Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 451
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 233-237, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836656

ABSTRACT

Nur77 is a member of the NR4A subfamily of orphan nuclear receptors that is expressed and has a function within the immune system. This study aimed to investigate the role of Nur77 in hypoxic pulmonary hypertension. SPF male SD rats were exposed in hypobaric chamber simulating 5000 m high altitude for 0, 3, 7, 14, 21 or 28 days. Rat pulmonary artery smooth muscle cells (RPASMCs) were cultured under normoxic conditions (5% CO2-95% ambient air) or hypoxic conditions (5% O2 for 6 h, 12 h, 24 h, 48 h). Hypoxic rats developed pulmonary arterial remodeling and right ventricular hypertrophy with significantly increased pulmonary arterial pressure. The levels of Nur77, HIF-1α and PNCA were upregulated in pulmonary arterial smooth muscle from hypoxic rats. Silencing of either Nur77 or HIF-1α attenuated hypoxia-induced proliferation. Silencing of HIF-1α down-regulated Nur77 protein level, but Nur77 silence did not reduce HIF-1α. Nur77 was not con-immunoprecipitated with HIF-1α. This study demonstrated that Nur77 acted as a downstream regulator of HIF-1α under hypoxia, and plays a critical role in the hypoxia-induced pulmonary vascular remodeling, which is regulated by HIF-1α. Nur77 maybe a novel target of HPH therapy.


Subject(s)
Hypertension, Pulmonary , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Nuclear Receptor Subfamily 4, Group A, Member 1 , Pulmonary Artery , Rats, Sprague-Dawley , Vascular Remodeling , Animals , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Vascular Remodeling/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Male , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Hypoxia/metabolism , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Rats , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/pathology , Hypertrophy, Right Ventricular/physiopathology , Hypertrophy, Right Ventricular/genetics , Cells, Cultured
2.
Science ; 384(6700): eadh8697, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843327

ABSTRACT

After antigen stimulation, naïve T cells display reproducible population-level responses, which arise from individual T cells pursuing specific differentiation trajectories. However, cell-intrinsic predeterminants controlling these single-cell decisions remain enigmatic. We found that the subcellular architectures of naïve CD8 T cells, defined by the presence (TØ) or absence (TO) of nuclear envelope invaginations, changed with maturation, activation, and differentiation. Upon T cell receptor (TCR) stimulation, naïve TØ cells displayed increased expression of the early-response gene Nr4a1, dependent upon heightened calcium entry. Subsequently, in vitro differentiation revealed that TØ cells generated effector-like cells more so compared with TO cells, which proliferated less and preferentially adopted a memory-precursor phenotype. These data suggest that cellular architecture may be a predeterminant of naïve CD8 T cell fate.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Differentiation , Lymphocyte Activation , Nuclear Receptor Subfamily 4, Group A, Member 1 , Receptors, Antigen, T-Cell , CD8-Positive T-Lymphocytes/immunology , Animals , Mice , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Envelope/metabolism , Calcium/metabolism , Immunologic Memory , Mice, Inbred C57BL
3.
Nat Commun ; 15(1): 4757, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834564

ABSTRACT

Semaglutide, a glucagon-like peptide-1 receptor agonist, is clinically used as a glucose-lowering and weight loss medication due to its effects on energy metabolism. In heart failure, energy production is impaired due to altered mitochondrial function and increased glycolysis. However, the impact of semaglutide on cardiomyocyte metabolism under pressure overload remains unclear. Here we demonstrate that semaglutide improves cardiac function and reduces hypertrophy and fibrosis in a mouse model of pressure overload-induced heart failure. Semaglutide preserves mitochondrial structure and function under chronic stress. Metabolomics reveals that semaglutide reduces mitochondrial damage, lipid accumulation, and ATP deficiency by promoting pyruvate entry into the tricarboxylic acid cycle and increasing fatty acid oxidation. Transcriptional analysis shows that semaglutide regulates myocardial energy metabolism through the Creb5/NR4a1 axis in the PI3K/AKT pathway, reducing NR4a1 expression and its translocation to mitochondria. NR4a1 knockdown ameliorates mitochondrial dysfunction and abnormal glucose and lipid metabolism in the heart. These findings suggest that semaglutide may be a therapeutic agent for improving cardiac remodeling by modulating energy metabolism.


