Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.265
Filter
1.
J Mol Cell Cardiol ; 191: 76-87, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718920

ABSTRACT

The reactivated adult epicardium produces epicardium-derived cells (EPDCs) via epithelial-mesenchymal transition (EMT) to benefit the recovery of the heart after myocardial infarction (MI). SMARCA4 is the core catalytic subunit of the chromatin re-modeling complex, which has the potential to target some reactivated epicardial genes in MI. However, the effects of epicardial SMARCA4 on MI remain uncertain. This study found that SMARCA4 was activated over time in epicardial cells following MI, and some of activated cells belonged to downstream differentiation types of EPDCs. This study used tamoxifen to induce lineage tracing and SMARCA4 deletion from epicardial cells in Wt1-CreER;Smarca4fl/fl;Rosa26-RFP adult mice. Epicardial SMARCA4 deletion reduces the number of epicardial cells in adult mice, which was related to changes in the activation, proliferation, and apoptosis of epicardial cells. Epicardial SMARCA4 deletion reduced collagen deposition and angiogenesis in the infarcted area, exacerbated cardiac injury in MI. The exacerbation of cardiac injury was related to the inhibition of generation and differentiation of EPDCs. The alterations in EPDCs were associated with inhibited transition between E-CAD and N-CAD during the epicardial EMT, coupled with the down-regulation of WT1, SNAIL1, and PDGF signaling. In conclusion, this study suggests that Epicardial SMARCA4 plays a critical role in cardiac injury caused by MI, and its regulatory mechanism is related to epicardial EMT. Epicardial SMARCA4 holds potential as a novel molecular target for treating MI.


Subject(s)
DNA Helicases , Epithelial-Mesenchymal Transition , Gene Deletion , Myocardial Infarction , Pericardium , Transcription Factors , Animals , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Epithelial-Mesenchymal Transition/genetics , Pericardium/pathology , Pericardium/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , Mice , Cell Differentiation , Apoptosis/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/deficiency , Cell Proliferation , Disease Models, Animal
2.
Pathology ; 56(4): 504-515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413251

ABSTRACT

SMARCA4 mutation has emerged as a marker of poor prognosis in lung cancer and has potential predictive value in cancer treatment, but recommendations for which patients require its investigation are lacking. We comprehensively studied SMARCA4 alterations and the clinicopathological significance in a large cohort of immunohistochemically-subtyped non-small cell lung cancer (NSCLC). A total of 1416 patients was studied for the presence of SMARCA4 deficiency by immunohistochemistry (IHC). Thereafter, comprehensive sequencing of tumours was performed for 397 of these patients to study the mutational spectrum of SWI/SNF and SMARCA4 aberrations. IHC evidence of SMARCA4 deficiency was found in 2.9% of NSCLC. Of the sequenced tumours, 38.3% showed aberration in SWI/SNF complex, and 9.3% had SMARCA4 mutations. Strikingly, SMARCA4 aberrations were much more prevalent in large cell carcinoma (LCC) than other histological tumour subtypes. SMARCA4-deficient and SMARCA4-mutated tumours accounted for 40.5% and 51.4% of all LCC, respectively. Multivariable analyses confirmed SMARCA4 mutation was an independent prognostic factor in lung cancer. The immunophenotype of a subset of these tumours frequently showed TTF1 negativity and HepPAR1 positivity. SMARCA4 mutation or its deficiency was associated with positive smoking history and poor prognosis. It also demonstrated mutual exclusion with EGFR mutation. Taken together, the high incidence of SMARCA4 aberrations in LCC may indicate its diagnostic and prognostic value. Our study established the necessity of SMARCA4 IHC in the identification of SMARCA4-aberrant tumours, and this may be of particular importance in LCC and tumours without known driver events.


Subject(s)
DNA Helicases , Lung Neoplasms , Mutation , Nuclear Proteins , Transcription Factors , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/deficiency , Nuclear Proteins/genetics , Nuclear Proteins/deficiency , Female , DNA Helicases/genetics , DNA Helicases/deficiency , Male , Middle Aged , Aged , Prognosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Large Cell/genetics , Carcinoma, Large Cell/pathology , Biomarkers, Tumor/genetics , Adult , Immunohistochemistry , Aged, 80 and over
3.
Clin Cancer Res ; 30(9): 1708-1711, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38416596

ABSTRACT

Small-cell lung carcinoma (SCLC) cell lines have been widely utilized as a preclinical model of this highly aggressive disease. However, since their creation decades ago, novel tumor entities have been defined that might clinicopathologically mimic SCLC, which notably includes thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT). Multiomic reassessment of the presumed SCLC cell lines with high YAP1 expression reveals that nearly all of these tumors represent unsuspected SMARCA4-UT. See related article by Ng et al., p. 1846.


