Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41.893
Filter
1.
Mol Biol Rep ; 51(1): 712, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824221

ABSTRACT

INTRODUCTION: Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS: The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION: This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.


Subject(s)
Coronary Artery Disease , Myeloid Ecotropic Viral Integration Site 1 Protein , Nuclear Proteins , Trans-Activators , Adult , Female , Humans , Male , Middle Aged , Case-Control Studies , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Coronary Artery Disease/genetics , Gene Expression/genetics , Gene Expression Regulation/genetics , Interleukin-10/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
2.
Exp Dermatol ; 33(6): e15100, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840387

ABSTRACT

Skin wound healing is driven by proliferation, migration and differentiation of several cell types that are controlled by the alterations in the gene expression programmes. Brahma Gene 1 (BRG1) (also known as SMARCA4) is a core ATPase in the BRG1 Associated Factors (BAF) ATP-dependent chromatin remodelling complexes that alter DNA-histone interaction in chromatin at the specific gene regulatory elements resulting in increase or decrease of the target gene transcription. Using siRNA mediated suppression of BRG1 during wound healing in a human ex vivo and in vitro (scratch assay) models, we demonstrated that BRG1 is essential for efficient skin wound healing by promoting epidermal keratinocytes migration, but not their proliferation or survival. BRG1 controls changes in the expression of genes associated with gene transcription, response to wounding, cell migration and cell signalling. Altogether, our data revealed that BRG1 play positive role in skin repair by promoting keratinocyte migration and impacting the genes expression programmes associated with cell migration and cellular signalling.


Subject(s)
Cell Movement , DNA Helicases , Keratinocytes , Nuclear Proteins , Signal Transduction , Transcription Factors , Wound Healing , Humans , Keratinocytes/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Skin/metabolism , Cell Proliferation , RNA, Small Interfering
3.
Crit Rev Eukaryot Gene Expr ; 34(5): 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38842200

ABSTRACT

SIAH2 function as an oncogene in various cancer. However, the roles of SIAH2 in hepatocellular carcinoma (HCC) are still unknown. This study aimed to investigate the roles of SIAH2 in HCC. Immunohistochemistry was used determine SIAH2 and ACSL4 expression in clinical samples. RT-qPCR was used to determine mRNA expression. Western blot assay was applied for determining protein expression. Ubiquitination assay was conducted for determining ubiquitination of ACSL4. Xenograft experiment was applied for determining tumor growth. Flow cytometry was applied to determine the functions of CD4+ and CD8+ T cells. SIAH2 expression was overexpressed in HCC tumors. High levels of SIAH2 predicted poor outcomes. However, SIAH2 knockdown promoted the proliferation of CD8+ T cells as well as promoted the ferroptosis of tumor cells, inhibiting tumor growth in HCC. ACSL4 is required for CD8+ T cell-mediated ferroptosis of HCC cells. However, SIAH2 induced ubiquitination of ACSL4 and inhibited its expression. SIAH2 specific inhibitor menadione promoted the immune checkpoint blockade. Taken together, SIAH2-mediated inactivation of CD8+ T cells inhibits the ferroptosis of HCC via mediating ubiquitination of ACSL4. Therefore, targeting SIAH2 may be a promising strategy for HCC.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Coenzyme A Ligases , Liver Neoplasms , Ubiquitin-Protein Ligases , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Animals , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Cell Line, Tumor , Ubiquitination , Male , Female , Cell Proliferation , Gene Expression Regulation, Neoplastic
4.
Crit Rev Eukaryot Gene Expr ; 34(5): 45-57, 2024.
Article in English | MEDLINE | ID: mdl-38842203

