Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
J Virol ; 98(2): e0190023, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289107

ABSTRACT

The endosomal sorting complex required for transport (ESCRT) is a conserved protein machine mediating membrane remodeling and scission. In the context of viral infection, different components of the ESCRT-III complex, which serve as the core machinery to catalyze membrane fission, are involved in diverse viruses' entry, replication, and/or budding. However, the interplay between ESCRT-III and viral factors in the virus life cycle, especially for that of large enveloped DNA viruses, is largely unknown. Recently, the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 were determined for entry and/or egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Here, we identified the final three ESCRT-III components Chm7, Ist1, and Vps2A of Spodoptera frugiperda. Overexpression of the dominant-negative forms of these proteins or RNAi downregulation of their transcripts significantly reduced infectious budded viruses (BVs) production of AcMNPV. Quantitative PCR together with confocal and transmission electron microscopy analysis revealed that these proteins were required for internalization and trafficking of BV during entry and egress of nucleocapsids. In infected Sf9 cells, nine ESCRT-III components were distributed on the nuclear envelope and plasma membrane, and except for Chm7, the other components were also localized to the intranuclear ring zone. Y2H and BiFC analysis revealed that 42 out of 64 BV-related proteins including 35 BV structural proteins and 7 non-BV structural proteins interacted with single or multiple ESCRT-III components. By further mapping the interactome of 64 BV-related proteins, we established the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress.IMPORTANCEFrom archaea to eukaryotes, the endosomal sorting complex required for transport (ESCRT)-III complex is hijacked by many enveloped and nonenveloped DNA or RNA viruses for efficient replication. However, the mechanism of ESCRT-III recruitment, especially for that of large enveloped DNA viruses, remains elusive. Recently, we found the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 are necessary for the entry and/or egress of budded viruses (BVs) of Autographa californica multiple nucleopolyhedrovirus. Here, we demonstrated that the other three ESCRT-III components Chm7, Ist1, and Vps2A play similar roles in BV infection. By determining the subcellular localization of ESCRT-III components in infected cells and mapping the interaction of nine ESCRT-III components and 64 BV-related proteins, we built the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress. These studies provide a fundamental basis for understanding the mechanism of the ESCRT-mediated membrane remodeling for replication of baculoviruses.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Host Microbial Interactions , Nucleopolyhedroviruses , Spodoptera , Viral Proteins , Virus Internalization , Virus Release , Animals , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/ultrastructure , Nucleopolyhedroviruses/metabolism , Nucleopolyhedroviruses/physiology , Nucleopolyhedroviruses/ultrastructure , Spodoptera/cytology , Spodoptera/metabolism , Spodoptera/ultrastructure , Spodoptera/virology , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/ultrastructure , Virus Replication , Biological Transport , Sf9 Cells
2.
Neotrop Entomol ; 51(4): 637-640, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35020182

ABSTRACT

A novel baculovirus observed to infect Automeris liberia (Cramer) (bullseye moth) is here described. Caterpillars of A. liberia with symptoms of viral infection were collected from African oil palm plantations in Tailândia, PA, Brazil. Macerated caterpillars were then offered to caterpillars of Automeris cinctistriga (Felder & Rogenhoper), leading to viral symptoms and death before pupation. A transmission electron microscope was used for virus ultrastructural identification. The presence of viral occlusion bodies (OBs) containing multiple nucleocapsids was observed and such features are compatible with Alphabaculovirus (Baculoviridae). Molecular detection by PCR with primers for polyhedrin gene (polh) and for late expression factor-8 gene (lef-8), confirmed that this isolate belonged to Alphabaculovirus genus. To our knowledge, this is the first record of a baculovirus isolated from or associated to Automeris. The name Automeris liberia nucleopolyhedrovirus (AuliNPV) is proposed for the new virus.


