Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.867
Filter
1.
Chembiochem ; 25(10): e202400049, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38456652

ABSTRACT

Long non-coding RNAs (lncRNAs) are important regulators of gene expression and can associate with DNA as RNA : DNA heteroduplexes or RNA ⋅ DNA : DNA triple helix structures. Here, we review in vitro biochemical and biophysical experiments including electromobility shift assays (EMSA), circular dichroism (CD) spectroscopy, thermal melting analysis, microscale thermophoresis (MST), single-molecule Förster resonance energy transfer (smFRET) and nuclear magnetic resonance (NMR) spectroscopy to investigate RNA ⋅ DNA : DNA triple helix and RNA : DNA heteroduplex formation. We present the investigations of the antiparallel triplex-forming lncRNA MEG3 targeting the gene TGFB2 and the parallel triplex-forming lncRNA Fendrr with its target gene Emp2. The thermodynamic properties of these oligonucleotides lead to concentration-dependent heterogeneous mixtures, where a DNA duplex, an RNA : DNA heteroduplex and an RNA ⋅ DNA : DNA triplex coexist and their relative populations are modulated in a temperature-dependent manner. The in vitro data provide a reliable readout of triplex structures, as RNA ⋅ DNA : DNA triplexes show distinct features compared to DNA duplexes and RNA : DNA heteroduplexes. Our experimental results can be used to validate computationally predicted triple helix formation between novel disease-relevant lncRNAs and their DNA target genes.


Subject(s)
DNA , Nucleic Acid Conformation , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/metabolism , DNA/chemistry , DNA/genetics , Humans , Nucleic Acid Heteroduplexes/chemistry , RNA/chemistry , RNA/genetics , RNA/metabolism , Thermodynamics
2.
Nature ; 619(7971): 868-875, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438529

ABSTRACT

Enhancers determine spatiotemporal gene expression programs by engaging with long-range promoters1-4. However, it remains unknown how enhancers find their cognate promoters. We recently developed a RNA in situ conformation sequencing technology to identify enhancer-promoter connectivity using pairwise interacting enhancer RNAs and promoter-derived noncoding RNAs5,6. Here we apply this technology to generate high-confidence enhancer-promoter RNA interaction maps in six additional cell lines. Using these maps, we discover that 37.9% of the enhancer-promoter RNA interaction sites are overlapped with Alu sequences. These pairwise interacting Alu and non-Alu RNA sequences tend to be complementary and potentially form duplexes. Knockout of Alu elements compromises enhancer-promoter looping, whereas Alu insertion or CRISPR-dCasRx-mediated Alu tethering to unregulated promoter RNAs can create new loops to homologous enhancers. Mapping 535,404 noncoding risk variants back to the enhancer-promoter RNA interaction maps enabled us to construct variant-to-function maps for interpreting their molecular functions, including 15,318 deletions or insertions in 11,677 Alu elements that affect 6,497 protein-coding genes. We further demonstrate that polymorphic Alu insertion at the PTK2 enhancer can promote tumorigenesis. Our study uncovers a principle for determining enhancer-promoter pairing specificity and provides a framework to link noncoding risk variants to their molecular functions.


Subject(s)
Alu Elements , Enhancer Elements, Genetic , Promoter Regions, Genetic , RNA , Alu Elements/genetics , Cell Line , Enhancer Elements, Genetic/genetics , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes , Promoter Regions, Genetic/genetics , RNA/chemistry , RNA/genetics , RNA/metabolism , Sequence Deletion
3.
Biosci Rep ; 43(2)2023 02 27.
Article in English | MEDLINE | ID: mdl-36601994