ABSTRACT

Inflammation-mediated dysfunction of cardiomyocytes is the main cause of diabetic cardiomyopathy (DCM). The present study aimed to investigate the roles of siah E3 ubiquitin protein ligase 1 (SIAH1) in DCM. The online dataset GSE4172 was used to analyze the differentially expressed genes in myocardial inflammation of DCM patients. RT-qPCR was conducted to detect mRNA levels. Enzyme-Linked Immunosorbent Assay (ELISA) was performed to detect cytokine release. Western blot was used to detect protein expression. Lactate dehydrogenase (LDH) assay was used to determine cytotoxicity. In vitro ubiquitination assay was applied to determine the ubiquitination of nuclear factor kappa B inhibitor alpha (1κВ-α). Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect the death of cardiomyocytes. Flow cytometry was applied for determining cardiomyocyte pyroptosis. The results showed that SIAH1 was overexpressed in human inflammatory cardiomyopathy. High expression of SIAH1 was associated with inflammatory response. SIAH1 was also overexpressed lipopolysaccharide (LPS)-induced inflammatory cardiomyopathy model in vitro. However, SIAH1 knockdown suppressed the inflammatory-related pyroptosis of cardiomyocytes. SIAH1 promoted the ubiquitination of 1κВ-α and activated nuclear factor kappa В (NF-κВ) signaling, which promoted the pyroptosis of cardiomyocytes. In conclusion, SIAH1 exacerbated the progression of human inflammatory cardiomyopathy via inducing the ubiquitination of 1κВ-α and activation of NF-κВ signaling. Therefore, SIAHI/IκB-α/NF-κB signaling may be a potential target for human inflammatory cardiomyopathy.


Subject(s)
Diabetic Cardiomyopathies , Myocytes, Cardiac , NF-kappa B , Pyroptosis , Signal Transduction , Ubiquitin-Protein Ligases , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Humans , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Ubiquitination , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics
5.
Nat Commun ; 15(1): 4689, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824148

ABSTRACT

Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glycine max , Nitrogen , Oryza , Phosphorus , Plant Roots , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Phosphorus/metabolism , Nitrogen/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism , Nutrients/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hot Temperature , Nitrate Transporters , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics , Temperature , Basic-Leucine Zipper Transcription Factors
6.
J Transl Med ; 22(1): 533, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831470

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a common disease in the urinary system, with a high incidence and poor prognosis in advanced stages. Although γ-interferon-inducible protein 16 (IFI16) has been reported to play a role in various tumors, its involvement in ccRCC remains poorly documented, and the molecular mechanisms are not yet clear. METHODS: We conducted bioinformatics analysis to study the expression of IFI16 in ccRCC using public databases. Additionally, we analyzed and validated clinical specimens that we collected. Subsequently, we explored the impact of IFI16 on ccRCC cell proliferation, migration, and invasion through in vitro and in vivo experiments. Furthermore, we predicted downstream molecules and pathways using transcriptome analysis and confirmed them through follow-up experimental validation. RESULTS: IFI16 was significantly upregulated in ccRCC tissue and correlated with poor patient prognosis. In vitro, IFI16 promoted ccRCC cell proliferation, migration, and invasion, while in vivo, it facilitated subcutaneous tumor growth and the formation of lung metastatic foci. Knocking down IFI16 suppressed its oncogenic function. At the molecular level, IFI16 promoted the transcription and translation of IL6, subsequently activating the PI3K/AKT signaling pathway and inducing epithelial-mesenchymal transition (EMT). CONCLUSION: IFI16 induced EMT through the IL6/PI3K/AKT axis, promoting the progression of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Interleukin-6 , Kidney Neoplasms , Nuclear Proteins , Phosphatidylinositol 3-Kinases , Phosphoproteins , Proto-Oncogene Proteins c-akt , Signal Transduction , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Cell Line, Tumor , Interleukin-6/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Animals , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Neoplasm Invasiveness , Male , Female , Prognosis
7.
Folia Biol (Praha) ; 70(1): 53-61, 2024.
Article in English | MEDLINE | ID: mdl-38830123