Subject(s)
DNA Helicases , Lung Neoplasms , Nuclear Proteins , Small Cell Lung Carcinoma , Transcription Factors , Humans , DNA Helicases/genetics , DNA Helicases/deficiency , Small Cell Lung Carcinoma/diagnosis , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Transcription Factors/genetics , Transcription Factors/deficiency , Nuclear Proteins/genetics , Nuclear Proteins/deficiency , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Diagnosis, Differential , Thoracic Neoplasms/diagnosis , Thoracic Neoplasms/genetics , Thoracic Neoplasms/pathology , Cell Line, Tumor
4.
Turk Patoloji Derg ; 40(2): 128-133, 2024.
Article in English | MEDLINE | ID: mdl-38265099

ABSTRACT

OBJECTIVE: SMARCA4-deficient undifferentiated tumor (SMARCA4-UT) is a highly malignant neoplasm with an undifferentiated or rhabdoid phenotype, posing a diagnostic challenge. This case report aims to create awareness about this rare neoplasm while dealing with cases presenting with undifferentiated morphology. CASE REPORT: A 55-year-old gentleman with constitutional symptoms and lymphadenopathy. Imaging revealed a mass lesion in the right upper lobe of the lung. A biopsy of the cervical lymph node showed diffusely effaced architecture replaced by sheets of undifferentiated pleomorphic cells with vesicular nuclei, prominent nucleoli, eosinophilic cytoplasm, and multiple necrotic foci. An extensive immunohistochemistry (IHC) panel was applied, which showed positivity for synaptophysin, vimentin, and focal CD34 and EMA expression. Other markers like pan-cytokeratin, p40, TTF1, CD56, INSM1, calretinin, CD45, SOX10, S100, CD30, CD117, SMA, and Desmin were negative, with INI1 retained. The IHC panel excluded the morphological differentials of carcinoma, lymphoma, rhabdomyosarcoma, melanoma, and germ cell tumor. Further literature review led to the possibility of the SMARCA4-UT entity, which had a morphology and IHC profile similar to the present case. Testing for SMARCA4 (BRG-1) by IHC showed a complete loss in the tumor cells, favoring the diagnosis of Thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT). CONCLUSION: SMARCA4-UTs are rare, highly aggressive, and poorly differentiated thoracic tumors. Recognizing them is vital as there is potential for therapeutic interventions such as immunotherapy and SMARCA4-targeted therapies, offering promising prospects for the future.


Subject(s)
Biomarkers, Tumor , DNA Helicases , Nuclear Proteins , Transcription Factors , Humans , Male , Transcription Factors/genetics , Transcription Factors/deficiency , Middle Aged , DNA Helicases/deficiency , DNA Helicases/genetics , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Immunohistochemistry , Thoracic Neoplasms/pathology , Thoracic Neoplasms/genetics , Thoracic Neoplasms/chemistry
5.
Nat Immunol ; 23(8): 1256-1272, 2022 08.
Article in English | MEDLINE | ID: mdl-35902638

ABSTRACT

The recombination-activating genes (RAG) 1 and 2 are indispensable for diversifying the primary B cell receptor repertoire and pruning self-reactive clones via receptor editing in the bone marrow; however, the impact of RAG1/RAG2 on peripheral tolerance is unknown. Partial RAG deficiency (pRD) manifesting with late-onset immune dysregulation represents an 'experiment of nature' to explore this conundrum. By studying B cell development and subset-specific repertoires in pRD, we demonstrate that reduced RAG activity impinges on peripheral tolerance through the generation of a restricted primary B cell repertoire, persistent antigenic stimulation and an inflammatory milieu with elevated B cell-activating factor. This unique environment gradually provokes profound B cell dysregulation with widespread activation, remarkable extrafollicular maturation and persistence, expansion and somatic diversification of self-reactive clones. Through the model of pRD, we reveal a RAG-dependent 'domino effect' that impacts stringency of tolerance and B cell fate in the periphery.