Subject(s)
Energy Metabolism , Glucagon-Like Peptides , Nuclear Receptor Subfamily 4, Group A, Member 1 , Animals , Male , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Energy Metabolism/drug effects , Mice , Glucagon-Like Peptides/pharmacology , Glucagon-Like Peptides/therapeutic use , Heart Failure/drug therapy , Heart Failure/metabolism , Mice, Inbred C57BL , Ventricular Remodeling/drug effects , Lipid Metabolism/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Disease Models, Animal , Myocardium/metabolism , Myocardium/pathology , Signal Transduction/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cardiomegaly/drug therapy , Cardiomegaly/metabolism
4.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791553

ABSTRACT

Long non-coding RNAs (lncRNAs) have been shown to modulate gene expression and are involved in the initiation and progression of various cancer types. Despite the wealth of studies describing transcriptome changes upon lncRNA knockdown, there is limited information describing lncRNA-mediated effects on regulatory elements (REs) modulating gene expression. In this study, we investigated how the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) lncRNA regulates primary target genes using time-resolved MALAT1 knockdown followed by parallel RNA-seq and ATAC-seq assays. The results revealed that MALAT1 primarily regulates specific protein-coding genes and a substantial decrease in the accessibility downstream of the NR4A1 gene that was associated with a decreased NR4A1 expression. Moreover, the presence of an NR4A1-downstream RE was demonstrated by CRISPR-i assays to define a functional MALAT1/NR4A1 axis. By analyzing TCGA data, we identified a positive correlation between NR4A1 expression and NR4A1-downstream RE accessibility in breast cancer but not in pancreatic cancer. Accordingly, this regulatory mechanism was experimentally validated in breast cancer cells (MCF7) but not in pancreatic duct epithelial carcinoma (PANC1) cells. Therefore, our results demonstrated that MALAT1 is involved in a molecular mechanism that fine-tunes NR4A1 expression by modulating the accessibility of a downstream RE in a cell type-specific manner.


Subject(s)
Gene Expression Regulation, Neoplastic , Nuclear Receptor Subfamily 4, Group A, Member 1 , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Cell Line, Tumor , MCF-7 Cells , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Female , Regulatory Sequences, Nucleic Acid
5.
Alzheimers Dement ; 20(5): 3504-3524, 2024 May.
Article in English | MEDLINE | ID: mdl-38605605

ABSTRACT

INTRODUCTION: Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS: Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS: NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION: Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS: Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.


Subject(s)
Aging , Cognitive Dysfunction , Nuclear Receptor Subfamily 4, Group A, Member 1 , Animals , Cognitive Dysfunction/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Mice , Humans , Aging/physiology , Male , CA1 Region, Hippocampal/metabolism , Pyramidal Cells/metabolism , Receptor, trkB/metabolism , Leukocytes, Mononuclear/metabolism , Aged , Female , Mice, Inbred C57BL
6.
Biomolecules ; 14(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38540704

ABSTRACT

Bis-indole derived compounds such as 1,1-bis(3'-indolyl)-1-(3,5-disubstitutedphenyl) methane (DIM-3,5) and the corresponding 4-hydroxyl analogs (DIM8-3,5) are NR4A1 ligands that act as inverse NR4A1 agonists and are potent inhibitors of tumor growth. The high potency of several DIM-3,5 analogs (IC50 < 1 mg/kg/day), coupled with the >60% similarity of the ligand-binding domains (LBDs) of NR4A1 and NR4A2 and the pro-oncogenic activities of both receptors lead us to hypothesize that these compounds may act as dual NR4A1 and NR4A2 ligands. Using a fluorescence binding assay, it was shown that 22 synthetic DIM8-3,5 and DIM-3,5 analogs bound the LBD of NR4A1 and NR4A2 with most KD values in the low µM range. Moreover, the DIM-3,5 and DIM8-3,5 analogs also decreased NR4A1- and NR4A2-dependent transactivation in U87G glioblastoma cells transfected with GAL4-NR4A1 or GAL4-NR4A2 chimeras and a UAS-luciferase reporter gene construct. The DIM-3,5 and DIM8-3,5 analogs were cytotoxic to U87 glioblastoma and RKO colon cancer cells and the DIM-3,5 compounds were more cytotoxic than the DIM8-3,5 compounds. These studies show that both DIM-3,5 and DIM8-3,5 compounds previously identified as NR4A1 ligands bind both NR4A1 and NR4A2 and are dual NR4A1/2 ligands.