ABSTRACT

Psoriasis is a chronic non-contagious autoimmune disease. Gallic acid is a natural compound with potential health benefits, including antioxidant, anticancer, antiviral and antibacterial properties. Nevertheless, the influence of gallic acid on psoriasis has not been fully determined. This investigation aimed to discover the effect of gallic acid on psoriasis. Thirty-one pairs of psoriatic skin tissues and healthy adult human skin tissues were collected. Human keratinocytes (HaCaT cells) were transfected with interleukin 17A (IL-17A) to create the psoriatic keratinocyte model. The content of bromodomain-containing protein 4 (BRD4) microRNA was assessed using qRT-PCR testing. The content of BRD4 was detected by Western blotting. Cell migration was evaluated by conducting a wound healing assay. Cell proliferation was determined using an EdU assay. Apoptosis was detected by the TUNEL assay. The contents of interferon gamma (IFN-γ), IL-6, IL-8 and IL-17 were detected by ELISA. BRD4 was up-regulated in psoriatic skin tissues and in the IL-17A group compared to the healthy adult human skin tissues and the control group. Silencing BRD4 inhibited cell migration, proliferation and inflammatory response but induced apoptosis in IL-17A-treated HaCaT cells. Conversely, BRD4 over-expression promoted cell migration, proliferation and inflammatory response but suppressed apoptosis in IL-17A-treated HaCaT cells. Gallic acid repressed cell migration, proliferation and inflammatory response but indu-ced apoptosis in HaCaT cells transfected with IL-17A by down-regulating BRD4. Gallic acid represses cell migration, proliferation and inflammatory response but induces apoptosis in IL-17A-transfected HaCaT cells by down-regulating BRD4.


Subject(s)
Apoptosis , Cell Cycle Proteins , Cell Movement , Cell Proliferation , Gallic Acid , Inflammation , Keratinocytes , Psoriasis , Transcription Factors , Humans , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/drug therapy , Transcription Factors/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Gallic Acid/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Apoptosis/drug effects , Inflammation/pathology , Cell Proliferation/drug effects , Cell Movement/drug effects , Interleukin-17/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Adult , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Male , HaCaT Cells , Female , Gene Expression Regulation/drug effects , Cell Line , Bromodomain Containing Proteins
8.
J Cell Mol Med ; 28(11): e18484, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842124

ABSTRACT

As an important protein encoded by hepatitis B virus (HBV), HBV X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). It has been shown that seven in absentia homologue 1 (SIAH1) could regulates the degradation of HBx through the ubiquitin-proteasome pathway. However, as a member of SIAH family, the regulatory effects of SIAH2 on HBx remain unclear. In this study, we first confirmed that SIAH2 could reduce the protein levels of HBx depending on its E3 ligase activity. Moreover, SIAH2 interacted with HBx and induced its K48-linked polyubiquitination and proteasomal degradation. Furthermore, we provided evidence that SIAH2 inhibits HBx-associated HCC cells proliferation by regulating HBx. In conclusion, our study identified a novel role for SIAH2 in promoting HBx degradation and SIAH2 exerts an inhibitory effect in the proliferation of HBx-associated HCC through inducing the degradation of HBx. Our study provides a new idea for the targeted degradation of HBx and may have great huge significance into providing novel evidence for the targeted therapy of HBV-infected HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Hepatitis B virus , Liver Neoplasms , Nuclear Proteins , Proteolysis , Trans-Activators , Ubiquitin-Protein Ligases , Ubiquitination , Viral Regulatory and Accessory Proteins , Humans , Viral Regulatory and Accessory Proteins/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Trans-Activators/metabolism , Trans-Activators/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/virology , Liver Neoplasms/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hepatitis B virus/metabolism , Hepatitis B virus/pathogenicity , Cell Line, Tumor , Signal Transduction , Hep G2 Cells
9.
Diagn Pathol ; 19(1): 76, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851744

