Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 583
Filter
1.
Nutrients ; 16(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794729

ABSTRACT

Polymethoxyflavonoids, such as nobiletin (abundant in Citrus depressa), have been reported to have antioxidant, anti-inflammatory, anticancer, and anti-dementia effects, and are also a circadian clock modulator through retinoic acid receptor-related orphan receptor (ROR) α/γ. However, the optimal timing of nobiletin intake has not yet been determined. Here, we explored the time-dependent treatment effects of nobiletin and a possible novel mechanistic idea for nobiletin-induced circadian clock regulation in mice. In vivo imaging showed that the PER2::LUC rhythm in the peripheral organs was altered in accordance with the timing of nobiletin administration (100 mg/kg). Administration at ZT4 (middle of the light period) caused an advance in the peripheral clock, whereas administration at ZT16 (middle of the dark period) caused an increase in amplitude. In addition, the intraperitoneal injection of nobiletin significantly and potently stimulated corticosterone and adrenaline secretion and caused an increase in Per1 expression in the peripheral tissues. Nobiletin inhibited phosphodiesterase (PDE) 4A1A, 4B1, and 10A2. Nobiletin or rolipram (PDE4 inhibitor) injection, but not SR1078 (RORα/γ agonist), caused acute Per1 expression in the peripheral tissues. Thus, the present study demonstrated a novel function of nobiletin and the regulation of the peripheral circadian clock.


Subject(s)
Circadian Clocks , Corticosterone , Flavones , Animals , Flavones/pharmacology , Circadian Clocks/drug effects , Mice , Male , Corticosterone/blood , Period Circadian Proteins/metabolism , Period Circadian Proteins/genetics , Epinephrine , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Circadian Rhythm/drug effects , Circadian Rhythm/physiology
2.
Cell Rep ; 43(5): 114200, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717905

ABSTRACT

Innate lymphoid cells (ILCs), strategically positioned throughout the body, undergo population declines over time. A solution to counteract this problem is timely mobilization of multipotential progenitors from the bone marrow. It remains unknown what triggers the mobilization of bone marrow ILC progenitors (ILCPs). We report that ILCPs are regulated by the circadian clock to emigrate and generate mature ILCs in the periphery. We found that circadian-clock-defective ILCPs fail to normally emigrate and generate ILCs. We identified circadian-clock-controlled endocrine and cytokine cues that, respectively, regulate the retention and emigration of ILCPs at distinct times of each day. Activation of the stress-hormone-sensing glucocorticoid receptor upregulates CXCR4 on ILCPs for their retention in the bone marrow, while the interleukin-18 (IL-18) and RORα signals upregulate S1PR1 on ILCPs for their mobilization to the periphery. Our findings establish important roles of circadian signals for the homeostatic efflux of bone marrow ILCPs.


Subject(s)
Circadian Clocks , Animals , Mice , Cytokines/metabolism , Mice, Inbred C57BL , Bone Marrow/metabolism , Signal Transduction , Receptors, CXCR4/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Lymphoid Progenitor Cells/metabolism , Lymphoid Progenitor Cells/cytology , Immunity, Innate , Cell Movement , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Receptors, Glucocorticoid/metabolism , Lymphocytes/metabolism , Lymphocytes/immunology
3.
Clin Immunol ; 264: 110261, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788884

ABSTRACT

Gene regulatory elements, such as enhancers, greatly influence cell identity by tuning the transcriptional activity of specific cell types. Dynamics of enhancer landscape during early human Th17 cell differentiation remains incompletely understood. Leveraging ATAC-seq-based profiling of chromatin accessibility and comprehensive analysis of key histone marks, we identified a repertoire of enhancers that potentially exert control over the fate specification of Th17 cells. We found 23 SNPs associated with autoimmune diseases within Th17-enhancers that precisely overlapped with the binding sites of transcription factors actively engaged in T-cell functions. Among the Th17-specific enhancers, we identified an enhancer in the intron of RORA and demonstrated that this enhancer positively regulates RORA transcription. Moreover, CRISPR-Cas9-mediated deletion of a transcription factor binding site-rich region within the identified RORA enhancer confirmed its role in regulating RORA transcription. These findings provide insights into the potential mechanism by which the RORA enhancer orchestrates Th17 differentiation.