Subject(s)
Glioblastoma , Humans , Ligands , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Cell Line, Tumor , Indoles/pharmacology , Indoles/chemistry , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
7.
Mol Ther ; 32(5): 1479-1496, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38429926

ABSTRACT

Intense inflammatory response impairs bone marrow mesenchymal stem cell (BMSC)-mediated bone regeneration, with transforming growth factor (TGF)-ß1 being the most highly expressed cytokine. However, how to find effective and safe means to improve bone formation impaired by excessive TGF-ß1 remains unclear. In this study, we found that the expression of orphan nuclear receptor Nr4a1, an endogenous repressor of TGF-ß1, was suppressed directly by TGF-ß1-induced Smad3 and indirectly by Hdac4, respectively. Importantly, Nr4a1 overexpression promoted BMSC osteogenesis and reversed TGF-ß1-mediated osteogenic inhibition and pro-fibrotic effects. Transcriptomic and histologic analyses confirmed that upregulation of Nr4a1 increased the transcription of Wnt family member 4 (Wnt4) and activated Wnt pathway. Mechanistically, Nr4a1 bound to the promoter of Wnt4 and regulated its expression, thereby enhancing the osteogenic capacity of BMSCs. Moreover, treatment with Nr4a1 gene therapy or Nr4a1 agonist Csn-B could promote ectopic bone formation, defect repair, and fracture healing. Finally, we demonstrated the correlation of NR4A1 with osteogenesis and the activation of the WNT4/ß-catenin pathway in human BMSCs and fracture samples. Taken together, these findings uncover the critical role of Nr4a1 in bone formation and alleviation of inflammation-induced bone regeneration disorders, and suggest that Nr4a1 has the potential to be a therapeutic target for accelerating bone healing.


Subject(s)
Bone Regeneration , Inflammation , Mesenchymal Stem Cells , Nuclear Receptor Subfamily 4, Group A, Member 1 , Osteogenesis , Wnt4 Protein , Mesenchymal Stem Cells/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Osteogenesis/genetics , Bone Regeneration/genetics , Animals , Mice , Wnt4 Protein/metabolism , Wnt4 Protein/genetics , Humans , Inflammation/genetics , Inflammation/metabolism , Gene Expression Regulation , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Wnt Signaling Pathway , Male , Transcription, Genetic , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Disease Models, Animal
8.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474099

ABSTRACT

Hypercapnia occurs when the partial pressure of carbon dioxide (CO2) in the blood exceeds 45 mmHg. Hypercapnia is associated with several lung pathologies and is transcriptionally linked to suppression of immune and inflammatory signalling through poorly understood mechanisms. Here we propose Orphan Nuclear Receptor Family 4A (NR4A) family members NR4A2 and NR4A3 as potential transcriptional regulators of the cellular response to hypercapnia in monocytes. Using a THP-1 monocyte model, we investigated the sensitivity of NR4A family members to CO2 and the impact of depleting NR4A2 and NR4A3 on the monocyte response to buffered hypercapnia (10% CO2) using RNA-sequencing. We observed that NR4A2 and NR4A3 are CO2-sensitive transcription factors and that depletion of NR4A2 and NR4A3 led to reduced CO2-sensitivity of mitochondrial and heat shock protein (Hsp)-related genes, respectively. Several CO2-sensitive genes were, however, refractory to depletion of NR4A2 and NR4A3, indicating that NR4As regulate certain elements of the cellular response to buffered hypercapnia but that other transcription factors also contribute. Bioinformatic analysis of conserved CO2-sensitive genes implicated several novel putative CO2-sensitive transcription factors, of which the ETS Proto-Oncogene 1 Transcription Factor (ETS-1) was validated to show increased nuclear expression in buffered hypercapnia. These data give significant insights into the understanding of immune responses in patients experiencing hypercapnia.