Subject(s)
B-Lymphocytes , DNA-Binding Proteins , Homeodomain Proteins , Nuclear Proteins , Cell Differentiation , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , Humans , Immune Tolerance , Lymphocyte Count , Nuclear Proteins/deficiency
6.
Oncologist ; 27(6): 501-511, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35278076

ABSTRACT

BACKGROUND: Thoracic SMARCA4-deficient undifferentiated tumors (SMARCA4-UT) are aggressive neoplasms. Data linking BAF alterations with tumor microenvironment (TME) and efficacy of immune checkpoint inhibitors (ICI) are contradictory. The TME of SMARCA4-UT and their response to ICI are unknown. MATERIALS AND METHODS: Patients diagnosed with SMARCA4-UT in our institution were included. Immunostainings for tertiary lymphoid structures (TLS), immune cell markers, and checkpoints were assessed. Validation was performed using an independent transcriptome dataset including SMARCA4-UT, non-small cell lung cancers (NSCLC) with/without SMARCA4 mutations, and unclassified thoracic sarcomas (UTS). CXCL9 and PD-L1 expressions were assessed in NSCLC and thoracic fibroblast cell lines, with/without SMARCA4 knockdown, treated with/without interferon gamma. RESULTS: Nine patients were identified. All samples but one showed no TLS, consistent with an immune desert TME phenotype. Four patients received ICI as part of their treatment, but the only one who responded, had a tumor with a TLS and immune-rich TME. Unsupervised clustering of the validation cohort using immune cell scores identified 2 clusters associated with cell ontogeny and immunity (cluster 1 enriched for NSCLC independently of SMARCA4 status (n = 9/10; P = .001); cluster 2 enriched for SMARCA4-UT (n = 11/12; P = .005) and UTS (n = 5/5; P = .0005). SMARCA4 loss-of-function experiments revealed interferon-induced upregulation of CXCL9 and PD-L1 expression in the NSCLC cell line with no effect on the thoracic fibroblast cell line. CONCLUSION: SMARCA4-UT mainly have an immune desert TME with limited efficacy to ICI. TME of SMARCA4-driven tumors varies according to the cell of origin questioning the interplay between BAF alterations, cell ontogeny and immunity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , DNA Helicases , Immune Checkpoint Inhibitors , Lung Neoplasms , Nuclear Proteins , Sarcoma , Soft Tissue Neoplasms , Thoracic Neoplasms , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Biomarkers, Tumor/immunology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , DNA Helicases/deficiency , DNA Helicases/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Nuclear Proteins/deficiency , Nuclear Proteins/immunology , Sarcoma/drug therapy , Sarcoma/immunology , Sarcoma/pathology , Soft Tissue Neoplasms/drug therapy , Soft Tissue Neoplasms/immunology , Soft Tissue Neoplasms/pathology , Thoracic Neoplasms/drug therapy , Thoracic Neoplasms/immunology , Thoracic Neoplasms/pathology , Transcription Factors/immunology , Tumor Microenvironment/immunology
7.
Life Sci Alliance ; 5(3)2022 03.
Article in English | MEDLINE | ID: mdl-34893559

ABSTRACT

Changes in histone post-translational modifications are associated with aging through poorly defined mechanisms. Histone 3 lysine 4 (H3K4) methylation at promoters is deposited by SET1 family methyltransferases acting within conserved multiprotein complexes known as COMPASS. Previous work yielded conflicting results about the requirement for H3K4 methylation during aging. Here, we reassessed the role of SET1/COMPASS-dependent H3K4 methylation in Caenorhabditis elegans lifespan and fertility by generating set-2(syb2085) mutant animals that express a catalytically inactive form of SET-2, the C. elegans SET1 homolog. We show that set-2(syb2085) animals retain the ability to form COMPASS, but have a marked global loss of H3K4 di- and trimethylation (H3K4me2/3). Reduced H3K4 methylation was accompanied by loss of fertility, as expected; however, in contrast to earlier studies, set-2(syb2085) mutants displayed a significantly shortened, not extended, lifespan and had normal intestinal fat stores. Other commonly used set-2 mutants were also short-lived, as was a cfp-1 mutant that lacks the SET1/COMPASS chromatin-targeting component. These results challenge previously held views and establish that WT H3K4me2/3 levels are essential for normal lifespan in C. elegans.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Fertility/genetics , Histone-Lysine N-Methyltransferase/deficiency , Longevity/genetics , Nuclear Proteins/deficiency , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Catalysis , Enzyme Activation , Histones/metabolism , Methylation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
8.
PLoS One ; 16(12): e0247261, 2021.
Article in English | MEDLINE | ID: mdl-34928942