Subject(s)
Lepidoptera , Moths , Nucleopolyhedroviruses , Animals , Baculoviridae , Brazil , Liberia , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/ultrastructure , Phylogeny
3.
J Gen Virol ; 101(12): 1300-1304, 2020 12.
Article in English | MEDLINE | ID: mdl-32894214

ABSTRACT

Determination of the virulence of occlusion bodies (OBs), which are the horizontal transmission structures of nucleopolyhedroviruses (NPVs), is an important area of baculovirology. A method for inoculating an insect with an isolated OB was developed using Helicoverpa armigera nucleopolyhedrovirus (HearNPV) infection of second instar Helicoverpa armigera larvae as a model NPV-host pathosystem. In this novel method, laser capture microdissection (LCM) was used to directly catapult single OBs onto the surface of insect diet in bioassay containers. Since exposure via the natural oral horizontal transmission route of each larva to a single OB was established and not subject to chance variation, the method facilitated determination of the insect mortality rate (4.8%) associated with exposure to single HearNPV OBs. Droplet feeding bioassays confirmed that the novel method did not reduce OB virulence. The LCM method sets a foundation for virulence and genetic diversity studies based on single NPV OBs.


Subject(s)
Laser Capture Microdissection/methods , Moths/virology , Nucleopolyhedroviruses/pathogenicity , Occlusion Bodies, Viral/physiology , Animals , Larva/virology , Nucleopolyhedroviruses/ultrastructure , Occlusion Bodies, Viral/ultrastructure , Virulence
4.
Viruses ; 11(10)2019 10 11.
Article in English | MEDLINE | ID: mdl-31614674

ABSTRACT

Bombyx mori nucleopolyhedrovirus (BmNPV) is closely related to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) with over ~93% amino acid sequence identity. However, their host ranges are essentially nonoverlapping. The mechanism of BmNPV entry into host cells is completely different from that of AcMNPV, and whether the entry mechanism difference relates to the host range remains unclear. BmNPV produces an abortive infection in nonhost cells due to virion nuclear transportation failure. Here, we performed a detailed study by increasing BmNPV infection in Sf21 cells with the aid of methyl-beta-cyclodextrin (MßCD). We found that low-concentration MßCD incubation efficiently activates membrane ruffling in Sf21 cells, which mediates the increase in BmNPV infection. Interestingly, MßCD incubation after virion internalization also increases the infection, which suggests that macropinocytosis is involved in BmNPV infection in Sf21 cells after virion internalization. Further study revealed that clathrin-mediated endocytosis (CME) is employed by BmNPV to facilitate entry into Sf21 cells, and chlorpromazine application abolishes BmNPV infection in cells incubated both with and without MßCD. Based on these studies, we show that BmNPV enters Sf21 cells via CME and that parallel induction of macropinocytosis facilitates BmNPV infection in Sf21 cells. This study reveals the mechanism of BmNPV entry into Sf21 cells and provides clues for improving BmNPV infections in nonpermissive cells.


Subject(s)
Nucleopolyhedroviruses , Pinocytosis/drug effects , Virus Internalization/drug effects , beta-Cyclodextrins/pharmacology , Animals , Bombyx/virology , Clathrin-Coated Vesicles/virology , Host Microbial Interactions , Host Specificity , Moths , Nucleopolyhedroviruses/pathogenicity , Nucleopolyhedroviruses/ultrastructure , Sf9 Cells
5.
Virol Sin ; 34(6): 712-721, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31292829

ABSTRACT

Our previous study has shown that the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) p48 (ac103) gene is essential for the nuclear egress of nucleocapsids and the formation of occlusion-derived virions (ODVs). However, the exact role of p48 in the morphogenesis of ODVs remains unknown. In this study, we demonstrated that p48 was required for the efficient formation of intranuclear microvesicles. To further understand its functional role in intranuclear microvesicle formation, we characterized the distribution of the P48 protein, which was found to be associated with the nucleocapsid and envelope fractions of both budded virions and ODVs. In AcMNPV-infected cells, P48 was predominantly localized to nucleocapsids in the virogenic stroma and the nucleocapsids enveloped in ODVs, with a limited but discernible distribution in the plasma membrane, nuclear envelope, intranuclear microvesicles, and ODV envelope. Furthermore, coimmunoprecipitation assays showed that among the viral proteins required for intranuclear microvesicle formation, P48 associated with Ac93 in the absence of viral infection.