Subject(s)
Orphan Nuclear Receptors , Receptors, Steroid , Humans , Orphan Nuclear Receptors/genetics , Monocytes/metabolism , Hypercapnia , Carbon Dioxide , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Receptors, Steroid/metabolism , DNA-Binding Proteins , Receptors, Thyroid Hormone
9.
Biochem Biophys Res Commun ; 700: 149582, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38306930

ABSTRACT

Doxorubicin (DOX) is a widely used antitumor drug, but its clinical applicability is hampered by the unfortunate side effect of DOX-induced cardiotoxicity (DIC). In our current study, we retrieved three high-throughput sequencing datasets related to DIC from the Gene Expression Omnibus (GEO) datasets. We conducted differential analysis using R (DESeq2) to pinpoint differentially expressed genes (DEGs, and identified 11 genes that were consistently altered in both the control and DOX-treated groups. Notably, our Random Forest analysis of these three GEO datasets highlighted the significance of nuclear receptor subfamily 4 group A member 1 (NR4A1) in the context of DIC. The DOX-induced mouse model and cell model were used for the in vivo and in vitro studies to reveal the role of NR4A1 in DIC. We found that silencing NR4A1 by adeno-associated virus serotype 9 (AAV9) contained shRNA in vivo alleviated the DOX-induced cardiac dysfunction, cardiomyocyte injury and fibrosis. Mechanistically, we found NR4A1 silencing was able to inhibit DOX-induced the cleavage of NLRP3, IL-1ß and GSDMD in vivo. Further in vitro studies have shown that inhibition of NR4A1 suppressed DOX-induced cytotoxicity and oxidative stress through the same molecular mechanism. We prove that NR4A1 plays a critical role in DOX-induced cardiotoxicity by inducing pyroptosis via activation of the NLRP3 inflammasome, and it might be a promising therapeutic target for DIC.


Subject(s)
Cardiotoxicity , Inflammasomes , Nuclear Receptor Subfamily 4, Group A, Member 1 , Animals , Mice , Apoptosis , Cardiotoxicity/genetics , Cardiotoxicity/metabolism , Doxorubicin/pharmacology , Inflammasomes/genetics , Inflammasomes/metabolism , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
10.
Cancer Lett ; 585: 216693, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38301909

ABSTRACT

Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.


Subject(s)
Colorectal Neoplasms , Protein Kinases , Humans , Protein Kinases/metabolism , Necroptosis/physiology , Cell Death , Necrosis , Colorectal Neoplasms/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
11.
J Neurogenet ; 37(4): 115-123, 2023.
Article in English | MEDLINE | ID: mdl-37922205

ABSTRACT

Oxidative stress plays a significant role in the development of Parkinson's disease (PD). Previous studies implicate nuclear receptor subfamily 4 group A member 1 (NR4A1) in oxidative stress associated with PD. However, the molecular mechanism underlying the regulation of NR4A1 expression remains incompletely understood. In the present study, a PD cell model was established by using 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Cell viability and apoptosis were assessed by using CCK-8 assay and flow cytometry, respectively. The activities of LDH and SOD, and ROS generation were used as an indicators of oxidative stress. ChIP-PCR was performed to detect the interaction between Yin Yang 1 (YY1) and the NR4A1 promoter. MPP+ treatment inhibited SH-SY5Y cell viability in a dose- and time-dependent manner. NR4A1 and YY1 expression were decreased in MPP+-treated SH-SY5Y cells. Increasing NR4A1 or YY1 alleviated MPP+-induced apoptosis and oxidative stress in SH-SY5Y cells, whereas reduction of NR4A1 aggravated MPP+-induced cell injury. Transcription factor YY1 facilitated NR4A1 expression by binding with NR4A1 promoter. In addition, in MPP+-treated SH-SY5Y cells, the inhibition of NR4A1 to apoptosis and oxidative stress was further enhanced by overexpression of YY1. The reduction of NR4A1 led to an elevation of apoptosis and oxidative stress in MPP+-induced SH-SY5Y cells, and this effect was partially reversed by the overexpression of YY1. In conclusion, YY1 suppresses MPP+-induced apoptosis and oxidative stress in SH-SY5Y cells by binding with NR4A1 promoter and boosting NR4A1 expression. Our findings suggest that NR4A1 may be a candidate target for PD treatment.HIGHLIGHTSNR4A1 and YY1 are decreased in MPP+-treated SH-SY5Y cells.NR4A1 prevents oxidative stress and apoptosis in MPP+-treated SH-SY5Y cells.YY1 binds with NR4A1 promoter and increases NR4A1 expression.YY1 enhances the inhibition of NR4A1 to SH-SY5Y cell apoptosis and oxidative stress.