ABSTRACT

Central to the universal process of recombination, RecA family proteins form nucleoprotein filaments to catalyze production of heteroduplex DNA between substrate ssDNAs and template dsDNAs. ATP binding assists the filament in assuming the necessary conformation for forming heteroduplex DNA, but hydrolysis is not required. ATP hydrolysis has two identified roles which are not universally conserved: promotion of filament dissociation and enhancing flexibility of the filament. In this work, we examine ATP utilization of the RecA family recombinase SsoRadA from Saccharolobus solfataricus to determine its function in recombinase-mediated heteroduplex DNA formation. Wild-type SsoRadA protein and two ATPase mutant proteins were evaluated for the effects of three divalent metal cofactors. We found that unlike other archaeal RadA proteins, SsoRadA-mediated strand exchange is not enhanced by Ca2+. Instead, the S. solfataricus recombinase can utilize Mn2+ to stimulate strand invasion and reduce ADP-binding stability. Additionally, reduction of SsoRadA ATPase activity by Walker Box mutation or cofactor alteration resulted in a loss of large, complete strand exchange products. Depletion of ADP was found to improve initial strand invasion but also led to a similar loss of large strand exchange events. Our results indicate that overall, SsoRadA is distinct in its use of divalent cofactors but its activity with Mn2+ shows similarity to human RAD51 protein with Ca2+.


Subject(s)
Calcium , Sulfolobus solfataricus , Humans , Calcium/metabolism , Nucleic Acid Heteroduplexes/metabolism , Rec A Recombinases/metabolism , Sulfolobus solfataricus/genetics , Sulfolobus solfataricus/metabolism , Recombinases/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/metabolism
4.
Nature ; 613(7942): 187-194, 2023 01.
Article in English | MEDLINE | ID: mdl-36544021

ABSTRACT

R-loops are RNA-DNA-hybrid-containing nucleic acids with important cellular roles. Deregulation of R-loop dynamics can lead to DNA damage and genome instability1, which has been linked to the action of endonucleases such as XPG2-4. However, the mechanisms and cellular consequences of such processing have remained unclear. Here we identify a new population of RNA-DNA hybrids in the cytoplasm that are R-loop-processing products. When nuclear R-loops were perturbed by depleting the RNA-DNA helicase senataxin (SETX) or the breast cancer gene BRCA1 (refs. 5-7), we observed XPG- and XPF-dependent cytoplasmic hybrid formation. We identify their source as a subset of stable, overlapping nuclear hybrids with a specific nucleotide signature. Cytoplasmic hybrids bind to the pattern recognition receptors cGAS and TLR3 (ref. 8), activating IRF3 and inducing apoptosis. Excised hybrids and an R-loop-induced innate immune response were also observed in SETX-mutated cells from patients with ataxia oculomotor apraxia type 2 (ref. 9) and in BRCA1-mutated cancer cells10. These findings establish RNA-DNA hybrids as immunogenic species that aberrantly accumulate in the cytoplasm after R-loop processing, linking R-loop accumulation to cell death through the innate immune response. Aberrant R-loop processing and subsequent innate immune activation may contribute to many diseases, such as neurodegeneration and cancer.


Subject(s)
Cytoplasm , DNA , Innate Immunity Recognition , Nucleic Acid Heteroduplexes , R-Loop Structures , RNA , Humans , Apoptosis , Cytoplasm/immunology , Cytoplasm/metabolism , DNA/chemistry , DNA/immunology , DNA Helicases/genetics , DNA Helicases/metabolism , Genes, BRCA1 , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Mutation , Neoplasms , Nucleic Acid Heteroduplexes/chemistry , Nucleic Acid Heteroduplexes/immunology , R-Loop Structures/immunology , RNA/chemistry , RNA/immunology , RNA Helicases/genetics , RNA Helicases/metabolism , Spinocerebellar Ataxias/genetics
5.
Biotechnol J ; 18(1): e2200323, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36317440