ABSTRACT

BACKGROUND: CIC-rearranged sarcomas (CRS) represent a new entity of undifferentiated small round cell sarcoma belonging to the Ewing-like sarcomas family. CRS are the most common type. Fusion partners for the CIC gene include DUX4, FOXO4, and the recently recognizedNUTM1. Rare cases of CIC::NUTM1 sarcoma in pediatric patients have recently been reported in brain, kidney, bone, and soft tissues. However, such cases have not been identified in the soft tissues of the limbs. CASE PRESENTATION: We reported a case of CIC::NUTM1 sarcoma located in the right upper limb of an 18-year-old man. The tumor displayed morphologic features typical of CIC::DUX4 sarcomas, with small- to medium-sized round cells, a lobular pattern, focal spindling, myxoid stroma, and patchy necrosis. The tumor diffusely expressed NUTM1, was positive for WT1cter at weak to moderate intensity, and was focally positive for CD99, while it was negative for keratins, EMA, P40, MyoD1, myogenin, NKX2.2, BCOR, and pan-TRK. Fluorescence in situ hybridization analyses revealed cleavage of the CIC and NUTM1 genes. CONCLUSION: CIC::NUTM1 sarcomas represent a novel molecular variant of CRS with a preference for the central nervous system and younger pediatric persons. Its morphology and phenotype may be mistaken for NUT carcinomas, and the behavior is more progressive than other forms of CRS. For this rare and newly discovered gene fusion variant, it is necessary to integrate molecular and immunohistochemical findings with morphologic features in the diagnosis of undifferentiated neoplasms.


Subject(s)
Repressor Proteins , Soft Tissue Neoplasms , Humans , Male , Adolescent , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Repressor Proteins/genetics , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Oncogene Proteins, Fusion/genetics , Sarcoma/genetics , Sarcoma/pathology , Sarcoma/diagnosis , Upper Extremity/pathology , Gene Rearrangement , Homeobox Protein Nkx-2.2 , In Situ Hybridization, Fluorescence , Transcription Factors , Homeodomain Proteins
10.
Nat Commun ; 15(1): 4909, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851766

ABSTRACT

Tobacco smoking (TS) is implicated in lung cancer (LC) progression through the development of metabolic syndrome. However, direct evidence linking metabolic syndrome to TS-mediated LC progression remains to be established. Our findings demonstrate that 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (NNK and BaP; NB), components of tobacco smoke, induce metabolic syndrome characteristics, particularly hyperglycemia, promoting lung cancer progression in male C57BL/6 J mice. NB enhances glucose uptake in tumor-associated macrophages by increasing the expression and surface localization of glucose transporter (GLUT) 1 and 3, thereby leading to transcriptional upregulation of insulin-like growth factor 2 (IGF2), which subsequently activates insulin receptor (IR) in LC cells in a paracrine manner, promoting its nuclear import. Nuclear IR binds to nucleophosmin (NPM1), resulting in IR/NPM1-mediated activation of the CD274 promoter and expression of programmed death ligand-1 (PD-L1). Restricting glycolysis, depleting macrophages, or blocking PD-L1 inhibits NB-mediated LC progression. Analysis of patient tissues and public databases reveals elevated levels of IGF2 and GLUT1 in tumor-associated macrophages, as well as tumoral PD-L1 and phosphorylated insulin-like growth factor 1 receptor/insulin receptor (pIGF-1R/IR) expression, suggesting potential poor prognostic biomarkers for LC patients. Our data indicate that paracrine IGF2/IR/NPM1/PD-L1 signaling, facilitated by NB-induced dysregulation of glucose levels and metabolic reprogramming of macrophages, contributes to TS-mediated LC progression.


Subject(s)
B7-H1 Antigen , Benzo(a)pyrene , Disease Progression , Hyperglycemia , Insulin-Like Growth Factor II , Lung Neoplasms , Mice, Inbred C57BL , Nuclear Proteins , Nucleophosmin , Receptor, Insulin , Animals , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Male , Humans , Receptor, Insulin/metabolism , Receptor, Insulin/genetics , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Hyperglycemia/metabolism , Benzo(a)pyrene/toxicity , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor II/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Nitrosamines/toxicity , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Paracrine Communication , Gene Expression Regulation, Neoplastic , Smoking/adverse effects , Macrophages/metabolism
11.
Commun Biol ; 7(1): 549, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724689

ABSTRACT

Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.