ABSTRACT

POLDIP2 is a multifunctional protein whose roles are only partially understood. Our laboratory previously reported physiological studies performed using a mouse gene trap model, which suffered from three limitations: perinatal lethality in homozygotes, constitutive Poldip2 inactivation and inadvertent downregulation of the adjacent Tmem199 gene. To overcome these limitations, we developed a new conditional floxed Poldip2 model. The first part of the present study shows that our initial floxed mice were affected by an unexpected mutation, which was not readily detected by Southern blotting and traditional PCR. It consisted of a 305 kb duplication around Poldip2 with retention of the wild type allele and could be traced back to the original targeted ES cell clone. We offer simple suggestions to rapidly detect similar accidents, which may affect genome editing using both traditional and CRISPR-based methods. In the second part of the present study, correctly targeted floxed Poldip2 mice were generated and used to produce a new constitutive knockout line by crossing with a Cre deleter. In contrast to the gene trap model, many homozygous knockout mice were viable, in spite of having no POLDIP2 expression. To further characterize the effects of Poldip2 ablation in the vasculature, RNA-seq and RT-qPCR experiments were performed in constitutive knockout arteries. Results show that POLDIP2 inactivation affects multiple cellular processes and provide new opportunities for future in-depth study of its functions.


Subject(s)
CRISPR-Cas Systems , Gene Targeting , Membrane Proteins/genetics , Mitochondrial Proteins/deficiency , Mouse Embryonic Stem Cells/metabolism , Nuclear Proteins/deficiency , RNA-Seq , Animals , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mitochondrial Proteins/metabolism , Nuclear Proteins/metabolism
9.
Pathol Oncol Res ; 27: 1610003, 2021.
Article in English | MEDLINE | ID: mdl-34970085

ABSTRACT

Small cell carcinoma of hypercalcemic type (SCCOHT) is a rare gynaecological neoplasm, originating mostly in the ovaries. Cervical origin of this very aggressive malignancy with unknown histogenesis is an extremely rare condition, without published management recommendations. Alterations in SMARCA4 gene are supposed to play the major role in SCCOHT oncogenesis and their identification is crucial for the diagnosis. Adequate genetic counselling of the patients and their families seems to be of great importance. Optimal management and treatment approaches are not known yet but may extremely influence the prognosis of young female patients that suffer from this very resistant disease. Nowadays, a translational research seems to be the key for the further diagnostic and treatment strategies of SCCOHT. The purpose of the case report is to provide practical information and useful recommendations on the diagnosis, management, and treatment of SMARCA4-deficient carcinoma of the uterine cervix resembling SCCOHT.


Subject(s)
Carcinoma, Small Cell/metabolism , DNA Helicases/deficiency , Hypercalcemia/metabolism , Nuclear Proteins/deficiency , Transcription Factors/deficiency , Uterine Cervical Neoplasms/metabolism , Adolescent , Biomarkers, Tumor/deficiency , Biomarkers, Tumor/genetics , Carcinoma, Small Cell/diagnosis , Carcinoma, Small Cell/genetics , Carcinoma, Small Cell/therapy , DNA Helicases/genetics , Fatal Outcome , Female , Humans , Hypercalcemia/diagnosis , Hypercalcemia/genetics , Hypercalcemia/therapy , Mutation , Nuclear Proteins/genetics , Transcription Factors/genetics , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/therapy
10.
Nat Commun ; 12(1): 5931, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34635673

ABSTRACT

The chromatin remodeler RSF1 enriched at mitotic centromeres is essential for proper chromosome alignment and segregation and underlying mechanisms remain to be disclosed. We here show that PLK1 recruitment by RSF1 at centromeres creates an activating phosphorylation on Thr236 in the activation loop of Aurora B and this is indispensable for the Aurora B activation. In structural modeling the phosphorylated Thr236 enhances the base catalysis by Asp200 nearby, facilitating the Thr232 autophosphorylation. Accordingly, RSF1-PLK1 is central for Aurora B-mediated microtubule destabilization in error correction. However, under full microtubule-kinetochore attachment RSF1-PLK1 positions at kinetochores, halts activating Aurora B and phosphorylates BubR1, regardless of tension. Spatial movement of RSF1-PLK1 to kinetochores is triggered by Aurora B-mediated phosphorylation of centromeric histone H3 on Ser28. We propose a regulatory RSF1-PLK1 axis that spatiotemporally controls on/off switch on Aurora B. This feedback circuit among RSF1-PLK1-Aurora B may coordinate dynamic microtubule-kinetochore attachment in early mitosis when full tension yet to be generated.