Subject(s)
Neuroblastoma , Parkinson Disease , Humans , Apoptosis , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Oxidative Stress , Yin-Yang
12.
BMC Biol ; 21(1): 218, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833706

ABSTRACT

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are critical sources of type 2 cytokines and represent one of the major tissue-resident lymphoid cells in the mouse lung. However, the molecular mechanisms underlying ILC2 activation under challenges are not fully understood. RESULTS: Here, using single-cell transcriptomics, genetic reporters, and gene knockouts, we identify four ILC2 subsets, including two non-activation subsets and two activation subsets, in the mouse acute inflammatory lung. Of note, a distinct activation subset, marked by the transcription factor Nr4a1, paradoxically expresses both tissue-resident memory T cell (Trm), and effector/central memory T cell (Tem/Tcm) signature genes, as well as higher scores of proliferation, activation, and wound healing, all driven by its particular regulons. Furthermore, we demonstrate that the Nr4a1+ILC2s are restrained from activating by the programmed cell death protein-1 (PD-1), which negatively modulates their activation-related regulons. PD-1 deficiency places the non-activation ILC2s in a state that is prone to activation, resulting in Nr4a1+ILC2 differentiation through different activation trajectories. Loss of PD-1 also leads to the expansion of Nr4a1+ILC2s by the increase of their proliferation ability. CONCLUSIONS: The findings show that activated ILC2s are a heterogenous population encompassing distinct subsets that have different propensities, and therefore provide an opportunity to explore PD-1's role in modulating the activity of ILC2s for disease prevention and therapy.


Subject(s)
Immunity, Innate , Lung , Animals , Mice , Lung/metabolism , Lymphocytes , Programmed Cell Death 1 Receptor/metabolism , Cytokines/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
13.
Neurosci Lett ; 814: 137469, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37669713

ABSTRACT

About 10% of the population suffers from depression in winter at high latitude. Although it has become a serious public health issue, its underlying mechanism remains unknown and new treatments and therapies are required. As an adaptive strategy, many animals also exhibit depression-like behavior in winter. Previously, it has been reported that celastrol, a traditional Chinese medicine, can rescue winter depression-like behavior in medaka, an excellent model of winter depression. Nuclear receptor subfamily 4 group A member 1 (nr4a1, also known as nur77) is a known target of celastrol, and the signaling pathway of nr4a1 was suggested to be inactive in medaka brain during winter, implying the association of nr4a1 and winter depression-like behavior. However, the direct evidence for its involvement in winter depression-like behavior remains unclear. The present study found that nr4a1 was suppressed in the medaka brain under winter conditions. Cytosporone B, nr4a1 chemical activator, reversed winter depression-like behavior under winter conditions. Additionally, nr4a1 mutant fish generated by CRISPR/Cas9 system showed decreased sociability under summer conditions. Therefore, our results demonstrate that the seasonal regulation of nr4a1 regulates winter depression-like behavior and offers potential therapeutic target.