Subject(s)
Actins , Adaptor Proteins, Signal Transducing , Nerve Tissue Proteins , Pseudopodia , Tumor Suppressor Proteins , Pseudopodia/metabolism , Actins/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cell Membrane/metabolism , Mice , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
12.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38709216

ABSTRACT

Autophagy is an essential degradation program required for cell homeostasis. Among its functions is the engulfment and destruction of cytosolic pathogens, termed xenophagy. Not surprisingly, many pathogens use various strategies to circumvent or co-opt autophagic degradation. For poxviruses, it is known that infection activates autophagy, which however is not required for successful replication. Even though these complex viruses replicate exclusively in the cytoplasm, autophagy-mediated control of poxvirus infection has not been extensively explored. Using the prototypic poxvirus, vaccinia virus (VACV), we show that overexpression of the xenophagy receptors p62, NDP52, and Tax1Bp1 restricts poxvirus infection. While NDP52 and Tax1Bp1 were degraded, p62 initially targeted cytoplasmic virions before being shunted to the nucleus. Nuclear translocation of p62 was dependent upon p62 NLS2 and correlated with VACV kinase mediated phosphorylation of p62 T269/S272. This suggests that VACV targets p62 during the early stages of infection to avoid destruction and further implies that poxviruses exhibit multi-layered control of autophagy to facilitate cytoplasmic replication.


Subject(s)
Autophagy , Cell Nucleus , Sequestosome-1 Protein , Vaccinia virus , Humans , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Cell Nucleus/virology , HEK293 Cells , HeLa Cells , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Phosphorylation , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Vaccinia/metabolism , Vaccinia/virology , Vaccinia/genetics , Vaccinia virus/metabolism , Vaccinia virus/genetics , Virus Replication
13.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38736250

ABSTRACT

In acute lymphoblastic leukaemia (ALL), elevated foetal haemoglobin (HbF) levels have been associated with the prognosis of patients. Genetic variants in HbF regulatory genes: BAF chromatin remodelling complex subunit (BCL11A), HBS1L-MYB transcriptional GTPase intergenic region (HBS1L-MYB), Krüppel-like factor 1 (KLF1), haemoglobin gamma subunit 2 (HBG2), haemoglobin gamma subunit 1 (HBG1), and haemoglobin subunit beta pseudogene 1 (HBBP1) are often associatedwith elevatedHbF concentration. This study investigated the association of genetic variants in HbF regulatory genes with HbF concentration, unfavourable prognosis, and outcome in children with ALL.We quantified HbF concentration and genotyped 17 genetic variants in 48 patients with ALL and 64 children without ALL as a reference group. HbF concentrationwas higher in patients than in the reference group (4.4%vs 1.4%), and 75%(n = 36) of thepatientshadHbF>2.5%.Unfavourable prognosis ALL was established in 68.8% (n = 33) of the patients. Variant HBG2 rs7482144 was associated with high HbF concentration (P = 0.015); while HBS1L-MYB rs9399137 (P = 0.001), HBG2 rs7482144 (P = 0.001) and the ß-globin genes HBG2, HBG1, and HBPP1 haplotypeTGC(P = 0.017) with unfavourable prognosisALL.Additionally, variantBCL11A rs4671393 showed a protective role (P = 0.0001). In conclusion, variants HBG2 rs7482144, HBS1L-MYB rs9399137 and BCL11A rs4671393 may play a significant role in ALL.


Subject(s)
Fetal Hemoglobin , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Repressor Proteins , Humans , Fetal Hemoglobin/genetics , Female , Male , Child , Prognosis , Repressor Proteins/genetics , Child, Preschool , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Infant , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-myb/genetics , Carrier Proteins/genetics , Adolescent , Genotype , gamma-Globins/genetics , GTP-Binding Proteins
14.
Cell Biol Toxicol ; 40(1): 30, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740637