Subject(s)
Aurora Kinase B/genetics , Cell Cycle Proteins/genetics , Chromosome Segregation , Mitosis , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Signal Transduction/genetics , Trans-Activators/genetics , Aspartic Acid/metabolism , Aurora Kinase B/metabolism , Cell Cycle Proteins/metabolism , Chromatin/chemistry , Chromatin/metabolism , Feedback, Physiological , Gene Expression Regulation , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Kinetochores/metabolism , Kinetochores/ultrastructure , Microtubules/metabolism , Microtubules/ultrastructure , Nuclear Proteins/deficiency , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Serine/metabolism , Trans-Activators/deficiency , Polo-Like Kinase 1
11.
Front Immunol ; 12: 705308, 2021.
Article in English | MEDLINE | ID: mdl-34394104

ABSTRACT

Response Gene to Complement 32 (RGC-32) is an important mediator of the TGF-ß signaling pathway, and an increasing amount of evidence implicates this protein in regulating astrocyte biology. We showed recently that spinal cord astrocytes in mice lacking RGC-32 display an immature phenotype reminiscent of progenitors and radial glia, with an overall elongated morphology, increased proliferative capacity, and increased expression of progenitor markers when compared to their wild-type (WT) counterparts that make them incapable of undergoing reactive changes during the acute phase of experimental autoimmune encephalomyelitis (EAE). Here, in order to decipher the molecular networks underlying RGC-32's ability to regulate astrocytic maturation and reactivity, we performed next-generation sequencing of RNA from WT and RGC-32 knockout (KO) neonatal mouse brain astrocytes, either unstimulated or stimulated with the pleiotropic cytokine TGF-ß. Pathway enrichment analysis showed that RGC-32 is critical for the TGF-ß-induced up-regulation of transcripts encoding proteins involved in brain development and tissue remodeling, such as axonal guidance molecules, transcription factors, extracellular matrix (ECM)-related proteins, and proteoglycans. Our next-generation sequencing of RNA analysis also demonstrated that a lack of RGC-32 results in a significant induction of WD repeat and FYVE domain-containing protein 1 (Wdfy1) and stanniocalcin-1 (Stc1). Immunohistochemical analysis of spinal cords isolated from normal adult mice and mice with EAE at the peak of disease showed that RGC-32 is necessary for the in vivo expression of ephrin receptor type A7 in reactive astrocytes, and that the lack of RGC-32 results in a higher number of homeodomain-only protein homeobox (HOPX)+ and CD133+ radial glia cells. Collectively, these findings suggest that RGC-32 plays a major role in modulating the transcriptomic changes in astrocytes that ultimately lead to molecular programs involved in astrocytic differentiation and reactive changes during neuroinflammation.


Subject(s)
Astrocytes/metabolism , Gliosis/genetics , Neuroinflammatory Diseases/genetics , Nuclear Proteins/physiology , Transcriptome , Animals , Axon Guidance/genetics , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Gene Expression Regulation , Gene Ontology , Gene Regulatory Networks , Gliosis/etiology , Gliosis/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neural Stem Cells/metabolism , Neurogenesis , Neuroinflammatory Diseases/metabolism , Nuclear Proteins/deficiency , Specific Pathogen-Free Organisms , Spinal Cord/pathology
12.
Cells ; 10(8)2021 07 29.
Article in English | MEDLINE | ID: mdl-34440689

ABSTRACT

Lung cancers are ranked third among the cancer incidence in France in the year 2020, with adenocarcinomas being the commonest sub-type out of ~85% of non-small cell lung carcinomas. The constant evolution of molecular genotyping, which is used for the management of lung adenocarcinomas, has led to the current focus on tumor suppressor genes, specifically the loss of function mutation in the SMARCA4 gene. SMARCA4-deficient adenocarcinomas are preponderant in younger aged male smokers with a predominant solid morphology. The importance of identifying SMARCA4-deficient adenocarcinomas has gained interest for lung cancer management due to its aggressive behavior at diagnosis with vascular invasion and metastasis to the pleura seen upon presentation in most cases. These patients have poor clinical outcome with short overall survival rates, regardless of the stage of disease. The detection of SMARCA4 deficiency is possible in most pathology labs with the advent of sensitive and specific immunohistochemical antibodies. The gene mutations can be detected together with other established lung cancer molecular markers based on the current next generation sequencing panels. Sequencing will also allow the identification of associated gene mutations, notably KRAS, KEAP1, and STK11, which have an impact on the overall survival and progression-free survival of the patients. Predictive data on the treatment with anti-PD-L1 are currently uncertain in this high tumor mutational burden cancer, which warrants more groundwork. Identification of target drugs is also still in pre-clinical testing. Thus, it is paramount to identify the SMARCA4-deficient adenocarcinoma, as it carries worse repercussions on patient survival, despite having an exceptionally low prevalence. Herein, we discuss the pathophysiology of SMARCA4, the clinicopathological consequences, and different detection methods, highlighting the perspectives and challenges in the assessment of SMARCA4 deficiency for the management of non-small cell lung cancer patients. This is imperative, as the contemporary shift on identifying biomarkers associated with tumor suppressor genes such as SMARCA4 are trending; hence, awareness of pathologists and clinicians is needed for the SMARCA4-dNSCLC entity with close follow-up on new management strategies to overcome the poor possibilities of survival in such patients.


