Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 546
Filter
1.
Anal Chem ; 96(28): 11572-11580, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38970483

ABSTRACT

Lab-on-a-chip systems (LOCs), characterized by their high sensitivity, low sample consumption, and portability, have significantly advanced the field of on-site testing. Despite the evolution of integrated LOCs from qualitative to quantitative analyses, on-chip full integration of sample preparation, purification, and multiplexed detection remains a challenge. Here, we propose a strategy for the heterogeneous integration of a set of complementary metal oxide semiconductor-compatible devices including acoustic resonator, thin-film resistors, and temperature/photosensors as a new type of LOC for nucleic acid testing (NAT). Programmed acoustic streaming-based particles and fluid manipulations largely simplify the nucleic acid extraction process including cell lysis, nucleic acid capture, and elution. The design of the acoustic microextraction module and extraction process was thoroughly studied. Benefitted by the microelectromechanical system approach, the conventional mechanical actions and complex flow control are avoided, which enables a compact hand-held NAT instrument without complicated peripherals. Validation experiments conducted on plasma-harboring mutations in the epidermal growth factor receptor (EGFR) gene confirmed the robustness of the system, achieving an impressive nucleic acid (NA) extraction efficiency of approximately 90% within 5 min and a limit of detection of the target NA in the plasma of 1 copy/µL.


Subject(s)
Acoustics , Glass , Glass/chemistry , Humans , Lab-On-A-Chip Devices , ErbB Receptors/genetics , Nucleic Acids/analysis , Nucleic Acids/isolation & purification , Semiconductors , DNA/analysis , DNA/chemistry
2.
Hum Genomics ; 18(1): 54, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816866

ABSTRACT

This study evaluated ten nucleic acid extraction protocols (EP1 to EP10) for measuring five endogenous antibiotic resistance genes (ARGs) in four aircraft wastewater samples (AWW1 to AWW4). The targeted ARGs, including blaCTX-M, blaNDM-1, ermB, qnrS, and tetA, encompassed highly and minimally abundant ARGs. TetA and ermB were consistently detected across four aircraft wastewater samples using the DNeasy Blood and Tissue Kit and the AllPrep PowerViral DNA/RNA kit. QnrS displayed high detection rates with specific extraction protocols and aliquot volumes. Concentrations of ARGs varied across aircraft wastewater samples, with differing extraction protocols influencing quantitative results. The concentrations of tetA, ermB, and qnrS in AWW1 were distinct, while AWW2 to AWW4 exhibited a broader range for tetA, ermB, qnrS, blaCTX-M, and blaNDM-1. EP1 consistently produced the highest concentrations for several ARGs. Collective data analysis revealed varying ARG concentrations across the ten extraction protocols, suggesting the importance of careful extraction protocol selection in ARG monitoring in aircraft wastewater samples. Based on the results, we suggest that a small sample volume (as low as 0.2 mL) may be sufficient for ARG characterization in aircraft wastewater samples. The findings also emphasize the need for considering toilet paper removal without compromising nucleic acid extraction efficiency. The study highlights promising prospects for aircraft wastewater monitoring of ARGs, calling for further investigation into the import and spread of unique ARGs through transport hubs.


Subject(s)
Aircraft , Wastewater , Wastewater/microbiology , Genes, Bacterial , Drug Resistance, Microbial/genetics , Humans , Nucleic Acids/genetics , Nucleic Acids/isolation & purification , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents
3.
Sci Rep ; 14(1): 10157, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698072

ABSTRACT

Extraction of nucleic acids (NAs) is critical for many methods in molecular biology and bioanalytical chemistry. NA extraction has been extensively studied and optimized for a wide range of applications and its importance to society has significantly increased. The COVID-19 pandemic highlighted the importance of early and efficient NA testing, for which NA extraction is a critical analytical step prior to the detection by methods like polymerase chain reaction. This study explores simple, new approaches to extraction using engineered smart nanomaterials, namely NA-binding, intrinsically disordered proteins (IDPs), that undergo triggered liquid-liquid phase separation (LLPS). Two types of NA-binding IDPs are studied, both based on genetically engineered elastin-like polypeptides (ELPs), model IDPs that exhibit a lower critical solution temperature in water and can be designed to exhibit LLPS at desired temperatures in a variety of biological solutions. We show that ELP fusion proteins with natural NA-binding domains can be used to extract DNA and RNA from physiologically relevant solutions. We further show that LLPS of pH responsive ELPs that incorporate histidine in their sequences can be used for both binding, extraction and release of NAs from biological solutions, and can be used to detect SARS-CoV-2 RNA in samples from COVID-positive patients.