Subject(s)
Cell Differentiation , Enhancer Elements, Genetic , Th17 Cells , Humans , Cell Differentiation/genetics , Cell Differentiation/immunology , Enhancer Elements, Genetic/genetics , Th17 Cells/immunology , Polymorphism, Single Nucleotide , Gene Expression Regulation , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Binding Sites/genetics , CRISPR-Cas Systems
4.
Blood Adv ; 8(14): 3705-3717, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38748870

ABSTRACT

ABSTRACT: The regulation of red blood cell (RBC) homeostasis by erythropoietin (EPO) is critical for O2 transport and maintaining the adequate number of RBCs in vertebrates. Therefore, dysregulation in EPO synthesis results in disease conditions such as polycythemia in the case of excessive EPO production and anemia, which occurs when EPO is inadequately produced. EPO plays a crucial role in treating anemic patients; however, its overproduction can increase blood viscosity, potentially leading to fatal heart failure. Consequently, the identification of druggable transcription factors and their associated ligands capable of regulating EPO offers a promising therapeutic approach to address EPO-related disorders. This study unveils a novel regulatory mechanism involving 2 pivotal nuclear receptors (NRs), Rev-ERBA (Rev-erbα, is a truncation of reverse c-erbAa) and RAR-related orphan receptor A (RORα), in the control of EPO gene expression. Rev-erbα acts as a cell-intrinsic negative regulator, playing a vital role in maintaining erythropoiesis at the correct level. It accomplishes this by directly binding to newly identified response elements within the human and mouse EPO gene promoter, thereby repressing EPO production. These findings are further supported by the discovery that a Rev-erbα agonist (SR9011) effectively suppresses hypoxia-induced EPO expression in mice. In contrast, RORα functions as a positive regulator of EPO gene expression, also binding to the same response elements in the promoter to induce EPO production. Finally, the results of this study revealed that the 2 NRs, Rev-erbα and RORα, influence EPO synthesis in a negative and positive manner, respectively, suggesting that the modulating activity of these 2 NRs could provide a method to target disorders linked with EPO dysregulation.


Subject(s)
Erythropoietin , Gene Expression Regulation , Nuclear Receptor Subfamily 1, Group D, Member 1 , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Erythropoietin/metabolism , Erythropoietin/genetics , Humans , Animals , Mice , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Erythropoiesis/genetics , Promoter Regions, Genetic
5.
Cancer Res ; 84(14): 2265-2281, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38718296

ABSTRACT

Circadian clock perturbation frequently occurs in cancer and facilitates tumor progression by regulating malignant growth and shaping the immune microenvironment. Emerging evidence has indicated that clock genes are disrupted in melanoma and linked to immune escape. Herein, we found that the expression of retinoic acid receptor-related orphan receptor-α (RORA) is downregulated in melanoma patients and that patients with higher RORA expression have a better prognosis after immunotherapy. Additionally, RORA was significantly positively correlated with T-cell infiltration and recruitment. Overexpression or activation of RORA stimulated cytotoxic T-cell-mediated antitumor responses. RORA bound to the CD274 promoter and formed an inhibitory complex with HDAC3 to suppress PD-L1 expression. In contrast, the DEAD-box helicase family member DDX3X competed with HDAC3 for binding to RORA, and DDX3X overexpression promoted RORA release from the suppressive complex and thereby increased PD-L1 expression to generate an inhibitory immune environment. The combination of a RORA agonist with an anti-CTLA4 antibody synergistically increased T-cell antitumor immunity in vivo. A score based on the combined expression of HDAC3, DDX3X, and RORA correlated with immunotherapy response in melanoma patients. Together, this study elucidates a mechanism of clock component-regulated antitumor immunity, which will help inform the use of immunotherapy and lead to improved outcomes for melanoma patients receiving combined therapeutic treatments. Significance: RORA forms a corepressor complex to inhibit PD-L1 expression and activate antitumor T-cell responses, indicating that RORA is a potential target and predictive biomarker to improve immunotherapy response in melanoma patients.


Subject(s)
B7-H1 Antigen , Circadian Clocks , Melanoma , Humans , Melanoma/immunology , Melanoma/pathology , Melanoma/genetics , Melanoma/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Animals , Mice , Circadian Clocks/genetics , Circadian Clocks/immunology , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Tumor Microenvironment/immunology , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Monitoring, Immunologic , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Mice, Inbred C57BL , Male , Female , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Immunotherapy/methods , Prognosis
6.
Oncol Res ; 32(4): 643-658, 2024.
Article in English | MEDLINE | ID: mdl-38560570