Subject(s)
Adenocarcinoma of Lung/metabolism , DNA Helicases/deficiency , DNA Helicases/genetics , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Transcription Factors/deficiency , Transcription Factors/genetics , Adenocarcinoma of Lung/genetics , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , DNA Helicases/analysis , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Mutation , Nuclear Proteins/analysis , Sequence Analysis, DNA , Transcription Factors/analysis
13.
Virchows Arch ; 479(6): 1209-1219, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34350470

ABSTRACT

Mimickers of neuroendocrine neoplasms (NEN) include a number of important pitfall tumors. Here, we describe our experience with mesenchymal mimics of NENs to illustrate their spectrum and draw the attention particularly to a group of mesenchymal/non-epithelial neoplasms (MN) that combine epithelioid histology with neuroendocrine (NE-) features and peculiar genetic abnormalities. In a consultation series of 4498 cases collected between 2009 and 2021, 2099 neoplasms expressing synaptophysin and/or chromograninA were reviewed and analyzed. A total of 364 (18%) were diagnosed as non-NENs, while the remaining tumors were NEN. The group of mesenchymal/non-epithelial neoplasms with NE-features (MN-NE) included 31/364 (8%) cases. These mostly malignant neoplasms showed an epithelioid morphology. While all but one tumor expressed synaptophysin, mostly patchy, only 10/29 (34%) co-expressed chromograninA. A total of 13/31 (42%) of the MN-NE showed EWSR1-related gene fusions (6 Ewing sarcomas, 5 clear cell sarcomas, and 1 desmoplastic small round cell tumor, 1 neoplasm with FUS-CREM gene fusion) and 7 (23%) were SWI/SNF (SMARCB1 or SMARCA4)-deficient neoplasms. The remaining MN-NE included synovial sarcoma, sclerosing epithelioid mesenchymal neoplasm, melanoma, alveolar soft part sarcoma, solitary fibrous tumor, and chordoma. A total of 27/31 MN-NE were from the last 8 years, and 6 of them were located in the pancreas. Eleven MN-NE were initially diagnosed as neuroendocrine carcinomas (NECs). MN-NE with epithelioid features play an increasing role as mimickers of NECs. They mostly belong to tumors with gene fusions involving the EWSR1 gene, or with SWI/SNF complex deficiency. Synaptophysin expression is mostly patchy and chromograninA expression is infrequent in MN-NE of this series and data extracted from literature.


Subject(s)
Biomarkers, Tumor/deficiency , Biomarkers, Tumor/genetics , Carcinoma, Neuroendocrine/genetics , DNA Helicases/deficiency , Gene Fusion , Neoplasms, Connective Tissue/genetics , Nuclear Proteins/deficiency , RNA-Binding Protein EWS/genetics , SMARCB1 Protein/deficiency , Transcription Factors/deficiency , Carcinoma, Neuroendocrine/chemistry , Carcinoma, Neuroendocrine/pathology , Chromogranin A/analysis , Cyclic AMP Response Element Modulator/genetics , Decision Support Techniques , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Neoplasms, Connective Tissue/chemistry , Neoplasms, Connective Tissue/pathology , Predictive Value of Tests , RNA-Binding Protein FUS/genetics , Synaptophysin/analysis
14.
Nat Commun ; 12(1): 4319, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262032

ABSTRACT

Despite the genetic inactivation of SMARCA4, a core component of the SWI/SNF-complex commonly found in cancer, there are no therapies that effectively target SMARCA4-deficient tumours. Here, we show that, unlike the cells with activated MYC oncogene, cells with SMARCA4 inactivation are refractory to the histone deacetylase inhibitor, SAHA, leading to the aberrant accumulation of H3K27me3. SMARCA4-mutant cells also show an impaired transactivation and significantly reduced levels of the histone demethylases KDM6A/UTX and KDM6B/JMJD3, and a strong dependency on these histone demethylases, so that its inhibition compromises cell viability. Administering the KDM6 inhibitor GSK-J4 to mice orthotopically implanted with SMARCA4-mutant lung cancer cells or primary small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), had strong anti-tumour effects. In this work we highlight the vulnerability of KDM6 inhibitors as a characteristic that could be exploited for treating SMARCA4-mutant cancer patients.