Subject(s)
COVID-19 , Elastin , Peptides , SARS-CoV-2 , Elastin/chemistry , Hydrogen-Ion Concentration , Peptides/chemistry , COVID-19/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Humans , Intrinsically Disordered Proteins/chemistry , Liquid-Liquid Extraction/methods , Nucleic Acids/isolation & purification , Nucleic Acids/chemistry , DNA/chemistry , DNA/isolation & purification , Elastin-Like Polypeptides , Phase Separation
4.
Lab Chip ; 24(12): 3158-3168, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38787694

ABSTRACT

Point of care testing (POCT) of nucleic acids holds significant importance in the realm of infectious disease prevention and control, as well as the advancement of personalized precision medicine. Nevertheless, conventional nucleic acid testing methods continue to face challenges such as prolonged detection times and dependence on extensive specialized equipment and personnel, rendering them unsuitable for point of care applications. Here, we proposed an innovative active centrifugal microfluidic system (ACMS) for automatic nucleic acid extraction, encompassing modules for active valve control and magnetic control. An on-chip centrifugal puncture valve (PV) was devised based on the elastic tolerance differences between silicone membranes and tinfoils to release pre-embedded liquid reagents on demand. Furthermore, we have utilized the returnable valve (RV) technology to accurately control the retention and release of liquids, leveraging the high elastic tolerance of the silicone membrane. By incorporating an online controllable magnetic valve, we have achieved controlled and rapid aggregation and dispersion of magnetic beads. The final chip encapsulates multiple reagents and magnetic beads necessary for nucleic acid extraction. Upon sample addition and loading into the instrument, automated on-chip sample loading and nucleic acid extraction, purification, and collection can be accomplished within 30 minutes, halving the overall operation time and even increasing the efficiency of pseudovirus extraction by three orders of magnitude. Consequently, real-time fluorescence quantitative PCR amplification has successfully detected multiple targets of the SARS-CoV-2 virus (with an impressive detection limit as low as 10 copies per µL), along with targeted sequencing analysis yielding a conformity rate of 99%.


Subject(s)
Centrifugation , Lab-On-A-Chip Devices , Centrifugation/instrumentation , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Nucleic Acids/isolation & purification , Nucleic Acids/analysis , RNA, Viral/isolation & purification , RNA, Viral/analysis , COVID-19/diagnosis , COVID-19/virology
6.
Analyst ; 148(13): 3036-3044, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37265396

ABSTRACT

Nucleic acid extraction (NAE) plays a crucial role for diagnostic testing procedures. For decades, dried blood spots (DBS) have been used for serology, drug monitoring, and molecular studies. However, extracting nucleic acids from DBS remains a significant challenge, especially when attempting to implement these applications to the point-of-care (POC). To address this issue, we have developed a paper-based NAE method using cellulose filter papers (DBSFP) that operates without the need for electricity (at room temperature). Our method allows for NAE in less than 7 min, and it involves grade 3 filter paper pre-treated with 8% (v/v) igepal surfactant, 1 min washing step with 1× PBS, and 5 min incubation at room temperature in 1× TE buffer. The performance of the methodology was assessed with loop-mediated isothermal amplification (LAMP), targeting the human reference gene beta-actin and the kelch 13 gene from P. falciparum. The developed method was evaluated against FTA cards and magnetic bead-based purification, using time-to-positive (min) for comparative analysis. Furthermore, we optimised our approach to take advantage of the dual functionality of the paper-based extraction, allowing for elution (eluted disk) as well as direct placement of the disk in the LAMP reaction (in situ disk). This flexibility extends to eukaryotic cells, bacterial cells, and viral particles. We successfully validated the method for RNA/DNA detection and demonstrated its compatibility with whole blood stored in anticoagulants. Additionally, we studied the compatibility of DBSFP with colorimetric and lateral flow detection, showcasing its potential for POC applications. Across various tested matrices, targets, and experimental conditions, our results were comparable to those obtained using gold standard methods, highlighting the versatility of our methodology. In summary, this manuscript presents a cost-effective solution for NAE from DBS, enabling molecular testing in virtually any POC setting. When combined with LAMP, our approach provides sample-to-result detection in under 35 minutes.