ABSTRACT

The platinum-based chemotherapy is one of the most frequently used treatment protocols for lung adenocarcinoma (LUAD), and chemoresistance, however, usually results in treatment failure and limits its application in the clinic. It has been shown that microRNAs (miRNAs) play a significant role in tumor chemoresistance. In this study, miR-125b was identified as a specific cisplatin (DDP)-resistant gene in LUAD, as indicated by the bioinformatics analysis and the real-time quantitative PCR assay. The decreased serum level of miR-125b in LUAD patients was correlated with the poor treatment response rate and short survival time. MiR-125b decreased the A549/DDP proliferation, and the multiple drug resistance- and autophagy-related protein expression levels, which were all reversed by the inhibition of miR-125b. In addition, xenografts of human tumors in nude mice were suppressed by miR-125b, demonstrating that through autophagy regulation, miR-125b could reverse the DDP resistance in LUAD cells, both in vitro and in vivo. Further mechanistic studies indicated that miR-125b directly repressed the expression levels of RORA and its downstream BNIP3L, which in turn inhibited autophagy and reversed chemoresistance. Based on these findings, miR-125b in combination with DDP might be an effective treatment option to overcome DDP resistance in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Tumor Suppressor Proteins , Animals , Mice , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice, Nude , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Apoptosis/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Autophagy/genetics , Gene Expression Regulation, Neoplastic , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Proto-Oncogene Proteins/genetics
7.
Prostaglandins Other Lipid Mediat ; 172: 106821, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38373554

ABSTRACT

Endothelial dysfunction often accompanies sepsis. Sevoflurane (Sev) is a widely used inhaled anesthetic that has a protective effect on sepsis-associated damage. We aimed to elucidate the role of Sev in endothelial dysfunction by using a model of LPS induced HUVECs. Sev increased the viability and decreased the apoptosis of HUVECs exposed to LPS. Inflammation and endothelial cell adhesion were improved after Sev addition. Besides, Sev alleviated LPS-induced endothelial cell permeability damage in HUVECs. RORα served as a potential protein that bound to Sev. Importantly, Sev upregulated RORα expression and inhibited endoplasmic reticulum (ER) stress in LPS-treated HUVECs. RORα silencing reversed the impacts of Sev on ER stress. Moreover, RORα deficiency or tunicamycin (ER stress inducer) treatment restored the effects of Sev on the viability, apoptosis, inflammation and endothelial permeability damage of HUVECs exposed to LPS. Taken together, Sev ameliorated LPS-induced endothelial cell damage by targeting RORα to inhibit ER stress.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Human Umbilical Vein Endothelial Cells , Inflammation , Lipopolysaccharides , Nuclear Receptor Subfamily 1, Group F, Member 1 , Sevoflurane , Up-Regulation , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Lipopolysaccharides/pharmacology , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Sevoflurane/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Inflammation/pathology , Inflammation/metabolism , Inflammation/drug therapy , Up-Regulation/drug effects , Permeability/drug effects
8.
Nat Commun ; 15(1): 256, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177186

ABSTRACT

Proper differentiation of corneal epithelial cells (CECs) from limbal stem/progenitor cells (LSCs) is required for maintenance of ocular homeostasis and clear vision. Here, using a single-cell transcriptomic atlas, we delineate the comprehensive and refined molecular regulatory dynamics during human CEC development and differentiation. We find that RORA is a CEC-specific molecular switch that initiates and drives LSCs to differentiate into mature CECs by activating PITX1. RORA dictates CEC differentiation by establishing CEC-specific enhancers and chromatin interactions between CEC gene promoters and distal regulatory elements. Conversely, RORA silences LSC-specific promoters and disrupts promoter-anchored chromatin loops to turn off LSC genes. Collectively, our work provides detailed and comprehensive insights into the transcriptional dynamics and RORA-mediated epigenetic remodeling underlying human corneal epithelial differentiation.


Subject(s)
Cornea , Epigenomics , Humans , Cell Differentiation/genetics , Gene Expression Profiling , Chromatin/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1
9.
Exp Cell Res ; 433(2): 113806, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37844792