Subject(s)
Antineoplastic Agents/therapeutic use , DNA Helicases/deficiency , Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Neoplasms/drug therapy , Nuclear Proteins/deficiency , Transcription Factors/deficiency , Animals , Antineoplastic Agents/pharmacology , Benzazepines/pharmacology , Benzazepines/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , DNA Helicases/metabolism , Drug Resistance, Neoplasm/drug effects , Gene Expression , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Mice , Neoplasms/metabolism , Nuclear Proteins/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Transcription Factors/metabolism , Transcriptional Activation
15.
J Immunol ; 206(10): 2271-2276, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33941655

ABSTRACT

T cell development is predicated on the successful rearrangement of the TCR gene loci, which encode for Ag-specific receptors. Recombination-activating gene (RAG) 2 is required for TCR gene rearrangements, which occur during specific stages of T cell development. In this study, we differentiated human pluripotent stem cells with a CRISPR/Cas9-directed deletion of the RAG2 gene (RAG2-KO) to elucidate the requirement for the TCR ß-chain in mediating ß-selection during human T cell development. In stark contrast to mice, human RAG2-KO T lineage progenitors progressed to the CD4+CD8+ double-positive (DP) stage in the absence of TCRß rearrangements. Nonetheless, RAG2-KO DPs retrovirally transduced to express a rearranged TCR ß-chain showed increased survival and proliferation as compared with control-transduced RAG2-KO DPs. Furthermore, transcriptomic analysis showed that TCRß- and control-transduced RAG2-KO DPs differed in gene pathways related to survival and proliferation. Our results provide important insights as to the distinct requirement for the TCR ß-chain during human T cell development.


Subject(s)
CD4 Antigens/metabolism , CD8 Antigens/metabolism , Cell Differentiation/genetics , Human Embryonic Stem Cells/cytology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Gene Knockout Techniques , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/genetics , Hematopoiesis/genetics , Humans , Lymphocyte Activation/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Transduction, Genetic
16.
Theranostics ; 11(13): 6592-6606, 2021.
Article in English | MEDLINE | ID: mdl-33995678

ABSTRACT

Purpose: Clinical success of cancer therapy is severely limited by drug resistance, attributed in large part to the loss of function of tumor suppressor genes (TSGs). Developing effective strategies to treat those tumors is challenging, but urgently needed in clinic. Experimental Design: MYOCD is a clinically relevant TSG in lung cancer patients. Our in vitro and in vivo data confirm its tumor suppressive function. Further analysis reveals that MYOCD potently inhibits stemness of lung cancer stem cells. Mechanistically, MYOCD localizes to TGFBR2 promoter region and thereby recruits PRMT5/MEP50 complex to epigenetically silence its transcription. Conclusions: NSCLC cells deficient of MYOCD are particularly sensitive to TGFBR kinase inhibitor (TGFBRi). TGFBRi and stemness inhibitor synergize with existing drugs to treat MYOCD deficient lung cancers. Our current work shows that loss of function of MYOCD creates Achilles' heels in lung cancer cells, which might be exploited in clinic.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Nuclear Proteins/deficiency , Receptor, Transforming Growth Factor-beta Type II/antagonists & inhibitors , Trans-Activators/deficiency , Adaptor Proteins, Signal Transducing/physiology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Down-Regulation , Drug Synergism , Gene Expression Regulation, Neoplastic , Gene Silencing , Histone Code , Humans , Lung Neoplasms/genetics , Methylation , Mice, Transgenic , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Neoplastic Stem Cells/pathology , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Promoter Regions, Genetic , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/physiology , Receptor, Transforming Growth Factor-beta Type II/genetics , Signal Transduction , Trans-Activators/biosynthesis , Trans-Activators/genetics , Trans-Activators/physiology , Tumor Burden
17.
J Clin Immunol ; 41(6): 1291-1302, 2021 08.
Article in English | MEDLINE | ID: mdl-33954879

ABSTRACT

Mutations in recombinase activating genes 1 and 2 (RAG1/2) result in human severe combined immunodeficiency (SCID). The products of these genes are essential for V(D)J rearrangement of the antigen receptors during lymphocyte development. Mutations resulting in null-recombination activity in RAG1 or RAG2 are associated with the most severe clinical and immunological phenotypes, whereas patients with hypomorphic mutations may develop leaky SCID, including Omenn syndrome (OS). A group of previously unrecognized clinical phenotypes associated with granulomata and/or autoimmunity have been described as a consequence of hypomorphic mutations. Here, we present six patients from unrelated families with missense variants in RAG1 or RAG2. Phenotypes observed in these patients ranged from OS to severe mycobacterial infections and granulomatous disease. Moreover, we report the first evidence of two variants that had not been associated with immunodeficiency. This study represents the first case series of RAG1- or RAG2-deficient patients from Mexico and Latin America.