ABSTRACT

Numerous applications in molecular biology and genomics require characterization of mutant DNA molecules present at low levels within a larger sample of non-mutant DNA. This is often achieved either by selectively amplifying mutant DNA, or by sequencing all the DNA followed by computational identification of the mutant DNA. However, selective amplification is challenging for insertions and deletions (indels). Additionally, sequencing all the DNA in a sample may not be cost effective when only the presence of a mutation needs to be ascertained rather than its allelic fraction. The MutS protein evolved to detect DNA heteroduplexes in which the two DNA strands are mismatched. Prior methods have utilized MutS to enrich mutant DNA by hybridizing mutant to non-mutant DNA to create heteroduplexes. However, the purity of heteroduplex DNA these methods achieve is limited because they can only feasibly perform one or two enrichment cycles. We developed a MutS-magnetic bead system that enables rapid serial enrichment cycles. With six cycles, we achieve complete purification of heteroduplex indel DNA originally present at a 5% fraction and over 40-fold enrichment of heteroduplex DNA originally present at a 1% fraction. This system may enable novel approaches for enriching mutant DNA for targeted sequencing.


Subject(s)
Escherichia coli Proteins , Nucleic Acid Heteroduplexes , Nucleic Acid Heteroduplexes/genetics , Nucleic Acid Heteroduplexes/metabolism , MutS DNA Mismatch-Binding Protein/genetics , MutS DNA Mismatch-Binding Protein/metabolism , DNA/genetics , DNA/metabolism , Magnetic Phenomena
6.
Cell Rep ; 37(10): 110097, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879269

ABSTRACT

RNA-DNA hybrids are often associated with genome instability and also function as a cellular regulator in many biological processes. In this study, we show that accumulated RNA-DNA hybrids cause multiple defects in budding yeast meiosis, including decreased sporulation efficiency and spore viability. Further analysis shows that these RNA-DNA hybrid foci colocalize with RPA/Rad51 foci on chromosomes. The efficient formation of RNA-DNA hybrid foci depends on Rad52 and ssDNA ends of meiotic DNA double-strand breaks (DSBs), and their number is correlated with DSB frequency. Interestingly, RNA-DNA hybrid foci and recombination foci show similar dynamics. The excessive accumulation of RNA-DNA hybrids around DSBs competes with Rad51/Dmc1, impairs homolog bias, and decreases crossover and noncrossover recombination. Furthermore, precocious removal of RNA-DNA hybrids by RNase H1 overexpression also impairs meiotic recombination similarly. Taken together, our results demonstrate that RNA-DNA hybrids form at ssDNA ends of DSBs to actively regulate meiotic recombination.


Subject(s)
DNA, Fungal/metabolism , Homologous Recombination , Meiosis , Nucleic Acid Heteroduplexes/metabolism , RNA, Fungal/metabolism , Saccharomyces cerevisiae/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Breaks, Double-Stranded , DNA Breaks, Single-Stranded , DNA, Fungal/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes/genetics , RNA, Fungal/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Replication Protein A/genetics , Replication Protein A/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
7.
Cell Rep ; 37(10): 110088, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879271

ABSTRACT

Alternative lengthening of telomeres (ALT) is a telomere-elongation mechanism observed in ∼15% of cancer subtypes. Current models indicate that ALT is mediated by homology-directed repair mechanisms. By disrupting MSH6 gene expression, we show that the deficiency of MutSα (MSH2/MSH6) DNA mismatch repair complex causes striking telomere hyperextension. Mechanistically, we show MutSα is specifically recruited to telomeres in ALT cells by associating with the proliferating-cell nuclear antigen (PCNA) subunit of the ALT telomere replisome. We also provide evidence that MutSα counteracts Bloom (BLM) helicase, which adopts a crucial role in stabilizing hyper-extended telomeres and maintaining the survival of MutSα-deficient ALT cancer cells. Lastly, we propose a model in which MutSα deficiency impairs heteroduplex rejection, leading to premature initiation of telomere DNA synthesis that coincides with an accumulation of telomere variant repeats (TVRs). These findings provide evidence that the MutSα DNA mismatch repair complex acts to restrain unwarranted ALT.