ABSTRACT

In pancreatic ductal adenocarcinomas (PDAC), profound hypoxia plays key roles in regulating cancer cell behavior, including proliferation, migration, and resistance to therapies. The initial part of this research highlights the important role played by long noncoding RNA (lncRNA) MKLN1-AS, which is controlled by hypoxia-inducible factor-1 alpha (HIF-1α), in the progression of PDAC. Human samples of PDAC showed a notable increase in MKLN1-AS expression, which was linked to a worse outcome. Forced expression of MKLN1-AS greatly reduced the inhibitory impact on the growth and spread of PDAC cells caused by HIF-1α depletion. Experiments on mechanisms showed that HIF-1α influences the expression of MKLN1-AS by directly attaching to a hypoxia response element in the promoter region of MKLN1-AS.MKLN1-AS acts as a competitive endogenous RNA (ceRNA) by binding to miR-185-5p, resulting in the regulation of TEAD1 expression and promoting cell proliferation, migration, and tumor growth. TEAD1 subsequently enhances the development of PDAC. Our study results suggest that MKLN1-AS could serve as a promising target for treatment and a valuable indicator for predicting outcomes in PDAC. PDAC is associated with low oxygen levels, and the long non-coding RNA MKLN1-AS interacts with TEAD1 in this context.


Subject(s)
Carcinoma, Pancreatic Ductal , Cell Movement , Cell Proliferation , DNA-Binding Proteins , Disease Progression , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit , MicroRNAs , Pancreatic Neoplasms , RNA, Long Noncoding , TEA Domain Transcription Factors , Transcription Factors , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , TEA Domain Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/genetics , Cell Movement/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Animals , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Signal Transduction/genetics , Mice, Nude , Mice
15.
BMC Cancer ; 24(1): 587, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741073

ABSTRACT

YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Hippo Signaling Pathway , Organoplatinum Compounds , Oxaliplatin , Protein Serine-Threonine Kinases , Signal Transduction , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Tumor Suppressor Protein p53 , Humans , Oxaliplatin/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , HCT116 Cells , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Verteporfin/pharmacology , Verteporfin/therapeutic use , Cell Line, Tumor , Tumor Protein p73/metabolism , Tumor Protein p73/genetics , YAP-Signaling Proteins/metabolism , Porphyrins/pharmacology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects
16.
Clin Transl Med ; 14(5): e1690, 2024 May.
Article in English | MEDLINE | ID: mdl-38760896

ABSTRACT

INTRODUCTION: Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive, irreversible lung interstitial disease that develops after radiotherapy. Although several previous studies have focused on the mechanism of epithelial-mesenchymal transition (EMT) in lung epithelial cells, the essential factors involved in this process remain poorly understood. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exhibits strong repair capacity when cells undergo radiation-induced damage; whether DNA-PKcs regulates EMT during RIPF remains unclear. OBJECTIVES: To investigate the role and molecular mechanism of DNA-PKcs in RIPF and provide an important theoretical basis for utilising DNA-PKcs-targeted drugs for preventing RIPF. METHODS: DNA-PKcs knockout (DPK-/-) mice were generated via the Cas9/sgRNA technique and subjected to whole chest ionizing radiation (IR) at a 20 Gy dose. Before whole chest IR, the mice were intragastrically administered the DNA-PKcs-targeted drug VND3207. Lung tissues were collected at 1 and 5 months after IR. RESULTS: The expression of DNA-PKcs is low in pulmonary fibrosis (PF) patients. DNA-PKcs deficiency significantly exacerbated RIPF by promoting EMT in lung epithelial cells. Mechanistically, DNA-PKcs deletion by shRNA or inhibitor NU7441 maintained the protein stability of Twist1. Furthermore, AKT1 mediated the interaction between DNA-PKcs and Twist1. High Twist1 expression and EMT-associated changes caused by DNA-PKcs deletion were blocked by insulin-like growth factor-1 (IGF-1), an AKT1 agonist. The radioprotective drug VND3207 prevented IR-induced EMT and alleviated RIPF in mice by stimulating the kinase activity of DNA-PKcs. CONCLUSION: Our study clarified the critical role and mechanism of DNA-PKcs in RIPF and showed that it could be a potential target for preventing RIPF.