Subject(s)
Hematologic Tests , Point-of-Care Systems , Nucleic Acids/isolation & purification , Hematologic Tests/methods , Humans , Actins/genetics , Nucleic Acid Amplification Techniques/methods , Malaria, Falciparum/diagnosis , Colorimetry , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification
7.
J Sep Sci ; 46(6): e2200801, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36661136

ABSTRACT

The continuous expansion of nucleic acid detection applications has resulted in constant developments in rapid, low-consumption, and highly automated nucleic acid extraction methods. Nucleic acid extraction using magnetic beads across an immiscible phase interface offers significant simplification and parallelization potential. The gas-liquid immiscible phase valve eliminates the requirement for complicated cassettes and is suitable for automation applications. By analyzing the process of magnetic beads crossing the gas-liquid interface, we utilized a low magnetic field strength to drive large magnetic bead packages to cross the gas-liquid interface, providing a solution of high magnetic bead recovery rate for solid-phase extraction with a low-surfactant system based on gas-liquid immiscible phase valve. The recovery rate of magnetic beads was further improved to 90%-95% and the carryover of the reagents was below 1%. Consequently, a chip and an automatic system were developed to verify the applicability of this method for nucleic acid extraction. The Hepatitis B virus serum standard was used for the extraction test. The extraction of four samples was performed within 7 minutes, with nucleic acid recovery maintained above 80% and good purity. Thus, through analysis and experiments, a fast, highly automated, and low-consumption nucleic acid recovery method was proposed in this study.


Subject(s)
Nucleic Acids , Nucleic Acids/analysis , Nucleic Acids/isolation & purification
8.
Commun Biol ; 5(1): 290, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361863

ABSTRACT

Nucleic acid detection is essential for numerous biomedical applications, but often requires complex protocols and/or suffers false-positive readouts. Here, we describe SENTINEL, an approach that combines isothermal amplification with a sequence-specific degradation method to detect nucleic acids with high sensitivity and sequence-specificity. Target single-stranded RNA or double-stranded DNA molecules are amplified by loop-mediated isothermal amplification (LAMP) and subsequently degraded by the combined action of lambda exonuclease and a sequence-specific DNA endonuclease (e.g., Cas9). By combining the sensitivity of LAMP with the precision of DNA endonucleases, the protocol achieves attomolar limits of detection while differentiating between sequences that differ by only one or two base pairs. The protocol requires less than an hour to complete using a 65 °C heat block and fluorometer, and detects SARS-CoV-2 virus particles in human saliva and nasopharyngeal swabs with high sensitivity.


Subject(s)
COVID-19 , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Nucleic Acids , COVID-19/diagnosis , DNA , Endonucleases , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/isolation & purification , SARS-CoV-2/genetics
9.
Biosensors (Basel) ; 12(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35200333

ABSTRACT

Pathogen detection by nucleic acid amplification proved its significance during the current coronavirus disease 2019 (COVID-19) pandemic. The emergence of recombinase polymerase amplification (RPA) has enabled nucleic acid amplification in limited-resource conditions owing to the low operating temperatures around the human body. In this study, we fabricated a wearable RPA microdevice using poly(dimethylsiloxane) (PDMS), which can form soft-but tight-contact with human skin without external support during the body-heat-based reaction process. In particular, the curing agent ratio of PDMS was tuned to improve the flexibility and adhesion of the device for better contact with human skin, as well as to temporally bond the microdevice without requiring further surface modification steps. For PDMS characterization, water contact angle measurements and tests for flexibility, stretchability, bond strength, comfortability, and bendability were conducted to confirm the surface properties of the different mixing ratios of PDMS. By using human body heat, the wearable RPA microdevices were successfully applied to amplify 210 bp from Escherichia coli O157:H7 (E. coli O157:H7) and 203 bp from the DNA plasmid SARS-CoV-2 within 23 min. The limit of detection (LOD) was approximately 500 pg/reaction for genomic DNA template (E. coli O157:H7), and 600 fg/reaction for plasmid DNA template (SARS-CoV-2), based on gel electrophoresis. The wearable RPA microdevice could have a high impact on DNA amplification in instrument-free and resource-limited settings.