Subject(s)
Cell Nucleus/virology , Genes, Viral , Nucleocapsid Proteins/metabolism , Nucleopolyhedroviruses/physiology , Animals , Cell Membrane/metabolism , Cell Nucleus/ultrastructure , Gene Knockout Techniques , Larva/virology , Moths/virology , Nuclear Envelope/metabolism , Nucleocapsid/metabolism , Nucleocapsid Proteins/genetics , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/ultrastructure , Occlusion Bodies, Viral/metabolism , Protein Binding , Sf9 Cells , Virion/metabolism
6.
Virol Sin ; 34(6): 701-711, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31317397

ABSTRACT

Baculoviridae is a family of large DNA viruses that specifically infect insects. It contains four genera, Alpha-, Beta-, Gamma-, and Deltabaculovirus. Alphabaculovirus is further divided into Group I and II, and Group I appears to be emerged most recently among all baculoviruses. Interestingly, there are 12 Group I specific genes that are only found in this lineage. Studying these genes is helpful to understand how baculoviruses evolved. Here, we reported the functional analyzing results of ac73, a function unknown Group I specific gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) which is the type species of baculovirus. The AC73 protein encoded by ac73 was found to be expressed during the late stage of infection and incorporated into the nucleocapsids of budded virus (BV) and occlusion-derived virus (ODV). In infected cells, AC73 resided mainly in the ring zone region of the nucleus, and appeared to be assembled into occlusion bodies (OBs). The ac73 knockout and repaired viruses were constructed and studied by in vitro and in vivo infection. Although ac73 was not essential for BV and ODV or OB formation, the BV titer and viral infectivity in insect larvae of ac73 knockout AcMNPV decreased by about 5-8 and 3-4 fold compared to those of wild type virus, respectively, suggesting ac73 contributed to infectious BV production and viral infectivity in vivo. This research provides new insight into the function of this Group I specific gene.


Subject(s)
Genes, Viral , Nucleocapsid Proteins/metabolism , Nucleopolyhedroviruses/physiology , Animals , Cell Nucleus/metabolism , Gene Knockout Techniques , Larva/virology , Nucleocapsid/metabolism , Nucleocapsid Proteins/genetics , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/pathogenicity , Nucleopolyhedroviruses/ultrastructure , Occlusion Bodies, Viral/metabolism , Sf9 Cells , Spodoptera/virology , Transcription, Genetic , Virus Replication
7.
Viruses ; 11(7)2019 07 03.
Article in English | MEDLINE | ID: mdl-31277203

ABSTRACT

Baculoviruses are capable of infecting a wide diversity of insect pests. In the 1990s, the Dione juno nucleopolyhedrovirus (DijuNPV) was isolated from larvae of the major passionfruit defoliator pest Dione juno juno (Nymphalidae) and described at ultrastructural and pathological levels. In this study, the complete genome sequence of DijuNPV was determined and analyzed. The circular genome presents 122,075 bp with a G + C content of 50.9%. DijuNPV is the first alphabaculovirus completely sequenced that was isolated from a nymphalid host and may represent a divergent species. It appeared closely related to Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) and other Choristoneura-isolated group I alphabaculoviruses. We annotated 153 open reading frames (ORFs), including a set of 38 core genes, 26 ORFs identified as present in lepidopteran baculoviruses, 17 ORFs unique in baculovirus, and several auxiliary genes (e.g., bro, cathepsin, chitinase, iap-1, iap-2, and thymidylate kinase). The thymidylate kinase (tmk) gene was present fused to a dUTPase (dut) gene in other baculovirus genomes. DijuNPV likely lost the dut portion together with the iap-3 homolog. Overall, the genome sequencing of novel alphabaculoviruses enables a wide understanding of baculovirus evolution.


Subject(s)
Butterflies/virology , Nucleopolyhedroviruses/classification , Nucleopolyhedroviruses/isolation & purification , Passiflora , Phylogeny , Animals , Baculoviridae/classification , Baculoviridae/genetics , Base Composition , Base Sequence , Biological Evolution , Chromosome Mapping , Genome, Viral , Larva/virology , Moths/virology , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/ultrastructure , Open Reading Frames , Sequence Analysis, DNA , Whole Genome Sequencing
8.
Viruses ; 11(7)2019 06 26.
Article in English | MEDLINE | ID: mdl-31247912