Subject(s)
DNA, Neoplasm/metabolism , DNA-Binding Proteins/metabolism , MutS Homolog 2 Protein/metabolism , Neoplasms/enzymology , Nucleic Acid Heteroduplexes/metabolism , Telomere Homeostasis , Telomere/metabolism , Cell Line, Tumor , DNA Mismatch Repair , DNA, Neoplasm/genetics , DNA-Binding Proteins/genetics , Genomic Instability , HeLa Cells , Humans , Models, Genetic , MutS Homolog 2 Protein/genetics , Neoplasms/genetics , Neoplasms/pathology , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes/genetics , RecQ Helicases/genetics , RecQ Helicases/metabolism , Telomere/genetics
8.
Nat Commun ; 12(1): 7344, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34937876

ABSTRACT

Manipulating lymphocyte functions with gene silencing approaches is promising for treating autoimmunity, inflammation, and cancer. Although oligonucleotide therapy has been proven to be successful in treating several conditions, efficient in vivo delivery of oligonucleotide to lymphocyte populations remains a challenge. Here, we demonstrate that intravenous injection of a heteroduplex oligonucleotide (HDO), comprised of an antisense oligonucleotide (ASO) and its complementary RNA conjugated to α-tocopherol, silences lymphocyte endogenous gene expression with higher potency, efficacy, and longer retention time than ASOs. Importantly, reduction of Itga4 by HDO ameliorates symptoms in both adoptive transfer and active experimental autoimmune encephalomyelitis models. Our findings reveal the advantages of HDO with enhanced gene knockdown effect and different delivery mechanisms compared with ASO. Thus, regulation of lymphocyte functions by HDO is a potential therapeutic option for immune-mediated diseases.


Subject(s)
Lymphocytes/metabolism , Nucleic Acid Heteroduplexes/metabolism , Oligonucleotides/metabolism , RNA/metabolism , Administration, Intravenous , Adoptive Transfer , Animals , Demyelinating Diseases/genetics , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Endocytosis/drug effects , Female , Gene Expression Regulation , Gene Silencing , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Humans , Integrin alpha4/genetics , Integrin alpha4/metabolism , Jurkat Cells , Male , Mice, Inbred C57BL , Nucleic Acid Heteroduplexes/administration & dosage , Nucleic Acid Heteroduplexes/pharmacokinetics , Nucleic Acid Heteroduplexes/pharmacology , Oligonucleotides/administration & dosage , Oligonucleotides/pharmacokinetics , Oligonucleotides/pharmacology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spinal Cord/pathology , Tissue Distribution/drug effects
9.
EMBO J ; 40(22): e103787, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34585421

ABSTRACT

Repair of DNA double-stranded breaks by homologous recombination (HR) is dependent on DNA end resection and on post-translational modification of repair factors. In budding yeast, single-stranded DNA is coated by replication protein A (RPA) following DNA end resection, and DNA-RPA complexes are then SUMO-modified by the E3 ligase Siz2 to promote repair. Here, we show using enzymatic assays that DNA duplexes containing 3' single-stranded DNA overhangs increase the rate of RPA SUMO modification by Siz2. The SAP domain of Siz2 binds DNA duplexes and makes a key contribution to this process as highlighted by models and a crystal structure of Siz2 and by assays performed using protein mutants. Enzymatic assays performed using DNA that can accommodate multiple RPA proteins suggest a model in which the SUMO-RPA signal is amplified by successive rounds of Siz2-dependent SUMO modification of RPA and dissociation of SUMO-RPA at the junction between single- and double-stranded DNA. Our results provide insights on how DNA architecture scaffolds a substrate and E3 ligase to promote SUMO modification in the context of DNA repair.