Subject(s)
Body Temperature , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acids , Wearable Electronic Devices , COVID-19/diagnosis , DNA , Escherichia coli O157 , Humans , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/isolation & purification , Recombinases/chemistry , Recombinases/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
10.
ACS Appl Mater Interfaces ; 14(3): 4714-4724, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35081679

ABSTRACT

Surface-enhanced Raman scattering (SERS)-based biosensors are promising tools for virus nucleic acid detection. However, it remains challenging for SERS-based biosensors using a sandwiching strategy to detect long-chain nucleic acids such as nucleocapsid (N) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because the extension of the coupling distance (CD) between the two tethered metallic nanostructures weakens electric field and SERS signals. Herein, we report a magnetic-responsive substrate consisting of heteoronanostructures that controls the CD for ultrasensitive and highly selective detection of the N gene of SARS-CoV-2. Significantly, our findings show that this platform reversibly shortens the CD and enhances SERS signals with a 10-fold increase in the detection limit from 1 fM to 100 aM, compared to those without magnetic modulation. The optical simulation that emulates the CD shortening process confirms the CD-dependent electric field strength and further supports the experimental results. Our study provides new insights into designing a stimuli-responsive SERS-based platform with tunable hot spots for long-chain nucleic acid detection.


Subject(s)
Biosensing Techniques/methods , COVID-19/diagnosis , Nucleic Acids/isolation & purification , SARS-CoV-2/isolation & purification , COVID-19/genetics , COVID-19/virology , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Nucleic Acids/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Silver/chemistry , Spectrum Analysis, Raman/methods
11.
J Sep Sci ; 45(1): 172-184, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34453482

ABSTRACT

The separation and purification of biomacromolecules such as nucleic acid is a perpetual topic in separation processes and bioengineering (fine chemicals, biopharmaceutical engineering, diagnostics, and biological characterization). In principle, the solid-phase extraction for nucleic acid exhibits efficient phase separation, low pollution risk, and small sample demand, compared to the conventional liquid-phase extraction. Herein, solid-phase extraction methods are systematically reviewed to outline research progress and explore additional solid-phase sorbents and devices for novel, flexible, and high-efficiency nucleic acid separation processes. The functional materials capture nucleic acid, magnetic and magnetic-free solid-phase extraction methods, separation device design and optimization, and high-throughput automatable applications based on high-performance solid-phase extraction are summarized. Finally, the current challenges and promising topics are discussed.


Subject(s)
Nucleic Acids/isolation & purification , Solid Phase Extraction/methods , Adsorption , Magnetics/instrumentation , Magnetics/methods , Nucleic Acids/genetics , Solid Phase Extraction/instrumentation
12.
Ann Clin Lab Sci ; 51(6): 741-749, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34921026

ABSTRACT

OBJECTIVE: The ongoing COVID-19 pandemic caused by SARS-CoV-2 has challenged diagnostic laboratories to re-examine traditional methods for collecting specimens and sample types used in molecular testing. Our goal was to demonstrate that saliva can be used for detecting SARS-CoV-2 and correlates well with established molecular methods using nasopharyngeal (NP) swabs. METHODS: We examined use of a saliva collection device in conjunction with a laboratory-developed real-time reverse transcription-polymerase chain reaction (LDPCR) method for detecting SARS-CoV-2 in a symptomatic population and compared results with 2 US Food and Drug Administration (FDA)-approved methods (emergency use authorization [EUA]) that use specimens from NP swabs. RESULTS: The sensitivity of LDPCR compared with the reference methods was 75.0% (21/28); specificity, 98.1% (104/106). When cycle threshold values were compared between paired specimens using the LDPCR and a EUA reverse transcription PCR method, both targeting the open-reading frame gene, the mean value for saliva was 4.66 cycles higher than for NP specimens. CONCLUSION: Use of self-collected saliva in conjunction with an LDPCR for SARS-CoV-2 compared favorably with 2 FDA EUA methods using NP swabs. The use of an alternative sample type and assay method will aid in expanding the availability of testing during the ongoing COVID-19 pandemic.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/genetics , Specimen Handling/methods , Adult , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19 Nucleic Acid Testing/methods , Data Accuracy , Diagnostic Tests, Routine/methods , Female , Humans , Laboratories , Male , Middle Aged , Molecular Diagnostic Techniques/methods , Nucleic Acids/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/pathogenicity , Saliva/chemistry
13.
Anal Biochem ; 635: 114445, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34740597