ABSTRACT

Isolates of the alphabaculovirus species, Chrysodeixis includens nucleopolyhedrovirus, have been identified that produce polyhedral occlusion bodies and infect larvae of the soybean looper, Chrysodeixis includens. In this study, we report the discovery and characterization of a novel C. includens-infecting alphabaculovirus, Chrysodeixis includens nucleopolyhedrovirus #1 (ChinNPV#1), that produces tetrahedral occlusion bodies. In bioassays against C. includens larvae, ChinNPV #1 exhibited a degree of pathogenicity that was similar to that of other ChinNPV isolates, but killed larvae more slowly. The host range of ChinNPV#1 was found to be very narrow, with no indication of infection occurring in larvae of Trichoplusia ni and six other noctuid species. The ChinNPV#1 genome sequence was determined to be 130,540 bp, with 126 open reading frames (ORFs) annotated but containing no homologous repeat (hr) regions. Phylogenetic analysis placed ChinNPV#1 in a clade with other Group II alphabaculoviruses from hosts of lepidopteran subfamily Plusiinae, including Chrysodeixis chalcites nucleopolyhedrovirus and Trichoplusia ni single nucleopolyhedrovirus. A unique feature of the ChinNPV#1 genome was the presence of two full-length copies of the he65 ORF. The results indicate that ChinNPV#1 is related to, but distinct from, other ChinNPV isolates.


Subject(s)
Moths/virology , Nucleopolyhedroviruses/isolation & purification , Viral Proteins/genetics , Amino Acid Sequence , Animals , Gene Dosage , Genome, Viral , Larva/virology , Nucleopolyhedroviruses/classification , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/ultrastructure , Occlusion Bodies, Viral/genetics , Occlusion Bodies, Viral/metabolism , Occlusion Bodies, Viral/ultrastructure , Phylogeny , Sequence Alignment , Glycine max/parasitology , Viral Proteins/metabolism
9.
J Invertebr Pathol ; 164: 23-31, 2019 06.
Article in English | MEDLINE | ID: mdl-30930188

ABSTRACT

Baculovirus natural populations are known to be genetically heterogeneous and such genotypic diversity could have implications in the performance of biocontrol agents. The Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) has been widely used to control the velvetbean caterpillar, Anticarsia gemmatalis, in Brazil. In the present work, morphological and molecular analyses as well as the biological activity of AgMNPV genotypes derived from a Brazilian field isolate (AgMNPV-79) were carried out. The existence of genotypic variants in the population was confirmed by DNA restriction analysis. Although difference in virulence was observed among the variants, the most (Ag79-01) and the least (AgL-16) virulent clones do not show any morphological and cytopathological changes when compared to the most studied isolate (AgMNPV-2D). The complete genome analysis of the two viral clones showed the presence of single open reading frames (ORFs) of the pe-38 and he65 genes, which contrasts with the two split ORFs present in the genome of the AgMNPV-2D isolate. The viral clone AgL-16 has many variations in the ie-2 and pe-38 genes, which are transcription regulatory genes responsible for the regulation of viral early gene expression during insect cell infection. Furthermore, other genes showed alterations like the odv-e56, which have an essential role in the maturation and envelopment of the ODVs, and bro-a and bro-b genes which were fused to form a single ORF. For the Ag79-01, although the total number of single nucleotide variants (SNVs) was more prominent in the pe-38 gene, its genome showed very few modifications in comparison to the AgMNPV-2D genome.


Subject(s)
Lepidoptera/virology , Nucleopolyhedroviruses , Virulence/genetics , Animals , Biological Assay , Cell Line , Genes, Viral , Genetic Variation , Genome, Viral , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/pathogenicity , Nucleopolyhedroviruses/ultrastructure , Pest Control, Biological , Phylogeny , Sf9 Cells
10.
J Virol ; 93(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30760565

