologues in this organism.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , Active Transport, Cell Nucleus , Chromosomal Proteins, Non-Histone/metabolism , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Cell Nucleolus/metabolism
15.
Calcif Tissue Int ; 113(5): 552-557, 2023 11.
Article in English | MEDLINE | ID: mdl-37728743

ABSTRACT

Paget's disease of bone (PDB) is a common, late-onset bone disorder, characterized by focal increases of bone turnover that can result in bone lesions. Heterozygous pathogenic variants in the Sequestosome 1 (SQSTM1) gene are found to be the main genetic cause of PDB. More recently, PFN1 and ZNF687 have been identified as causal genes in patients with a severe, early-onset, polyostotic form of PDB, and an increased likelihood to develop giant cell tumors. In our study, we screened the coding regions of PFN1 and ZNF687 in a Belgian PDB cohort (n = 188). In the PFN1 gene, no variants could be identified, supporting the observation that variants in this gene are extremely rare in PDB. However, we identified 3 non-synonymous coding variants in ZNF687. Interestingly, two of these rare variants (p.Pro937His and p.Arg939Cys) were clustering in the nuclear localization signal of the encoded ZNF687 protein, also harboring the p.Pro937Arg variant, a previously reported disease-causing variant. In conclusion, our findings support the involvement of genetic variation in ZNF687 in the pathogenesis of classical PDB, thereby expanding its mutational spectrum.


Subject(s)
Osteitis Deformans , Humans , Osteitis Deformans/genetics , Osteitis Deformans/pathology , Nuclear Localization Signals/genetics , Sequestosome-1 Protein/genetics , Genetic Testing , Transcription Factors/genetics , Mutation , Profilins/genetics
16.
Dis Model Mech ; 16(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37772684

ABSTRACT

Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity. RNA sequencing of multiple organs aimed to identify pathways altered by the mutant protein in the systemic transcriptome, including metabolic tissues, given the link between ALS-frontotemporal dementia and altered metabolism. Few genes were commonly altered across all tissues, and most genes and pathways affected were generally tissue specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. Magnetic resonance imaging brain scans and histological characterisation revealed that homozygous FUSDelta14 brains were smaller than heterozygous and wild-type brains and displayed significant morphological alterations, including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. These findings show that the disease aetiology of FUS variants can include both neurodevelopmental and systemic alterations.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice , Animals , Amyotrophic Lateral Sclerosis/pathology , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Mutation/genetics , Neurons/metabolism
17.
Mol Cell Neurosci ; 127: 103888, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37598897

ABSTRACT

Nucleocytoplasmic transport (NCT) in neurons is critical for enabling proteins to enter the nucleus and regulate plasticity genes in response to environmental cues. Such experience-dependent (ED) neural plasticity is central for establishing memory formation and cognitive function and can influence the severity of neurodegenerative disorders like Alzheimer's disease (AD). ED neural plasticity is driven by histone acetylation (HA) mediated epigenetic mechanisms that regulate dynamic activity-dependent gene transcription profiles in response to neuronal stimulation. Yet, how histone acetyltransferases (HATs) respond to extracellular cues in the in vivo brain to drive HA-mediated activity-dependent gene control remains unclear. We previously demonstrated that extracellular stimulation of rat hippocampal neurons in vitro triggers Tip60 HAT nuclear import with concomitant synaptic gene induction. Here, we focus on investigating Tip60 HAT subcellular localization and NCT specifically in neuronal activity-dependent gene control by using the learning and memory mushroom body (MB) region of the Drosophila brain as a powerful in vivo cognitive model system. We used immunohistochemistry (IHC) to compare the subcellular localization of Tip60 HAT in the Drosophila brain under normal conditions and in response to stimulation of fly brain neurons in vivo either by genetically inducing potassium channels activation or by exposure to natural positive ED conditions. Furthermore, we found that both inducible and ED condition-mediated neural induction triggered Tip60 nuclear import with concomitant induction of previously identified Tip60 target genes and that Tip60 levels in both the nucleus and cytoplasm were significantly decreased in our well-characterized Drosophila AD model. Mutagenesis of a putative nuclear localization signal (NLS) sequence and nuclear export signal (NES) sequence that we identified in the Drosophila Tip60 protein revealed that both are functionally required for appropriate Tip60 subcellular localization. Our results support a model by which neuronal stimulation triggers Tip60 NCT via its NLS and NES sequences to promote induction of activity-dependent neuroplasticity gene transcription and that this process may be disrupted in AD.