ABSTRACT

The outbreak of COVID-19 makes epidemic prevention and control become a growing global concern. Nucleic acid amplification testing (NAAT) can realize early and rapid detection of targets, thus it is considered as an ideal approach for detecting pathogens of severe acute infectious diseases. Rapid acquisition of high-quality target nucleic acid is the prerequisite to ensure the efficiency and accuracy of NAAT. Herein, we proposed a simple system in which magnetic nanoparticles (MNPs) based nucleic acid extraction was carried out in a plastic Pasteur pipette. Different from traditional approaches, this proposed system could be finished in 15 min without the supports of any electrical instruments. Furthermore, this system was superior to traditional MNPs based extraction methods in the aspects of rapid extraction and enhancing the sensitivity of a NAAT method, accelerated denaturation bubbles mediated strand exchange amplification (ASEA), to the pathogens from various artificial samples. Finally, this Pasteur pipette system was utilized for pathogen detection in actual samples of throat swabs, cervical swabs and gastric mucosa, the diagnosis results of which were identical with that provided by hospital. This rapid, easy-performing and efficiency extraction method ensures the applications of the NAAT in pathogen detection in regions with restricted resources.


Subject(s)
Infections/diagnosis , Magnetite Nanoparticles , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/isolation & purification , COVID-19/diagnosis , Helicobacter Infections/diagnosis , Helicobacter pylori/isolation & purification , Human papillomavirus 16/isolation & purification , Humans , Papillomavirus Infections/diagnosis , Pneumonia, Mycoplasma/diagnosis , SARS-CoV-2/isolation & purification
14.
J Clin Lab Anal ; 35(11): e23998, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34599840

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19), is detected using real-time RT-PCR. However, there are limitations pertaining to quality control, particularly with respect to establishing quality control measures for extraction of viral nucleic acids. Here, we investigated the quality control measures for the various processes using an extrinsic quality control substance and quality control charts. METHODS: An extrinsic quality control substance was added to the sample, and then, real-time RT-PCR was performed. Samples with negative test results and the corresponding data were analyzed; a quality control chart was created and examined. RESULTS: Data analysis and the quality control charts indicated that SARS-CoV-2 could be reliably detected using real-time RT-PCR, even when different nucleic acid extraction methods were used or when different technicians were employed. CONCLUSION: With the use of quality control substances, it is possible to achieve quality control throughout the process-from nucleic acid extraction to nucleic acid detection-even upon using varying extraction methods. Further, generating quality control charts would guarantee the stable detection of SARS-CoV-2.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , COVID-19/diagnosis , Nucleic Acids/isolation & purification , Quality Control , SARS-CoV-2/genetics , Humans , Retrospective Studies , SARS-CoV-2/isolation & purification
15.
Carbohydr Polym ; 267: 118136, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119125

ABSTRACT

Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.


Subject(s)
Cellulose/chemistry , Magnetite Nanoparticles/chemistry , Animals , Drug Carriers/chemistry , Enzymes, Immobilized/chemistry , Humans , Magnetic Phenomena , Magnetic Resonance Imaging , Nucleic Acids/isolation & purification , Smart Materials/chemistry , Solid Phase Extraction/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Wound Healing
16.
Theranostics ; 11(14): 6735-6745, 2021.
Article in English | MEDLINE | ID: mdl-34093850