ABSTRACT

Heart failure (HF) is a complex clinical syndrome associated with significant morbidity and mortality. Dysregulation of long non-coding RNA (lncRNA) has been implicated in the pathogenesis of HF. The present study aims to investigate the role of lncRNA HOX transcript antisense RNA (HOTAIR) in cardiomyocyte pyroptosis in a murine HF model. A murine HF model was established through transverse aortic contraction surgery, and an in vitro HF cell model was developed by treating HL-1 cells with H2O2. HOTAIR was overexpressed in TAC mice and HL-1 cells via pcDNA3.1-HOTAIR transfection. Cardiac function was assessed in TAC mice, and myocardial changes were evaluated using HE staining. The expression of NLRP3 was examined by immunohistochemistry. Myocardial injury markers and pyroptosis-related inflammatory cytokines were quantified using ELISA. Protein levels of NLRP3, cleaved-caspase-1, and GSDMD-N were analyzed by Western blot. Dual-luciferase assays and RNA immunoprecipitation were employed to confirm the binding interactions between HOTAIR and miR-17-5p, miR-17-5p and RORA. Functional rescue experiments were conducted by overexpressing miR-17-5p or silencing RORA in HL-1 cells. HOTAIR exhibited reduced expression in TAC mice and H2O2-induced cardiomyocytes. Overexpression of HOTAIR ameliorated cardiac dysfunction, reduced myocardial pathological injury, enhanced cardiomyocyte viability, and decreased myocardial injury and pyroptosis. HOTAIR interacted with miR-17-5p to repress RORA transcription. Overexpression of miR-17-5p or silencing of RORA abolished the inhibitory effect of HOTAIR overexpression on cardiomyocyte pyroptosis. In conclusion, HOTAIR competitively bound to miR-17-5p, relieving its inhibition of RORA transcription and leading to increased RORA expression and suppressed cardiomyocyte pyroptosis in HF models.


Subject(s)
Heart Failure , MicroRNAs , RNA, Long Noncoding , Animals , Mice , Heart Failure/genetics , Hydrogen Peroxide , MicroRNAs/genetics , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis/genetics , RNA, Long Noncoding/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
10.
Proteins ; 91(8): 1054-1064, 2023 08.
Article in English | MEDLINE | ID: mdl-36964925

ABSTRACT

Forkhead box protein P3 (FOXP3) is known to orchestrate the development and maintenance of T regulatory cells, a cell population specialized in immune suppression and peripheral immune tolerance. FOXP3 activity is fine-tuned through its interaction with several protein-binding partners. By using IntAct database, we retrieved three physical binary interactors: E3 ubiquitin-protein ligase CHIP, Zfp-90, and nuclear receptor ROR-α. Coevolution clusters between FOXP3 and its interactors were identified with the use of iBIS2 algorithm, the iterative version of BIS/BIS2. Most of the coevolving pairs came from some species of monotremes and marsupials, as well as from a group of bats, thus suggesting that protein interactions of FOXP3 with its partners may be changed and/or modulated during mammalian speciation. Furthermore, our analysis would suggest the occurrence of a determinant role of FOXP3 in suppressing pregnancy alloreactions in placental mammals. Similarly, FOXP3, through its interaction with different protein interaction mechanisms, would explain the unique control of inflammatory response to infections in bats. By identifying several inter-protein clusters between the different protein pairs, our findings may provide a guide for new therapeutic approaches to modulate T regulatory suppression and/or enhance immune tolerance.


Subject(s)
Chiroptera , Marsupialia , Monotremata , Nuclear Receptor Subfamily 1, Group F, Member 1 , Animals , Female , Pregnancy , Chiroptera/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Placenta/metabolism , Ubiquitin-Protein Ligases/genetics
11.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834872

ABSTRACT

The retinoid-related orphan receptor α (RORα) is one subfamily of nuclear hormone receptors (NRs). This review summarizes the understanding and potential effects of RORα in the cardiovascular system and then analyzes current advances, limitations and challenges, and further strategy for RORα-related drugs in cardiovascular diseases. Besides regulating circadian rhythm, RORα also influences a wide range of physiological and pathological processes in the cardiovascular system, including atherosclerosis, hypoxia or ischemia, myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, hypertension, and myocardial hypertrophy. In terms of mechanism, RORα was involved in the regulation of inflammation, apoptosis, autophagy, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial function. Besides natural ligands for RORα, several synthetic RORα agonists or antagonists have been developed. This review mainly summarizes protective roles and possible mechanisms of RORα against cardiovascular diseases. However, there are also several limitations and challenges of current research on RORα, especially the difficulties on the transformability from the bench to the bedside. By the aid of multidisciplinary research, breakthrough progress on RORα-related drugs to combat cardiovascular disorder may appear.