Subject(s)
Nucleic Acid Heteroduplexes/metabolism , Replication Protein A/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Crystallography, X-Ray , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Fungal/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Fluorescence Polarization , Mutation , Nucleic Acid Heteroduplexes/chemistry , Nucleic Acid Heteroduplexes/genetics , Protein Domains , Replication Protein A/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitin-Protein Ligases/chemistry
10.
Nanomedicine ; 37: 102442, 2021 10.
Article in English | MEDLINE | ID: mdl-34284132

ABSTRACT

Contractile forces within the planar interface between T cell and antigen-presenting surface mechanically stimulate T cell receptors (TCR) in the mature immune synapses. However, the origin of mechanical stimulation during the initial, i.e., presynaptic, microvilli-based TCR activation in the course of immune surveillance remains unknown and new tools to help address this problem are needed. In this work, we develop nucleic acid nanoassembly (NAN)-based technology for functionalization of hydrogels using isothermal toehold-mediated reassociation of RNA/DNA heteroduplexes. Resulting platform allows for regulation with NAN linkers of 3D force momentum along the TCR mechanical axis, whereas hydrogels contribute to modulation of 2D shear modulus. By utilizing different lengths of NAN linkers conjugated to polyacrylamide gels of different shear moduli, we demonstrate an efficient capture of human T lymphocytes and tunable activation of TCR, as confirmed by T-cell spreading and pY foci.


Subject(s)
Hydrogels/pharmacology , Lymphocyte Activation/drug effects , Lymphocytes/drug effects , Receptors, Antigen, T-Cell/genetics , Antigen-Presenting Cells/drug effects , DNA/chemistry , DNA/pharmacology , Humans , Hydrogels/chemistry , Lymphocyte Activation/genetics , Lymphocytes/metabolism , Nucleic Acid Heteroduplexes/chemistry , Nucleic Acid Heteroduplexes/genetics , Nucleic Acid Heteroduplexes/pharmacology , RNA/chemistry , RNA/genetics , Receptors, Antigen, T-Cell/drug effects , T-Lymphocytes/drug effects
11.
Nucleic Acids Res ; 49(11): 6114-6127, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34125895

ABSTRACT

Dynamic DNA nanodevices represent powerful tools for the interrogation and manipulation of biological systems. Yet, implementation remains challenging due to nuclease degradation and other cellular factors. Use of l-DNA, the nuclease resistant enantiomer of native d-DNA, provides a promising solution. On this basis, we recently developed a strand displacement methodology, referred to as 'heterochiral' strand displacement, that enables robust l-DNA nanodevices to be sequence-specifically interfaced with endogenous d-nucleic acids. However, the underlying reaction - strand displacement from PNA-DNA heteroduplexes - remains poorly characterized, limiting design capabilities. Herein, we characterize the kinetics of strand displacement from PNA-DNA heteroduplexes and show that reaction rates can be predictably tuned based on several common design parameters, including toehold length and mismatches. Moreover, we investigate the impact of nucleic acid stereochemistry on reaction kinetics and thermodynamics, revealing important insights into the biophysical mechanisms of heterochiral strand displacement. Importantly, we show that strand displacement from PNA-DNA heteroduplexes is compatible with RNA inputs, the most common nucleic acid target for intracellular applications. Overall, this work greatly improves the understanding of heterochiral strand displacement reactions and will be useful in the rational design and optimization of l-DNA nanodevices that operate at the interface with biology.


Subject(s)
DNA/chemistry , Nucleic Acid Heteroduplexes/chemistry , Peptide Nucleic Acids/chemistry , Kinetics , RNA/chemistry , Stereoisomerism , Thermodynamics
12.
Nat Methods ; 18(7): 816-820, 2021 07.
Article in English | MEDLINE | ID: mdl-34127856