ABSTRACT

Background: Nucleic acid (NA)-based diagnostics enable a rapid response to various diseases, but current techniques often require multiple labor-intensive steps, which is a major obstacle to successful translation to a clinical setting. Methods: We report on a surface-engineered single-chamber device for NA extraction and in situ amplification without sample transfer. Our system has two reaction sites: a NA extraction chamber whose surface is patterned with micropillars and a reaction chamber filled with reagents for in situ polymerase-based NA amplification. These two sites are integrated in a single microfluidic device; we applied plastic injection molding for cost-effective, mass-production of the designed device. The micropillars were chemically activated via a nature-inspired silica coating to possess a specific affinity to NA. Results: As a proof-of-concept, a colorimetric pH indicator was coupled to the on-chip analysis of NA for the rapid and convenient detection of pathogens. The NA enrichment efficiency was dependent on the lysate incubation time, as diffusion controls the NA contact with the engineered surface. We could detect down to 1×103 CFU by the naked eye within one hour of the total assay time. Conclusion: We anticipate that the surface engineering technique for NA enrichment could be easily integrated as a part of various types of microfluidic chips for rapid and convenient nucleic acid-based diagnostics.


Subject(s)
DNA, Bacterial/analysis , Lab-On-A-Chip Devices , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/isolation & purification , Colorimetry/methods , Escherichia coli/genetics , Escherichia coli/isolation & purification , Humans , Microfluidics/methods , Microscopy, Electron, Scanning , Polycarboxylate Cement/chemistry , Real-Time Polymerase Chain Reaction , Silicon Dioxide/chemistry , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Surface Properties
17.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200162, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33813891

ABSTRACT

Traditional molecular methods and omics-techniques across molluscan taxonomy increasingly inform biology of Mollusca. Recovery of DNA and RNA for such studies is challenged by common biological properties of the highly diverse molluscs. Molluscan biomineralization, adhesive structures and mucus involve polyphenolic proteins and mucopolysaccharides that hinder DNA extraction or copurify to inhibit enzyme-catalysed molecular procedures. DNA extraction methods that employ the detergent hexadecyltrimethylammoniumbromide (CTAB) to remove these contaminants importantly facilitate molecular-level study of molluscs. Molluscan pigments may stain DNA samples and interfere with spectrophotometry, necessitating gel electrophoresis or fluorometry for accurate quantification. RNA can reliably be extracted but the 'hidden break' in 28S rRNA of molluscs (like most protostomes) causes 18S and 28S rRNA fragments to co-migrate electrophoretically. This challenges the standard quality control based on the ratio of 18S and 28S rRNA, developed for deuterostome animals. High-AT content in molluscan rRNA prevents the effective purification of polyadenylated mRNA. Awareness of these matters aids the continuous expansion of molecular malacology, enabling work also with museum specimens and next-generation sequencing, with the latter imposing unprecedented demands on DNA quality. Alternative methods to extract nucleic acids from molluscs are available from literature and, importantly, from communications with others who study the molecular biology of molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Subject(s)
Genomics/methods , Mollusca/chemistry , Nucleic Acids/isolation & purification , Animals , DNA/isolation & purification , RNA/isolation & purification
18.
Article in English | MEDLINE | ID: mdl-33401049

ABSTRACT

Nucleic acid amplification tests (NAATs) are a crucial diagnostic and monitoring tool for infectious diseases. A key procedural step for NAATs is sample preparation: separating and purifying target nucleic acids from crude biological samples prior to nucleic acid amplification and detection. Traditionally, sample preparation has been performed with liquid- or solid-phase extraction, both of which require multiple trained user steps and significant laboratory equipment. The challenges associated with sample preparation have limited the dissemination of NAAT point-of-care diagnostics in low resource environments, including low- and middle-income countries. We report on a paper-based device for purification of nucleic acids from whole blood using isotachophoresis (ITP) for point-of-care NAATs. We show successful extraction and purification of target nucleic acids from large volumes (33 µL) of whole human blood samples with no moving parts and few user steps. Our device utilizes paper-based buffer reservoirs to fully contain the liquid ITP buffers and does not require complex filling procedures, instead relying on the natural wicking of integrated paper membranes. We perform on-device blood fractionation via filtration to remove leukocytes and erythrocytes from our sample, followed by integrated on-paper proteolytic digestion of endogenous plasma proteins to allow for successful isotachophoretic extraction. Paper-based isotachophoresis purifies and concentrates target nucleic acids that are added directly to recombinase polymerase amplification (RPA) reactions. We show consistent amplification of input copy concentrations of as low as 3 × 103 copies nucleic acid per mL input blood with extraction and purification taking only 30 min. By employing a paper architecture, we are able to incorporate these processes in a single, robust, low-cost design, enabling the direct processing of large volumes of blood, with the only intermediate user steps being the removal and addition of tape. Our device represents a step towards a simple, fully integrated sample preparation system for nucleic acid amplification tests at the point-of-care.