Subject(s)
Cardiovascular Diseases , Diabetic Cardiomyopathies , Humans , Cardiomegaly , Nuclear Receptor Subfamily 1, Group F, Member 1 , Receptors, Cytoplasmic and Nuclear , Retinoids
12.
Kaohsiung J Med Sci ; 39(2): 124-133, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36468636

ABSTRACT

Although the interaction between tumor cells and tumor-associated macrophages (TAMs) has been widely studied; however, the mechanism of osteosarcoma cells in regulating the polarization of TAMs remains unclear. Exosomes from SAOS-2 cells were isolated and validated by electron microscopy and Western blot. Transfection of indicated plasmids was applied to modify the expressions of miR-181a-5p and RAR-related orphan receptor alpha (RORA). Flow cytometric analysis was carried out to analyze M1/M2 macrophage polarization. Quantitative real-time PCR was performed to determine the levels of miR-181a-5p and RORA. Protein levels of CD63, CD81, RORA, CD163, CD206, IL-10, CXCL10, and IL-1ß were evaluated by Western blot. The direct interaction of miR-181a-5p and RORA was validated by dual-luciferase activity assay. The expression of miR-181a-5p was upregulated in osteosarcoma tissues and presented in SAOS-2-derived exosomes. SAOS-2-derived exosomes promoted the polarization of M2 macrophages by transferring miR-181a-5p. In addition, RORA was downregulated in osteosarcoma tissues and showed a negative correlation with miR-181a-5p. RORA was found to be the downstream target of miR-181a-5p in SAOS-2 cells. Inhibition of RORA reversed the effects of miR-181a-5p knockdown on the polarization of M2 macrophages. The results showed that exosomal miR-181a-5p derived from osteosarcoma cells induced polarization of M2 macrophages via targeting RORA.


Subject(s)
Bone Neoplasms , Exosomes , MicroRNAs , Osteosarcoma , Humans , Exosomes/genetics , Macrophages , Osteosarcoma/genetics , MicroRNAs/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1
13.
Front Endocrinol (Lausanne) ; 14: 1300729, 2023.
Article in English | MEDLINE | ID: mdl-38766309

ABSTRACT

The retinoic acid-related orphan receptor alpha (RORα) protein first came into the limelight due to a set of staggerer mice, discovered at the Jackson Laboratories in the United States of America by Sidman, Lane, and Dickie (1962) and genetically deciphered by Hamilton et al. in 1996. These staggerer mice exhibited cerebellar defects, an ataxic gait, a stagger along with several other developmental abnormalities, compensatory mechanisms, and, most importantly, a deletion of 160 kilobases (kb), encompassing the RORα ligand binding domain (LBD). The discovery of the staggerer mice and the subsequent discovery of a loss of the LBD within the RORα gene of these mice at the genetic level clearly indicated that RORα's LBD played a crucial role in patterning during embryogenesis. Moreover, a chance study by Roffler-Tarlov and Sidman (1978) noted reduced concentrations of glutamic acid levels in the staggerer mice, indicating a possible role for the essence of a nutritionally balanced diet. The sequential organisation of the building blocks of intact genes, requires the nucleotide bases of deoxyribonucleic acid (DNA): purines and pyrimidines, both of which are synthesized, upon a constant supply of glutamine, an amino acid fortified in a balanced diet and a byproduct of the carbohydrate and lipid metabolic pathways. A nutritionally balanced diet, along with a metabolic "enzymatic machinery" devoid of mutations/aberrations, was essential in the uninterrupted transcription of RORα during embryogenesis. In addition to the above, following translation, a ligand-responsive RORα acts as a "molecular circadian regulator" during embryogenesis and not only is expressed selectively and differentially, but also promotes differential activity depending on the anatomical and pathological site of its expression. RORα is highly expressed in the central nervous system (CNS) and the endocrine organs. Additionally, RORα and the clock genes are core components of the circadian rhythmicity, with the expression of RORα fluctuating in a night-day-night sigmoidal pattern and undoubtedly serves as an endocrine-like, albeit "molecular-circadian regulator". Melatonin, a circadian hormone, along with tri-iodothyronine and some steroid hormones are known to regulate RORα-mediated molecular activity, with each of these hormones themselves being regulated rhythmically by the hypothalamic-pituitary axis (HPA). The HPA regulates the circadian rhythm and cyclical release of hormones, in a self-regulatory feedback loop. Irregular sleep-wake patterns affect circadian rhythmicity and the ability of the immune system to withstand infections. The staggerer mice with their thinner bones, an altered skeletal musculature, an aberrant metabolic profile, the ataxic gait and an underdeveloped cerebellar cortex; exhibited compensatory mechanisms, that not only allowed the survival of the staggerer mice, but also enhanced protection from microbial invasions and resistance to high-fat-diet induced obesity. This review has been compiled in its present form, more than 14 years later after a chromatin immunoprecipitation (ChIP) cloning and sequencing methodology helped me identify signal transducer and activator of transcription 5 (STAT5) target sequences, one of which was mapped to the first intron of the RORα gene. The 599-base-long sequence containing one consensus TTCNNNGAA (TTCN3GAA) gamma-activated sequence (GAS) and five other non-consensus TTN5AA sequences had been identified from the clones isolated from the STAT5 target sites (fragments) in human phytohemagglutinin-activated CD8+ T lymphocytes, during my doctoral studies between 2006 and 2009. Most importantly, preliminary studies noted a unique RORα expression profile, during a time-course study on the ribonucleic acid (RNA), extracted from human phytohemagglutinin (PHA) activated CD8+ T lymphocytes stimulated with interleukin-2 (IL-2). This review mainly focuses on the "staggerer mice" with one of its first roles materialising during embryogenesis, a molecular-endocrine mediated circadian-like regulatory process.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 1 , Animals , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Mice , Mice, Neurologic Mutants , Humans
14.
FEBS Open Bio ; 12(10): 1814-1827, 2022 10.
Article in English | MEDLINE | ID: mdl-35934844