ABSTRACT

Single-molecule Förster resonance energy transfer (smFRET) has become a versatile and widespread method to probe nanoscale conformation and dynamics. However, current experimental modalities often resort to molecule immobilization for long observation times and do not always approach the resolution limit of FRET-based nanoscale metrology. Here we present ABEL-FRET, an immobilization-free platform for smFRET measurements with ultrahigh resolving power in FRET efficiency. Importantly, single-molecule diffusivity is used to provide additional size and shape information for hydrodynamic profiling of individual molecules, which, together with the concurrently measured intramolecular conformation through FRET, enables a holistic and dynamic view of biomolecules and their complexes.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Single Molecule Imaging/methods , DNA Damage , DNA-Binding Proteins/analysis , DNA-Binding Proteins/chemistry , Fluorescence Resonance Energy Transfer/instrumentation , Hydrodynamics , Lab-On-A-Chip Devices , Molecular Conformation , Nucleic Acid Heteroduplexes/chemistry , Photons , Single Molecule Imaging/instrumentation
13.
Nucleic Acids Res ; 49(12): 6638-6659, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33978760

ABSTRACT

G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.


Subject(s)
G-Quadruplexes , Oligonucleotides/chemistry , Genome, Human , Humans , Ligands , Nucleic Acid Heteroduplexes , Peptide Nucleic Acids , Transcriptome
14.
J Cell Biol ; 220(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33830170

ABSTRACT

The S9.6 antibody is broadly used to detect RNA:DNA hybrids but has significant affinity for double-stranded RNA. The impact of this off-target RNA binding activity has not been thoroughly investigated, especially in the context of immunofluorescence microscopy. We report that S9.6 immunofluorescence signal observed in fixed human cells arises predominantly from ribosomal RNA, not RNA:DNA hybrids. S9.6 staining was unchanged by pretreatment with the RNA:DNA hybrid-specific nuclease RNase H1, despite verification in situ that S9.6 recognized RNA:DNA hybrids and that RNase H1 was active. S9.6 staining was, however, significantly sensitive to RNase T1, which specifically degrades RNA. Additional imaging and biochemical data indicate that the prominent cytoplasmic and nucleolar S9.6 signal primarily derives from ribosomal RNA. Importantly, genome-wide maps obtained by DNA sequencing after S9.6-mediated DNA:RNA immunoprecipitation (DRIP) are RNase H1 sensitive and RNase T1 insensitive. Altogether, these data demonstrate that imaging using S9.6 is subject to pervasive artifacts without pretreatments and controls that mitigate its promiscuous recognition of cellular RNAs.


Subject(s)
Antibodies, Monoclonal/metabolism , DNA/metabolism , Nucleic Acid Heteroduplexes/metabolism , RNA/metabolism , Ribonuclease H/metabolism , Antibodies, Monoclonal/chemistry , Antibody Affinity , Artifacts , DNA/chemistry , Humans , Nucleic Acid Heteroduplexes/chemistry , RNA/chemistry , Ribonuclease H/chemistry
15.
Nucleic Acids Res ; 49(7): 4120-4128, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33764415

ABSTRACT

Cas12f, also known as Cas14, is an exceptionally small type V-F CRISPR-Cas nuclease that is roughly half the size of comparable nucleases of this type. To reveal the mechanisms underlying substrate recognition and cleavage, we determined the cryo-EM structures of the Cas12f-sgRNA-target DNA and Cas12f-sgRNA complexes at 3.1 and 3.9 Å, respectively. An asymmetric Cas12f dimer is bound to one sgRNA for recognition and cleavage of dsDNA substrate with a T-rich PAM sequence. Despite its dimerization, Cas12f adopts a conserved activation mechanism among the type V nucleases which requires coordinated conformational changes induced by the formation of the crRNA-target DNA heteroduplex, including the close-to-open transition in the lid motif of the RuvC domain. Only one RuvC domain in the Cas12f dimer is activated by substrate recognition, and the substrate bound to the activated RuvC domain is captured in the structure. Structure-assisted truncated sgRNA, which is less than half the length of the original sgRNA, is still active for target DNA cleavage. Our results expand our understanding of the diverse type V CRISPR-Cas nucleases and facilitate potential genome editing applications using the miniature Cas12f.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins , Endodeoxyribonucleases/metabolism , Nucleic Acid Heteroduplexes/metabolism , Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA/metabolism , DNA Cleavage , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/pharmacokinetics , Gene Editing , Models, Molecular , Protein Binding
16.
Yi Chuan ; 43(2): 182-193, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33724220