Subject(s)
DNA-Activated Protein Kinase , Epithelial-Mesenchymal Transition , Nuclear Proteins , Proto-Oncogene Proteins c-akt , Pulmonary Fibrosis , Twist-Related Protein 1 , Epithelial-Mesenchymal Transition/drug effects , Animals , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/genetics , Mice , Proto-Oncogene Proteins c-akt/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/etiology , Ubiquitination , Humans , Mice, Knockout , DNA-Binding Proteins
17.
BMC Pediatr ; 24(1): 309, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711130

ABSTRACT

Schinzel-Giedion syndrome (SGS) is a severe multisystem disorder characterized by distinctive facial features, profound intellectual disability, refractory epilepsy, cortical visual impairment, hearing loss, and various congenital anomalies. SGS is attributed to gain-of-function (GoF) variants in the SETBP1 gene, with reported variants causing canonical SGS located within a 12 bp hotspot region encoding SETBP1 residues aa868-871 (degron). Here, we describe a case of typical SGS caused by a novel heterozygous missense variant, D874V, adjacent to the degron. The female patient was diagnosed in the neonatal period and presented with characteristic facial phenotype (midface retraction, prominent forehead, and low-set ears), bilateral symmetrical talipes equinovarus, overlapping toes, and severe bilateral hydronephrosis accompanied by congenital heart disease, consistent with canonical SGS. This is the first report of a typical SGS caused by a, SETBP1 non-degron missense variant. This case expands the genetic spectrum of SGS and provides new insights into genotype-phenotype correlations.


Subject(s)
Abnormalities, Multiple , Carrier Proteins , Hand Deformities, Congenital , Mutation, Missense , Nails, Malformed , Humans , Female , Abnormalities, Multiple/genetics , Carrier Proteins/genetics , Infant, Newborn , Nuclear Proteins/genetics , Intellectual Disability/genetics , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/complications , Clubfoot/genetics , Phenotype , Heart Defects, Congenital/genetics , Heart Defects, Congenital/complications , Degrons
18.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731837

ABSTRACT

Chromatin architecture is critical for the temporal and tissue-specific activation of genes that determine eukaryotic development. The functional interaction between enhancers and promoters is controlled by insulators and tethering elements that support specific long-distance interactions. However, the mechanisms of the formation and maintenance of long-range interactions between genome regulatory elements remain poorly understood, primarily due to the lack of convenient model systems. Drosophila became the first model organism in which architectural proteins that determine the activity of insulators were described. In Drosophila, one of the best-studied DNA-binding architectural proteins, Su(Hw), forms a complex with Mod(mdg4)-67.2 and CP190 proteins. Using a combination of CRISPR/Cas9 genome editing and attP-dependent integration technologies, we created a model system in which the promoters and enhancers of two reporter genes are separated by 28 kb. In this case, enhancers effectively stimulate reporter gene promoters in cis and trans only in the presence of artificial Su(Hw) binding sites (SBS), in both constructs. The expression of the mutant Su(Hw) protein, which cannot interact with CP190, and the mutation inactivating Mod(mdg4)-67.2, lead to the complete loss or significant weakening of enhancer-promoter interactions, respectively. The results indicate that the new model system effectively identifies the role of individual subunits of architectural protein complexes in forming and maintaining specific long-distance interactions in the D. melanogaster model.


Subject(s)
Drosophila Proteins , Enhancer Elements, Genetic , Promoter Regions, Genetic , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , CRISPR-Cas Systems , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Chromatin/metabolism , Chromatin/genetics , Insulator Elements/genetics , Binding Sites , Protein Binding , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Gene Editing/methods , Repressor Proteins/metabolism , Repressor Proteins/genetics , Microtubule-Associated Proteins
19.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38724194