ABSTRACT

The mortality rate of patients with coronary artery disease (CAD) increases year by year, and the age of onset is decreasing, primarily because of the lack of an efficient and convenient diagnostic method for CAD. In the present study, we aimed to detect CAD-correlated biomarkers and the regulatory pathways involved through weighted co-expression network analysis. The microarray data originated from 93 CAD patients and 48 controls within the Gene Expression Omnibus (GEO) database. The gene network was implemented by weighted gene co-expression network analysis, and the genes were observed to fall into a range of modules. We took the intersection of genes in the modules most correlated with CAD with the differentially expressed genes of CAD, which were identified by applying the limma package. Lasso regression and support vector machine recursive feature elimination algorithms were used to determine CAD candidate signature genes. The biomarkers for diagnosing CAD were detected by validating candidate signature gene diagnostic capabilities (receiver operating characteristic curves) based on data sets from GEO. Three modules were selected, and 26 vital genes were identified. Eight of these genes were reported as the optimal candidate features in terms of CAD diagnosis. Through receiver operating characteristic curve analysis, we identified three genes (ERCC5, HES6 and RORA; area under the curve > 0.8) capable of distinguishing CAD from the control, and observed that these genes are correlated with the immune response. In summary, ERCC5, HES6 and RORA may have potential for diagnosis of CAD.


Subject(s)
Coronary Artery Disease , Basic Helix-Loop-Helix Transcription Factors/genetics , Biomarkers/metabolism , Coronary Artery Disease/diagnosis , Coronary Artery Disease/genetics , DNA-Binding Proteins , Endonucleases , Gene Expression Profiling/methods , Gene Regulatory Networks , Humans , Nuclear Proteins , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Repressor Proteins/genetics , Support Vector Machine , Transcription Factors
15.
J Affect Disord ; 314: 318-324, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35878841

ABSTRACT

BACKGROUND: The G allele in retinoid-related orphan receptor alpha (RORA, rs8042149) gene is associated with post-traumatic stress disorder (PTSD) diagnosis and more severe symptoms, reported in the first genome-wide association study of PTSD and subsequent replication studies. Although recent MRI studies identified brain structural deficits in RORA rs8042149 risk G allele carriers, the neural mechanism underlying RORA-related brain structural changes in PTSD remains poorly understood. METHODS: This study included 227 Han Chinese adults who lost their only child. Cortical thickness and subcortical volume were extracted using FreeSurfer, and PTSD severity was assessed using the Clinician-Administered PTSD Scale. Hierarchical linear regression was used to assess the interaction effect between RORA genotypes (T/T, G/T, and G/G) and PTSD severity on cortical and subcortical structures. RESULTS: Significant genotype × PTSD symptom severity interaction effects were found for bilateral transverse temporal gyrus thickness. For individuals with the homozygous T/T genotype, current PTSD symptom severity was positively associated with bilateral transverse temporal gyrus thickness. For individuals with heterozygous G/T genotype, current PTSD symptom severity was negatively associated with the left transverse temporal gyrus thickness. No significant main or interaction effects were found in any subcortical regions. LIMITATION: Cross-sectional design of this study. CONCLUSION: These findings suggest that the non-risk T/T genotype - but not the risk G allele carriers - has a potentially protective or compensatory role on temporal gyrus thickness in adults who lost their only child. These results highlight the moderation effect of RORA polymorphism on the relationship between PTSD symptom severity and cortical structural changes.