ABSTRACT

Homologous recombination is an important source of biological genetic variation. Limited by detection methods, there are only a few reports on the homologous recombination in high plants and its product - heteroduplex DNA (hDNA). In the present study, applying the strategy of detecting hDNA by constructing populations from inhibited post-meiotic segregation, two hybrid triploid populations were constructed from two maternal parents inPopulus tomentosa by inhibiting post-meiotic segregation. One hundred and ten simple sequence repeat (SSR) markers were used to study the occurrence and variation of hDNA on nine chromosomes inP. tomentosa with different genotypes. The results showed that the frequencies of hDNA between two female parents inP. tomentosa ranged from 8.5% to 87.2%. The hDNA frequency was positively correlated to the distance from the centromere, but the average hDNA frequency on a chromosome had no correlation with the chromosome length. One to 3 times recombination events were detected on most chromosomes, and only a few four- or five-times recombination events were detected. The overall frequencies of hDNA on the same chromosome in two genotypic individuals were roughly similar, while the hDNA frequencies varied greatly at specific SSR loci. Compared withTacamahaca poplar hybrid,P. pseudo-simonii × P. nigra 'Zheyin3#', detection of homologous recombination times and the frequency and location of hDNA were largely different. This study is the first to describe the characteristics and variations of homologous recombination inP. tomentosa with two different genotypes, which will provide valuable insights for exploring the characteristics and variations of homologous recombination among interspecies and intraspecies in higher plant.


Subject(s)
Populus , Female , Genotype , Homologous Recombination , Humans , Microsatellite Repeats/genetics , Nucleic Acid Heteroduplexes , Populus/genetics
17.
J Microbiol ; 59(4): 401-409, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33779953

ABSTRACT

Eukaryotic genomes contain many duplicated genes closely located with each other, such as the hexose transporter (HXT) genes in Saccharomyces cerevisiae. They can potentially recombine via single-strand annealing (SSA) pathway. SSA between highly divergent sequences generates heteroduplex DNA intermediates with many mismatches, which can be corrected by mismatch repair (MMR), resulting in recombinant sequences with a single junction point. In this report, we demonstrate that SSA between HXT1 and HXT4 genes in MMR-deficient yeast cells produces recombinant genes with multiple-junctions resulting from alternating HXT1 and HXT4 tracts. The mutations in MMR genes had differential effects on SSA frequencies; msh6Δ mutation significantly stimulated SSA events, whereas msh2Δ and msh3Δ slightly suppressed it. We set up an assay that can identify a pair of recombinant genes derived from a single heteroduplex DNA. As a result, the recombinant genes with multiple-junctions were found to accompany genes with single-junctions. Based on the results presented here, a model was proposed to generate multiple-junctions in SSA pathway involving an alternative short-patch repair system.


Subject(s)
DNA Mismatch Repair , Monosaccharide Transport Proteins/genetics , Nucleic Acid Heteroduplexes/genetics , Saccharomyces cerevisiae/genetics , Base Pair Mismatch , DNA, Fungal , DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Genes, Fungal , Mutation , Recombination, Genetic
18.
J Vis Exp ; (167)2021 01 22.
Article in English | MEDLINE | ID: mdl-33554969

ABSTRACT

The three-stranded nucleic acid structure, R-loop, is increasingly recognized for its role in gene regulation. Initially, R-loops were thought to be the by-products of transcription; but recent findings of fewer R-loops in diseased cells made it clear that R-loops have functional roles in a variety of human cells. Next, it is critical to understand the roles of R-loops and how cells balance their abundance. A challenge in the field is the quantitation of R-loops since much of the work relies on the S9.6 monoclonal antibody whose specificity for RNA-DNA hybrids has been questioned. Here, we use dot-blots with the S9.6 antibody to quantify R-loops and show the sensitivity and specificity of this assay with RNase H, RNase T1, and RNase III that cleave RNA-DNA hybrids, single-stranded RNA, and double-stranded RNA, respectively. This method is highly reproducible, uses general laboratory equipment and reagents, and provides results within two days. This assay can be used in research and clinical settings to quantify R-loops and assess the effect of mutations in genes such as senataxin on R-loop abundance.