Subject(s)
Oryzias , Seasonal Affective Disorder , Animals , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Brain
14.
Endocrinology ; 164(10)2023 08 28.
Article in English | MEDLINE | ID: mdl-37652054

ABSTRACT

Nuclear receptor 4A1 (NR4A1) plays an important role in endometriosis progression; levels of NR4A1 in endometriotic lesions are higher than in normal endometrium, and substituted bis-indole analogs (NR4A1) antagonists suppress endometriosis progression in mice with endometriosis. In addition, the flavonoids kaempferol and quercetin are natural products that directly bind NR4A1 and significantly repress the intrinsic NR4A1-dependent transcriptional activity in human endometriotic epithelial and stromal cells and Ishikawa endometrial cancer cells. NR4A1 knockdown and inhibition of NR4A1 by kaempferol and quercetin suppressed proliferation of human endometriotic epithelial cells and Ishikawa cells by inhibiting epidermal growth factor receptor/c-Myc/survivin-mediated growth-promoting and survival pathways, The mammalian target of rapamycin (mTOR) signaling and αSMA/CTGF/COL1A1/FN-mediated fibrosis signaling but increasing Thioredoxin domain Containing 5/SESN2-mediated oxidative/estrogen receptors stress signaling. In human endometriotic stromal cells, NR4A1 knockdown and inhibition of NR4A1 by kaempferol and quercetin primarily inhibited mTOR signaling by suppressing proliferation of human endometrial stromal cells. In addition, kaempferol and quercetin treatment also effectively suppressed the growth of endometriotic lesions in mice with endometriosis compared with the vehicle without any body weight changes. Therefore, kaempferol and quercetin are NR4A1 antagonists with potential as nutritional therapy for endometriosis.


Subject(s)
Endometriosis , Quercetin , Humans , Female , Animals , Mice , Quercetin/pharmacology , Quercetin/therapeutic use , Flavonoids , Endometriosis/drug therapy , Kaempferols/pharmacology , Kaempferols/therapeutic use , TOR Serine-Threonine Kinases , Mammals , Sestrins , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
15.
PLoS Biol ; 21(7): e3002226, 2023 07.
Article in English | MEDLINE | ID: mdl-37490433

ABSTRACT

Microglia play a dual role in stroke depending on their pro-inflammatory and anti-inflammatory polarization. A study in PLOS Biology identifies a new mechanism, through which the transcription factor NR4A1 negatively regulates TNF expression in microglia.


Subject(s)
Microglia , Stroke , Humans , Microglia/metabolism , Transcription Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stroke/genetics , Stroke/metabolism , Gene Expression Regulation , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
16.
Immun Inflamm Dis ; 11(6): e883, 2023 06.
Article in English | MEDLINE | ID: mdl-37382273

ABSTRACT

PURPOSE: The aim of this study was to investigate the effect of dexmedetomidine (Dex) on inflammation and organ injury in sepsis, as well as the potential relationship between Dex and nuclear receptor 77 (Nur77). METHODS: We investigated the effects of dexmedetomidine on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells and organ injury in the cecal ligation and puncture (CLP) mouse model. Additionally, we examined the relationship between dexmedetomidine and Nur77. The expression levels of Nur77 in RAW264.7 cells were analyzed under various types of stimulation using quantitative reverse transcription polymerase chain reaction and western blot analysis. Inflammatory cytokine levels in the cells were evaluated using enzyme-linked immunoassay. Organ injuries were assessed by examining tissue histology and pathology of the lung, liver, and kidney. RESULTS: Dexmedetomidine increased the expression of Nur77 and IL-10, and downregulated inflammatory cytokines (IL-1ß and TNF-α) in LPS-treated RAW264.7 cells. The effect of dexmedetomidine on inhibiting inflammation in LPS-treated RAW264.7 cells was promoted by overexpressing Nur77, while it was reversed by downregulating Nur77. Additionally, dexmedetomidine promoted the expression of Nur77 in the lung and CLP-induced pathological changes in the lung, liver, and kidney. Activation of Nur77 with the agonist Cytosporone B (CsnB) significantly suppressed the production of IL-1ß and TNF-α in LPS-treated RAW264.7 cells. In contrast, knockdown of Nur77 augmented IL-1ß and TNF-α production in LPS-treated RAW264.7 cells. CONCLUSION: Dexmedetomidine can attenuate inflammation and organ injury, at least partially, via upregulating Nur77 in sepsis.