Subject(s)
Auditory Cortex , Nuclear Receptor Subfamily 1, Group F, Member 1 , Stress Disorders, Post-Traumatic , Adult , Alleles , Auditory Cortex/diagnostic imaging , China , Cross-Sectional Studies , Genome-Wide Association Study , Genotype , Humans , Magnetic Resonance Imaging , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Polymorphism, Genetic , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/genetics
16.
Int Immunopharmacol ; 108: 108874, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35636076

ABSTRACT

BACKGROUND: Allergic rhinitis (AR) is the most common inflammatory disorder induced by complex interactions between genetic and environmental factors. Genetic predisposition is the most important factor in the progression of AR. Previous studies have indicated that RORA is involved in the occurrence of AR. The present study aimed to determine the roles of RORA polymorphisms in AR susceptibility. METHODS: Peripheral blood samples were collected from 990 patients with AR and 1004 normal controls. Four single nucleotide polymorphisms (SNPs) in the RORA gene were detected by MassARRAY iPLEX platform. The associations of RORA polymorphisms with AR risk were determined according to logistic regression analysis. We further evaluated the impact of SNP-SNP interaction on AR risk using multifactor dimensionality reduction (MDR) method. RESULTS: Our results showed that rs10519067 (OR 0.38, p = 0.021), rs10519068 (OR 0.45, p = 0.030), and rs11071559 (OR 0.83, p = 0.032) were significantly related to a decreased susceptibility to AR. Stratified analyses found that rs10519067 (OR 0.71, p = 0.046) and rs10519068 (OR 0.63, p = 0.010) could decrease the risk of AR in males. Rs10519068 (OR 0.73, p = 0.022), rs11071559 (OR 0.77, p = 0.041), and rs9302216 (OR 0.38, p = 0.017) significantly reduced the susceptibility to AR in people aged > 43 years. Furthermore, it was found that rs10519067 (OR 0.29, p = 0.032), rs10519068 (OR 0.72, p = 0.013), and rs11071559 (OR 0.36, p = 0.015) had a protective effect on AR patients with BMI ≤ 24 kg/m2. MDR revealed that the combination of rs10519067, rs10519068, rs11071559, and rs9302216 was the best predictive model for AR. CONCLUSION: Our study suggests that RORA polymorphisms may play a protective role in the development of AR.


Subject(s)
Rhinitis, Allergic , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Humans , Male , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Polymorphism, Single Nucleotide , Rhinitis, Allergic/genetics , Risk Factors
17.
Respir Res ; 23(1): 110, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35509068

ABSTRACT

BACKGROUND: Retinoid-related orphan receptor-α (RORα) and autophagy dysregulation are involved in the pathophysiology of chronic obstructive pulmonary disease (COPD), but little is known regarding their association. We investigated the role of RORα in COPD-related autophagy. METHODS: The lung tissues and cells from a mouse model were analyzed for autophagy markers by using western blot analysis and transmission electron microscopy. RESULTS: Cigarette smoke increased the LC3-II level and decreased the p62 level in whole lung homogenates of a chronic cigarette smoking mouse model. Although cigarette smoke did not affect the levels of p62 in Staggerer mutant mice (RORαsg/sg), the baseline expression levels of p62 were significantly higher than those in wild type (WT) mice. Autophagy was induced by cigarette smoke extract (CSE) in Beas-2B cells and in primary fibroblasts from WT mice. In contrast, fibroblasts from RORαsg/sg mice failed to show CSE-induced autophagy and exhibited fewer autophagosomes, lower LC3-II levels, and higher p62 levels than fibroblasts from WT mice. Damage-regulated autophagy modulator (DRAM), a p53-induced modulator of autophagy, was expressed at significantly lower levels in the fibroblasts from RORαsg/sg mice than in those from WT mice. DRAM knockdown using siRNA in Beas-2B cells inhibited CSE-induced autophagy and cell death. Furthermore, RORα co-immunoprecipitated with p53 and the interaction increased p53 reporter gene activity. CONCLUSIONS: Our findings suggest that RORα promotes autophagy and contributes to COPD pathogenesis via regulation of the RORα-p53-DRAM pathway.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Animals , Autophagy , Cigarette Smoking/adverse effects , Mice , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Nicotiana , Tumor Suppressor Protein p53/adverse effects
18.
Cell Death Dis ; 13(5): 427, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35504868