Subject(s)
DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , Mutation/genetics , Mutation/immunology , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Adolescent , Child , Female , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Infant , Lymphocytes/immunology , Male , Mexico , Phenotype
18.
Cancer Sci ; 112(7): 2679-2691, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33949040

ABSTRACT

BCR-ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML-LBC) lineage and BCR-ABL1+ acute lymphoblastic leukemia (BCR-ABL1+ ALL). The recombination-activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML-LBC and BCR-ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild-type (WT) RAG and catalytically inactive RAG-expressing BCR-ABL1+ and BCR-ABL1- cell lines, respectively, and demonstrate that BCR-ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG-expressing BCR-ABL1+ cell lines and primary CD34+ bone marrow cells from CML-LBC samples maintain more double-strand breaks (DSB) compared to catalytically inactive RAG-expressing BCR-ABL1+ cell lines and RAG-deficient CML-CP samples, which are measured by γ-H2AX. WT RAG-expressing BCR-ABL1+ cells are biased to repair RAG-mediated DSB by the alternative non-homologous end joining pathway (a-NHEJ), which could contribute genomic instability through increasing the expression of a-NHEJ-related MRE11 and RAD50 proteins. As a result, RAG-expressing BCR-ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR-ABL1 signaling but independent of the levels of BCR-ABL1 expression and mutations in the BCR-ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR-ABL1+ leukemia through its endonuclease activity.


Subject(s)
DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Fusion Proteins, bcr-abl/metabolism , Homeodomain Proteins/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Nuclear Proteins/metabolism , Acid Anhydride Hydrolases/metabolism , Animals , Blast Crisis/genetics , Blast Crisis/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Disease Progression , Fusion Proteins, bcr-abl/genetics , Genomic Instability , Heterografts , Histones/analysis , Homeodomain Proteins/genetics , Humans , In Vitro Techniques , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , MRE11 Homologue Protein/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase Inhibitors/therapeutic use
19.
PLoS Genet ; 17(5): e1009412, 2021 05.
Article in English | MEDLINE | ID: mdl-33961623

ABSTRACT

Meiosis is a cell division process with complex chromosome events where various molecules must work in tandem. To find meiosis-related genes, we screened evolutionarily conserved and reproductive tract-enriched genes using the CRISPR/Cas9 system and identified potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis. In prophase I, Kctd19 deficiency did not affect synapsis or the DNA damage response, and chiasma structures were also observed in metaphase I spermatocytes of Kctd19 KO mice. However, spermatocytes underwent apoptotic elimination during the metaphase-anaphase transition. We were able to rescue the Kctd19 KO phenotype with an epitope-tagged Kctd19 transgene. By immunoprecipitation-mass spectrometry, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). Phenotyping of Zfp541 KO spermatocytes demonstrated XY chromosome asynapsis and recurrent DNA damage in the late pachytene stage, leading to apoptosis. In summary, our study reveals that KCTD19 associates with ZFP541 and HDAC1, and that both KCTD19 and ZFP541 are essential for meiosis in male mice.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Genes, Essential , Meiosis , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Anaphase , Animals , CRISPR-Cas Systems/genetics , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Chromosome Pairing , Conserved Sequence , DNA Damage , Evolution, Molecular , Fertility/genetics , Histone Deacetylase 1/metabolism , Male , Meiotic Prophase I , Metaphase , Mice , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Pachytene Stage , Phenotype , Spermatids/cytology , Spermatocytes/cytology , Spermatocytes/metabolism , Testis/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics , Transgenes
20.
Am J Hum Genet ; 108(5): 857-873, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33961779

ABSTRACT

The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.


Subject(s)
Brain Diseases/genetics , Epilepsy/genetics , Fused Kidney/genetics , Intellectual Disability/genetics , Mutation, Missense , Nuclear Proteins/genetics , Osteochondrodysplasias/genetics , Adolescent , Amino Acid Sequence , Animals , Brain Diseases/etiology , Child , Child, Preschool , Epilepsy/complications , Evolution, Molecular , Female , Gene Frequency , Humans , Infant , Male , Mice , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/deficiency , Phenotype , Protein Stability , Syndrome , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/genetics , Young Adult , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...