Subject(s)
Dexmedetomidine , Nuclear Receptor Subfamily 4, Group A, Member 1 , Sepsis , Animals , Mice , Cytokines , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Sepsis/drug therapy , Tumor Necrosis Factor-alpha , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
17.
Cell Biochem Funct ; 41(5): 590-598, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37222456

ABSTRACT

Bone formation is regulated by numerous factors, such as transcription factors, cytokines, and extracellular matrix molecules. Human hormone nuclear receptors (hHNR) are a family of ligand-regulated transcription factors that are activated by steroid hormones, such as estrogen and progesterone, and various lipid-soluble signals, including retinoic acid, oxysterols, and thyroid hormone. We found that an hHNR called NR4A1 was the most highly expressed after human MSC differentiation into osteoblasts by whole-genome microarray. NR4A1 knockout decreased the osteoblastic differentiation of hMSCs in terms of ALPL expression and key marker gene expression. Whole-genome microarray analysis further confirmed the decrease in key pathways when we knocked down NR4A1. Further studies with small molecule activators identified a novel molecule called Elesclomol (STA-4783), which could activate and enhance osteoblast differentiation. Elesclomol activation of hMSCs also induced the gene expression of NR4A1 and rescued the phenotype of NR4A1 KD. In addition, Elesclomol activated the TGF-ß pathway by regulating key marker genes. In conclusion, we first identified the role of NR4A1 in osteoblast differentiation and that Elesclomol is a positive regulator of NR4A1 through activation of the TGF-ß signalling pathway.


Subject(s)
Osteoblasts , Osteogenesis , Humans , Down-Regulation , Phenotype , Osteoblasts/metabolism , Cell Differentiation , Transcription Factors/genetics , Carrier Proteins/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
18.
J Cardiovasc Transl Res ; 16(5): 1050-1063, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37249897

ABSTRACT

Mitochondrial fusion is an important process that protects the myocardium. However, mitochondrial fusion is often inhibited in myocardial ischaemia-reperfusion injury (IR). The upstream mechanism of this effect is unclear. Nuclear receptor subfamily 4 group A member 1 (NR4A1) can aggravate myocardial IR and increase the level of oxidative stress, thereby affecting mitochondrial function and morphology. Inhibiting NR4A1 can improve oxidative stress levels and mitochondrial function and morphology, thereby reducing IR. Downregulating NR4A1 increases the expression level of the mitochondrial fusion-related protein optic atrophy 1 (OPA1), which is associated with these benefits. Inhibiting OPA1 expression with MYLS22 abrogates the effects of NR4A1 downregulation on IR. Furthermore, NR4A1 disrupts mitochondrial dynamics and activates the STING and NF-κB pathways. Insufficient mitochondrial fusion and increased apoptosis and inflammatory reactions worsen irreversible damage to cardiomyocytes. In conclusion, NR4A1 can exacerbate IR by inhibiting OPA1, causing mitochondrial damage.


Subject(s)
Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Signal Transduction , Mitochondrial Dynamics/physiology , Mitochondria/metabolism , Myocardium/metabolism , Apoptosis , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/pharmacology , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
19.
Mol Med ; 29(1): 63, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161357