ABSTRACT

Lung adenocarcinoma (LUAD) represents the most frequently diagnosed histological subtype of non-small cell lung cancer with the highest mortality worldwide. Transcriptional dysregulation is a hallmark of nearly all kinds of cancers. In the study, we identified that the POU domain, class 6, transcription factor 1 (POU6F1), a member of the POU family of transcription factors, was closely associated with tumor stage and death in LUAD. We revealed that POU6F1 was downregulated in LUAD tissues and downregulated POU6F1 was predictive of an unfavorable prognosis in LUAD patients. In vitro assays, including CCK8, soft agar, transwell, clone formation, wound-healing assay, and nude mouse xenograft model all revealed that POU6F1 inhibited the growth and invasion of LUAD cells. Mechanistically, POU6F1 bound and stabilized retinoid-related orphan receptor alpha (RORA) to exert the transcriptional inhibition of hypoxia-inducible factor 1-alpha (HIF1A) and alter the expression of HIF1A signaling pathway-associated genes, including ENO1, PDK1, and PRKCB, thereby leading to the suppression of LUAD cells. Collectively, these results demonstrated the suppressive role of POU6F1/RORA in the progression of LUAD and may potentially be used as a target for the treatment of LUAD.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adenocarcinoma of Lung/pathology , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung Neoplasms/pathology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , POU Domain Factors/genetics , POU Domain Factors/metabolism , Signal Transduction
19.
Innate Immun ; 28(5): 164-173, 2022 07.
Article in English | MEDLINE | ID: mdl-35635221

ABSTRACT

Circular RNAs (circRNAs) are involved in the regulation of various diseases, including periodontitis. The objective of this study was to analyze the biological role and regulatory mechanism of circ_0066881 in LPS-induced periodontal ligament cells (PDLCs). Circ_0066881, microRNA-144-5p (miR-144-5p) and retinoid acid-related orphan receptor A (RORA) levels were determined using reverse transcription-quantitative PCR (RT-qPCR) assay. Cell viability detection was performed by Cell Counting Kit-8 assay. Cell apoptosis was assessed through flow cytometry and caspase-3 activity assay. The protein analysis was completed via Western blot. Inflammatory cytokines were measured by ELISA. The target interaction was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The level of circ_0066881 was down-regulated in periodontitis tissues. Overexpression of circ_0066881 relieved LPS-induced cell viability inhibition and apoptosis or inflammation promotion in PDLCs. Circ_0066881 could bind to miR-144-5p. The protective function of circ_0066881 was achieved by sponging miR-144-5p in PDLCs. Circ_0066881 acts as a miR-144-5p sponge to mediate the RORA level. Inhibition of miR-144-5p attenuated LPS-induced cell injury via targeting RORA. All these results demonstrated that circ_0066881 partly prevented LPS-evoked cell dysfunction in PDLCs through miR-144-5p-mediated up-regulation of RORA.


Subject(s)
MicroRNAs , Periodontitis , RNA, Circular/genetics , Cell Proliferation , Humans , Lipopolysaccharides , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1 , Periodontal Ligament , Periodontitis/genetics
20.
J Biol Chem ; 298(7): 102059, 2022 07.
Article in English | MEDLINE | ID: mdl-35605663

ABSTRACT

Retinoid orphan nuclear receptor alpha (RORα) is a member of the orphan nuclear factor family and regulates gene expression by binding to ROR response elements (ROREs). RORα has been identified as a potential tumor suppressor; however, how downregulation of RORα promotes cancer progression is not fully understood. Here, we showed that protein levels of RORα were downregulated during the Snail-, Twist-, or transforming growth factor-ß-induced epithelial-mesenchymal transition (EMT). We found that silencing of RORα induced expression of mesenchymal markers in MCF10A cells, accompanied by enhanced cell invasion, migration, and mammosphere formation. Furthermore, ectopic expression of RORα suppressed transforming growth factor-ß-induced EMT processes in MCF10A and HMLE cells. These results indicate that downregulation of RORα is crucial for the induction of EMT in mammary epithelial cells. By analyzing gene expression profiles in control and RORα-expressing cells, we also identified Snail, a key regulator of EMT, as a potential target of RORα. We show that RORα expression significantly inhibits Snail transcription in breast cancer cells. Chromatin immunoprecipitation analysis demonstrated that RORα bound to the ROREs in promoter region of SNAI1 gene, and using the luciferase reporter assay, we showed that binding to the ROREs was critical for RORα to repress Snail transcription. Finally, rescue experiments substantiated that Snail mediates RORα function in suppressing EMT and mammosphere formation. These results reveal a novel function of RORα in suppressing EMT and identify Snail as a direct target of RORα in mammary epithelial cells.


Subject(s)
Epithelial-Mesenchymal Transition , Nuclear Receptor Subfamily 1, Group F, Member 1 , Orphan Nuclear Receptors , Snail Family Transcription Factors , Cell Line, Tumor , Epithelial-Mesenchymal Transition/physiology , Humans , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Response Elements , Retinoic Acid Receptor alpha/genetics , Retinoids , Snail Family Transcription Factors/genetics , Transforming Growth Factor beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...