Subject(s)
Immunoblotting , R-Loop Structures , Antibodies/metabolism , DNA/isolation & purification , Fibroblasts/metabolism , Humans , Nucleic Acid Heteroduplexes/metabolism , Oligonucleotides/metabolism , R-Loop Structures/genetics , RNA/genetics , Ribonuclease H/metabolism , Ribonucleases/metabolism
19.
EMBO J ; 40(7): e106018, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33634895

ABSTRACT

The BRCA2 tumor suppressor is a DNA double-strand break (DSB) repair factor essential for maintaining genome integrity. BRCA2-deficient cells spontaneously accumulate DNA-RNA hybrids, a known source of genome instability. However, the specific role of BRCA2 on these structures remains poorly understood. Here we identified the DEAD-box RNA helicase DDX5 as a BRCA2-interacting protein. DDX5 associates with DNA-RNA hybrids that form in the vicinity of DSBs, and this association is enhanced by BRCA2. Notably, BRCA2 stimulates the DNA-RNA hybrid-unwinding activity of DDX5 helicase. An impaired BRCA2-DDX5 interaction, as observed in cells expressing the breast cancer variant BRCA2-T207A, reduces the association of DDX5 with DNA-RNA hybrids, decreases the number of RPA foci, and alters the kinetics of appearance of RAD51 foci upon irradiation. Our findings are consistent with DNA-RNA hybrids constituting an impediment for the repair of DSBs by homologous recombination and reveal BRCA2 and DDX5 as active players in their removal.


Subject(s)
BRCA2 Protein/metabolism , DEAD-box RNA Helicases/metabolism , Recombinational DNA Repair , BRCA2 Protein/genetics , Cell Line, Tumor , DEAD-box RNA Helicases/genetics , DNA Breaks, Double-Stranded , HEK293 Cells , Humans , Nucleic Acid Heteroduplexes , Protein Binding
20.
Methods Mol Biol ; 2153: 535-554, 2021.
Article in English | MEDLINE | ID: mdl-32840803

ABSTRACT

DNA double-strand breaks (DSBs) are genotoxic lesions that can be repaired in a templated fashion by homologous recombination (HR). HR is a complex pathway that involves the formation of DNA joint molecules (JMs) containing heteroduplex DNA. Various types of JMs are formed throughout the pathway, including displacement loops (D-loops), multi-invasions (MI), and double Holliday junction intermediates. Dysregulation of JM metabolism in various mutant contexts revealed the propensity of HR to generate repeat-mediated chromosomal rearrangements. Specifically, we recently identified MI-induced rearrangements (MIR), a tripartite recombination mechanism initiated by one end of a DSB that exploits repeated regions to generate rearrangements between intact chromosomal regions. MIR occurs upon MI-JM processing by endonucleases and is suppressed by JM disruption activities. Here, we detail two assays: a physical assay for JM detection in Saccharomyces cerevisiae cells and genetic assays to determine the frequency of MIR in various chromosomal contexts. These assays enable studying the regulation of the HR pathway and the consequences of their defects for genomic instability by MIR.


Subject(s)
DNA, Fungal/genetics , Recombinational DNA Repair , Saccharomyces cerevisiae/genetics , DNA Breaks, Double-Stranded , DNA Helicases/metabolism , DNA, Fungal/chemistry , Escherichia coli Proteins/metabolism , Mutation , Nucleic Acid Heteroduplexes , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...