ABSTRACT

BACKGROUND: Renal interstitial fibrosis (RIF) is a common pathway to end-stage renal disease regardless of the initial etiology. Currently, the molecular mechanisms for RIF remains not fully elucidated. Nuclear receptor subfamily 4 group A member 1(Nr4a1), a member of the NR4A subfamily of nuclear receptors, is a ligand-activated transcription factor. The role of Nr4a1 in RIF remains largely unknown. METHODS: In this study, we determined the role and action mechanism of Nr4a1 in RIF. We used unilateral ureteral obstruction (UUO) mice and transforming growth factor (TGF)-ß1-treated human renal proximal tubular epithelial cells (HK-2 cells) as in vivo and in vitro models of RIF. A specific Nr4a1 agonist Cytosporone B (Csn-B) was applied to activate Nr4a1 both in vivo and in vitro, and Nr4a1 small interfering RNA was applied in vitro. Renal pathological changes were evaluated by hematoxylin and eosin and Masson staining, and the expression of fibrotic proteins including fibronectin (Fn) and collagen-I (Col-I), and phosphorylated p38 MAPK was measure by immunohistochemical staining and western blot analysis. RESULTS: The results showed that Nr4a1 was upregulated in UUO mouse kidneys, and was positively correlated with the degree of interstitial kidney injury and the levels of fibrotic proteins. Csn-B treatment aggravated UUO-induced renal interstitial fibrosis, and induced p38 MAPK phosphorylation. In vitro, TGF-ß induced Nr4a1 expression, and Nr4a1 downregulation prevented TGF-ß1-induced expression of Fn and Col-I and the activation of p38 MAPK. Csn-B induced fibrotic proteins expression and p38 MAPK phosphorylation, and moreover Csn-B induced fibrotic proteins expression was abrogated by treatment with p38 MAPK inhibitor SB203580. We provided further evidence that Csn-B treatment promoted cytoplasmic accumulation of Nr4a1. CONCLUSION: The findings in the present study indicate that Nr4a1 promotes renal fibrosis potentially through activating p38 MAPK kinase.


Subject(s)
Kidney Diseases , Humans , Animals , Mice , Phosphorylation , Kidney Diseases/etiology , Phenylacetates , Kidney , Collagen Type I , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
20.
Discov Med ; 35(174): 82-94, 2023 02 01.
Article in English | MEDLINE | ID: mdl-37024444

ABSTRACT

PURPOSE: Although numerous studies have revealed that various long-non coding RNA (lncRNA) are implicated in multiple myeloma (MM) regulation, MM lncRNA profile and novel functional lncRNAs in MM need to be elucidated. METHODS: Herein, lncRNAs and mRNAs (messenger ribonucleic acids) patterns in MM were evaluated using RNA-sequencing (RNAseq). Differentially expressed (DE) genes were defined and a complex regulatory network based on validation and predication was shaped. RESULTS: LncRNA-seq data analysis identified 539 DE lncRNAs and RP11-1100L3.8 was the most up-regulated known lncRNA. Subsequently, the upregulation and clinical RP11-1100L3.8 utilization value was verified in an expanded cohort. Based on the results of Cis nearby-targets and co-expression analysis, 1 correlation pair RP11-1100L3.8-nuclear receptor subfamily 4 group A member 1 (NR4A1) was defined. It is worth noting that NR4A1 is one of the top 5 significantly up-regulated DE mRNAs in MM patients. Moreover, it was found that NR4A1 overexpression is associated with poor prognosis in MM patients, making it suitable as biomarker. Additionally, spearman correlation analysis revealed the positive association between RP11-1100L3.8 and NR4A1 in MM patients. Furthermore, the dominant NR4A1 interacted genes were predicated and it was found that the genes containing NR4A1 were remarkably enriched in phosphatidylinositol 3-kinase (PI3K)-AKT (protein kinase B) signaling pathway. In addition, in vitro experiment suggested that RP11-1100L3.8 downregulation decreased NR4A1 expression in U266 and RPMI 8226 MM cells. RP11-1100L3.8 inhibition declined proliferation and promoted apoptosis in MM cells, which were rescued by NR4A1 overexpression. Moreover, it was found that RP11-1100L3.8 inhibition impeded PI3K and AKT phosphorylation and rapamycin mammalian target in MM cells, which was rescued by NR4A1 overexpression. CONCLUSIONS: This study identifies RP11-1100L3.8 as a potential MM biomarker, and it may be involved in MM pathophysiology by regulating NR4A1-mediated PI3K-AKT signaling pathway. This study provides a novel biomarker candidate for MM therapy.


Subject(s)
Multiple Myeloma , RNA, Long Noncoding , Humans , RNA, Long Noncoding/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Multiple Myeloma/genetics , Biomarkers , RNA, Messenger/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...