Subject(s)
Isotachophoresis/instrumentation , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Nucleic Acids , Electrophoresis, Polyacrylamide Gel , Equipment Design , Humans , Isotachophoresis/methods , Nucleic Acid Amplification Techniques , Nucleic Acids/blood , Nucleic Acids/chemistry , Nucleic Acids/isolation & purification , Paper
19.
Methods Mol Biol ; 2226: 27-38, 2021.
Article in English | MEDLINE | ID: mdl-33326091

ABSTRACT

Different methods have been described for the preservation of biopsy or resection samples. In the routine pathology, the cheapest and most commonly used is fixation of samples in formalin and embedding in paraffin (FFPE samples). This method preserves tissue samples for a very long time and is suitable for several specialized techniques such as fluorescence in situ hybridization (FISH) and immunohistochemistry, the latter being the most frequent and often the only additional method used for establishment of final diagnosis. However, in light of the growing need of next-generation sequencing and microarray technologies that are often very helpful to establish and/or confirm diagnoses in the field of pediatric sarcoma (including Ewing sarcoma), preservation of high-quality and quantity of nucleic acids (DNA/RNA) is desirable. Herein, we describe how to ideally preserve samples, as well as how to proceed to isolate nucleic acids for successful subsequent molecular assays with a special focus on Ewing sarcoma samples.


Subject(s)
Immunohistochemistry , Molecular Diagnostic Techniques , Sarcoma, Ewing/diagnosis , Tissue Preservation , Biopsy , Cryopreservation , Humans , Immunohistochemistry/methods , Molecular Diagnostic Techniques/methods , Nucleic Acids/isolation & purification , Paraffin Embedding , Preservation, Biological , Sarcoma, Ewing/pathology , Tissue Fixation , Tissue Preservation/methods
20.
Methods Mol Biol ; 2178: 251-284, 2021.
Article in English | MEDLINE | ID: mdl-33128755

ABSTRACT

Nowadays, monolithic stationary phases, because of their special morphology and enormous permeability, are widely used for the development and realization of fast dynamic and static processes based on the mass transition between liquid and solid phases. These are liquid chromatography, solid-phase synthesis, microarrays, flow-through enzyme reactors, etc. High-performance liquid chromatography on monoliths, including the bioaffinity mode, represents unique technique appropriate for fast and efficient separation of biological (macro)molecules of different sizes and shapes (proteins, nucleic acids, peptides), as well as such supramolecular systems as viruses.In the edited chapter, the examples of the application of commercially available macroporous monoliths for modern affinity processing are presented. In particular, the original methods developed for efficient isolation and fractionation of monospecific antibodies from rabbit blood sera, the possibility of simultaneous affinity separation of protein G and serum albumin from human serum, the isolation of recombinant products, such as protein G and tissue plasminogen activator, respectively, are described in detail. The suggested and realized multifunctional fractionation of polyclonal pools of antibodies by the combination of several short monolithic columns (disks) with different affinity functionalities stacked in the same cartridge represents the original and practically valuable method that can be used in biotechnology. In addition, macroporous monoliths were adapted to the immobilization of such different enzymes as polynucleotide phosphorylase, ribonuclease A, α-chymotrypsin, chitinolytic biocatalysts, ß-xylosidase, and ß-xylanase. The possibility of use of immobilized enzyme reactors based on monoliths for different purposes is demonstrated.


Subject(s)
Antibodies , Nucleic Acids , Peptides , Viruses , Antibodies/chemistry , Antibodies/isolation & purification , Chromatography, High Pressure Liquid , Nucleic Acids/chemistry , Nucleic Acids/isolation & purification , Peptides/chemistry , Peptides/isolation & purification , Viruses/chemistry , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...