ABSTRACT

The budded virus of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infects insect cells through mainly clathrin-mediated endocytosis. However, the cell entry pathway of AcMNPV remains unclear. In this study, by using population-based analysis of single-virus tracking and electron microscopy, we investigated the internalization, fusion behavior, and endocytic trafficking of AcMNPV. AcMNPV internalization into host insect cells was facilitated by actin polymerization and dynamin. After incorporation into early endosomes, the AcMNPV envelope fused with the membranes of early endosome, allowing for nucleocapsid release into the cytoplasm. Microtubules were implicated in the bidirectional and long-range transport of virus-containing endosomes. In addition, microtubule depolymerization reduced the motility of virus-bearing early endosomes, impairing the progression of infection beyond enlarged early endosomes. These findings demonstrated that AcMNPV internalization was facilitated by actin polymerization in a dynamin-dependent manner, and nucleocapsid release occurred in early endosomes in a microtubule-dependent manner. This study provides mechanistic and kinetic insights into AcMNPV infection and enhance our understanding of the infection pathway of baculoviruses.IMPORTANCE Baculoviruses are used widely as environmentally benign pesticides, protein expression systems, and potential mammalian gene delivery vectors. Despite the significant application value, little is known about the cell entry and endocytic trafficking pathways of baculoviruses. In this study, we demonstrated that the alphabaculovirus AcMNPV exhibited actin- and microtubule-dependent transport for nucleocapsid release predominantly from within early endosomes. In contrast to AcMNPV transduction in mammalian cells, its infection in host insect cells is facilitated by actin polymerization for internalization and microtubules for endocytic trafficking within early endosomes, implying that AcMNPV exhibits cell type specificity in the requirement of the cytoskeleton network. In addition, experimental depolymerization of microtubules impaired the progression of infection beyond enlarged early endosomes. This is the first study that dissects the cell entry pathway of baculoviruses in host cells at the single-particle level, which advances our understanding of the early steps of baculovirus entry.


Subject(s)
Nucleocapsid , Nucleopolyhedroviruses , Virus Internalization , Actins/metabolism , Animals , Biological Transport, Active , Dynamins/metabolism , Endocytosis , Endosomes/metabolism , Endosomes/ultrastructure , Endosomes/virology , Insect Proteins/metabolism , Microscopy, Electron, Transmission , Microtubules/metabolism , Microtubules/ultrastructure , Nucleocapsid/metabolism , Nucleocapsid/ultrastructure , Nucleopolyhedroviruses/physiology , Nucleopolyhedroviruses/ultrastructure , Sf9 Cells , Spodoptera
11.
Virology ; 526: 61-71, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30342303

ABSTRACT

In group I nucleopolyhedrovirus such as Bombyx mori nucleopolyhedrovirus (BmNPV), the biological functions of F-like protein (Bm14) still remain elusive. Here, we found that the deletion of Bm14 reduced the production rate of infectious budded viruses in cell culture, delayed the lethal time of infected larvae by approximately 26 h, and produced less occlusion bodies (OBs). Scanning electron microscopy demonstrated that its disruption affected OB morphogenesis, forming irregular OBs with a pitted surface and irregular profiles. Moreover, almost 45% less DNA was present in OBs produced by Bm14-null virus. This reduction in DNA content was consistent with fewer virions embedded into OBs. The titers of occlusion-derived viruses was 7.5 times less in mutant OBs. Western blot analysis revealed that Bm14 is present in the envelope of both BV and ODV. Taken together, Bm14 is a viral factor that affects OB morphogenesis and production, and the number of ODVs occluded into OBs.


Subject(s)
Bombyx/virology , Nucleopolyhedroviruses/physiology , Nucleopolyhedroviruses/ultrastructure , Viral Envelope Proteins/metabolism , Virus Replication , Animals , Cell Line , DNA, Viral/metabolism , Gene Deletion , Gene Expression Regulation, Viral , Larva/virology , Microscopy, Electron , Nucleopolyhedroviruses/genetics , Viral Envelope Proteins/deficiency , Viral Envelope Proteins/genetics , Virion/metabolism , Virion/ultrastructure
12.
Virology ; 527: 12-20, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30447410

ABSTRACT

Bombyx mori nucleopolyhedrovirus (BmNPV) orf11 (bm11) is a highly conserved gene with unknown function. It is homologous to AcMNPV orf19. In this study, a bm11 knockout virus was constructed and its role was investigated. Expression analysis indicated that bm11 is a late gene and confocal microscopy analysis demonstrated that Bm11 localizes predominantly in the nuclear ring zone at the late phase of infection. The bm11 deletion did not affect budded virus (BV) production or viral genome replication, but markedly reduced the production of occlusion bodies (OBs) and the embedding of occlusion-derived viruses (ODVs). Bio-assays showed that Bm11 was involved in BmNPV infectivity in vivo by direct injection. In conclusion, our results demonstrated that although Bm11 is not essential for BV production or mature ODV formation, it affects OB production and ODV occlusion.