ABSTRACT

NUT carcinoma (NC) is an aggressive cancer with no effective treatment. About 70% of NUT carcinoma is associated with chromosome translocation events that lead to the formation of a BRD4::NUTM1 fusion gene. Because the BRD4::NUTM1 gene is unequivocally cytotoxic when ectopically expressed in cell lines, questions remain on whether the fusion gene can initiate NC. Here, we report the first genetically engineered mouse model for NUT carcinoma that recapitulates the human t(15;19) chromosome translocation in mice. We demonstrated that the mouse t(2;17) syntenic chromosome translocation, forming the Brd4::Nutm1 fusion gene, could induce aggressive carcinomas in mice. The tumors present histopathological and molecular features similar to human NC, with enrichment of undifferentiated cells. Similar to the reports of human NC incidence, Brd4::Nutm1 can induce NC from a broad range of tissues with a strong phenotypical variability. The consistent induction of poorly differentiated carcinoma demonstrated a strong reprogramming activity of BRD4::NUTM1. The new mouse model provided a critical preclinical model for NC that will lead to better understanding and therapy development for NC.


Subject(s)
Nuclear Proteins , Oncogene Proteins, Fusion , Transcription Factors , Animals , Mice , Oncogene Proteins, Fusion/genetics , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Disease Models, Animal , Carcinoma/genetics , Carcinoma/metabolism , Translocation, Genetic/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Bromodomain Containing Proteins
20.
Lung Cancer ; 192: 107818, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763102

ABSTRACT

INTRODUCTIONS: The 2021 WHO Classification of Thoracic Tumors recognized SMARCA4-deficient undifferentiated thoracic tumors (SMARCA4-dUT) as a distinct entity that shows a striking overlap in demographic and molecular profiles with SMARCA4-deficient non-small lung cancer (SMARCA4-dNSCLC). The implications of SMARCA4 deficiency based on immunohistochemistry remain unclear. We aimed to investigate molecular characteristics of SMARCA4-deficient thoracic tumors (SDTT) and explore optimal therapeutics. METHODS: From June.15, 2018, to Nov.15, 2023, a large cohort including patients diagnosed with SMARCA4-deficient (N = 196) and SMARCA4-intact (N = 438) thoracic tumors confirmed by immunohistochemistry at SYSUCC were screened. Clinicopathologic and molecular characteristics were identified and compared. External SRRSH cohort (N = 34) was combined into a pooled cohort to compare clinical outcome of first-line therapy efficacy. RESULTS: SDTT is male predominance with smoking history, high tumor burden, and adrenal metastases. The relationship between SMARCA4 mutation and protein expression is not completely parallel. The majority of SMARCA4-deficient patients harbor truncating (Class-I) SMARCA4 mutations, whereas class-II alterations and wild-type also exist. Compared with SMARCA4-intact thoracic tumors, patients with SDTT displayed a higher tumor mutation burden (TMB) and associated with a shorter median OS (16.8 months vs. Not reached; P < 0.001). Notably, SMARCA4 protein deficiency, rather than genetic mutations, played a decisive role in these differences. SDTT is generally resistant to chemotherapy, while sensitive to chemoimmunotherapy (median PFS: 7.5 vs. 3.5 months, P < 0.001). In particular, patients with SMARCA4 deficient thoracic tumors treated with paclitaxel-based chemoimmunotherapy achieved a longer median PFS than those with pemetrexed-based chemoimmunotherapy (10.0 vs. 7.3 months, P = 0.028). CONCLUSIONS: SMARCA4 protein deficiency, rather than genetic mutations, played a decisive role in its characteristics of higher TMB and poor prognosis. Chemoimmunotherapy serves as the optimal option in the current treatment regimen. Paclitaxel-based chemoimmunotherapy performed better than those with pemetrexed-based chemoimmunotherapy.


Subject(s)
DNA Helicases , Lung Neoplasms , Nuclear Proteins , Thoracic Neoplasms , Transcription Factors , Humans , DNA Helicases/genetics , DNA Helicases/deficiency , Transcription Factors/genetics , Male , Female , Thoracic Neoplasms/genetics , Thoracic Neoplasms/pathology , Thoracic Neoplasms/drug therapy , Thoracic Neoplasms/therapy , Middle Aged , Nuclear Proteins/genetics , Nuclear Proteins/deficiency , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Aged , Mutation , Prognosis , Adult , Biomarkers, Tumor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...