Subject(s)
Alzheimer Disease , Drosophila Proteins , Animals , Rats , Active Transport, Cell Nucleus , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Gene Expression Regulation , Drosophila/metabolism , Alzheimer Disease/metabolism , Neuronal Plasticity/genetics , Cell Nucleus/metabolism , Drosophila Proteins/genetics , Histone Acetyltransferases
18.
Int J Pharm ; 644: 123299, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37558147

ABSTRACT

Polyamidoamine (PAMAM) dendrimers have been explored as an alternative to polyethylenimine (PEI) as a gene delivery carrier because of their relatively low cytotoxicity and excellent biocompatibility. The transfection efficiency of PAMAM dendrimers can be improved by the addition of nuclear localization signal (NLS), a positively charged peptide sequence recognized by cargo proteins in the cytoplasm for nuclear transport. However, increased positive charges from NLS can cause damage to the cytoplasmic and mitochondrial membranes and lead to reactive oxygen species (ROS)-induced cytotoxicity. This negative effect of NLS can be negated without a significant reduction in transfection efficiency by adding histidine, an essential amino acid known as a natural antioxidant, to NLS. However, little is known about the exact mechanism by which histidine reduces cytotoxicity of NLS-modified dendrimers. In this study, we selected cystamine core PAMAM dendrimer generation 2 (cPG2) and conjugated it with NLS derived from Merkel cell polyomavirus large T antigen and histidine (n = 0-3) to improve transfection efficiency and reduce cytoxicity. NLS-modified cPG2 derivatives showed similar or higher transfection efficiency than PEI 25 kDa in NIH3T3 and human mesenchymal stem cells (hMSC). The cytotoxicity of NLS-modified cPG2 derivatives was substantially lower than PEI 25 kDa and was further reduced as the number of histidine in NLS increased. To understand the mechanism of cytoprotective effect of histidine-conjugated NLS, we examined ROS scavenging, hydroxyl radical generation and mitochondrial membrane potential as a function of the number of histidine in NLS. As the number of hisidine increased, cPG2 scavenged ROS more effectively as evidenced by the hydroxyl radical antioxidant capacity (HORAC) assay. This was consistent with the reduced intracellular hydroxyl radical concentration measured by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) assay in NIH3T3. Finally, fluorescence imaging with JC-1 confirmed that the mitochondrial membranes of NIH 3T3 were well-protected during the transfection when NLS contained histidine. These experimental results confirm the hypothesis that histidine residues scavenge ROS that is generated during the transfection process, preventing the excessive damage to mitochondrial membranes, leading to reduced cytotoxicity.


Subject(s)
Dendrimers , Nuclear Localization Signals , Animals , Mice , Humans , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Histidine , Dendrimers/chemistry , NIH 3T3 Cells , Antioxidants/pharmacology , Hydroxyl Radical , Reactive Oxygen Species , DNA/chemistry , Gene Transfer Techniques , Transfection , Cell Survival
19.
PLoS Genet ; 19(7): e1010853, 2023 07.
Article in English | MEDLINE | ID: mdl-37486934

ABSTRACT

Saccharomyces cerevisiae Pif1 is a multi-functional DNA helicase that plays diverse roles in the maintenance of the nuclear and mitochondrial genomes. Two isoforms of Pif1 are generated from a single open reading frame by the use of alternative translational start sites. The Mitochondrial Targeting Signal (MTS) of Pif1 is located between the two start sites, but a Nuclear Localization Signal (NLS) has not been identified. Here we used sequence and functional analysis to identify an NLS element. A mutant allele of PIF1 (pif1-NLSΔ) that lacks four basic amino acids (781KKRK784) in the carboxyl-terminal domain of the 859 amino acid Pif1 was expressed at wild type levels and retained wild type mitochondrial function. However, pif1-NLSΔ cells were defective in four tests for nuclear function: telomere length maintenance, Okazaki fragment processing, break-induced replication (BIR), and binding to nuclear target sites. Fusing the NLS from the simian virus 40 (SV40) T-antigen to the Pif1-NLSΔ protein reduced the nuclear defects of pif1-NLSΔ cells. Thus, four basic amino acids near the carboxyl end of Pif1 are required for the vast majority of nuclear Pif1 function. Our study also reveals phenotypic differences between the previously described loss of function pif1-m2 allele and three other pif1 mutant alleles generated in this work, which will be useful to study nuclear Pif1 functions.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA Replication , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Saccharomyces cerevisiae Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism
20.
Sci Adv ; 9(28): eadg2955, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37436982

ABSTRACT

Nuclear localization signal (NLS) of HIV-1 integrase (IN) is implicated in nuclear import of HIV-1 preintegration complex (PIC). Here, we established a multiclass drug-resistant HIV-1 variant (HIVKGD) by consecutively exposing an HIV-1 variant to various antiretroviral agents including IN strand transfer inhibitors (INSTIs). HIVKGD was extremely susceptible to a previously reported HIV-1 protease inhibitor, GRL-142, with IC50 of 130 femtomolar. When cells were exposed to HIVKGD IN-containing recombinant HIV in the presence of GRL-142, significant decrease of unintegrated 2-LTR circular cDNA was observed, suggesting that nuclear import of PIC was severely compromised by GRL-142. X-ray crystallographic analyses revealed that GRL-142 interacts with NLS's putative sequence (DQAEHLK) and sterically blocks the nuclear transport of GRL-142-bound HIVKGD's PIC. Highly INSTI-resistant HIV-1 variants isolated from heavily INSTI-experienced patients proved to be susceptible to GRL-142, suggesting that NLS-targeting agents would serve as salvage therapy agents for highly INSTI-resistant variant-harboring individuals. The data should offer a new modality to block HIV-1 infectivity and replication and shed light on developing NLS inhibitors for AIDS therapy.


Subject(s)
HIV Integrase , HIV-1 , Humans , Nuclear Localization Signals/genetics , HIV-1/genetics , HIV Integrase/genetics , Antiviral Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...