Subject(s)
Bombyx/virology , Nucleopolyhedroviruses/physiology , Viral Proteins/metabolism , Virus Replication , Animals , Cell Line , Gene Knockout Techniques , Larva/virology , Nuclear Envelope/metabolism , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/pathogenicity , Nucleopolyhedroviruses/ultrastructure , Transcription, Genetic , Viral Proteins/genetics , Viral Structural Proteins/biosynthesis , Virion/metabolism
13.
J Gen Virol ; 99(5): 717-729, 2018 05.
Article in English | MEDLINE | ID: mdl-29624165

ABSTRACT

Bombyx mori nucleopolyhedrovirus (BmNPV) orf133 (bm133) and orf134 (bm134), the orthologues of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac4 and ac5, are two adjacent genes with opposite transcriptional orientations and are highly conserved in all sequenced group I nucleopolyhedroviruses (NPVs). A double bm133-bm134 knockout bacmid was generated to enable the functional study of each gene independently or together. Compared with wild-type and double-repair viruses, deletion of both bm133 and bm134 did not affect budded virus (BV) production or viral DNA replication in transfected BmN cells. Electron microscopy revealed that the double knockout did not affect nucleocapsid assembly, virus-induced intranuclear microvesicle formation or occlusion-derived virus (ODV) production, but the number of virions embedded in the polyhedra decreased significantly. Further investigations showed that disruption of either gene was unable to recover the defect of ODV occlusion, suggesting that Bm133 and Bm134 are indispensable to the embedding of ODVs into polyhedra. Confocal microscopy analysis showed that Bm133 and Bm134 distributed throughout the whole cell during viral infection and Bm134 concentrated on the mature polyhedra in lysed cells. These results suggest that although Bm133 and Bm134 are not essential for BV or ODV development, they play vital roles in polyhedra morphogenesis.


Subject(s)
Nucleopolyhedroviruses/genetics , Open Reading Frames/genetics , Virus Assembly/genetics , Virus Replication , Animals , Cell Line , Gene Knockout Techniques , Microscopy, Electron , Nucleocapsid/genetics , Nucleocapsid/physiology , Nucleocapsid/ultrastructure , Nucleopolyhedroviruses/physiology , Nucleopolyhedroviruses/ultrastructure , Sf9 Cells , Viral Proteins , Virus Release
14.
Virol Sin ; 33(2): 187-196, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29549650

ABSTRACT

Effective oral infection is set off by interaction of a group of conserved per os infectivity factors (PIFs) with larval midgut columnar epithelial cells. We constructed pseudotyped viruses by substituting pif1, pif2 or pif3 genes of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) with their homologs from Mamestra bracissae multiple nucleopolyhedrovirus and tested their infectivity to tissue culture cells and to larvae. Transfection and infection assays revealed that all recombinant viruses generated infectious budded virus in both cell culture and in larvae. Electron microscopy showed synthesized occlusion body and occlusion derived virus (ODV) were morphologically indistinguishable from those of the parental virus. By contrast, feeding assays revealed that pseudotyped viruses could not rescue oral infectivity except for pif3 pseudotyped virus that only partially rescued oral infectivity but at a mortality rate much lower than that of the parental HearNPV. Consistent with the bioassay result, PIF complex was detected in ODVs of pif3 pseudotyped virus only but not in pif1 or pif2 pseudotyped viruses. Our results suggest that PIF complex is essential for oral infectivity, and in the formation of the PIF complex, PIF1, 2 are virus-specific while PIF3 does not appear to be as specific and can function in heterologous environment, albeit to a much more limited extent.


Subject(s)
Epithelial Cells/virology , Lepidoptera/virology , Nucleopolyhedroviruses/growth & development , Nucleopolyhedroviruses/genetics , Animals , Biological Assay , Gastrointestinal Tract/virology , Larva/virology , Microscopy, Electron , Nucleopolyhedroviruses/ultrastructure , Recombination, Genetic , Survival Analysis , Transfection , Virion/ultrastructure , Virulence , Virus Diseases
15.
Virus Genes ; 54(2): 297-310, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29204787

ABSTRACT

A baculovirus isolate from a USDA Forest Service collection was characterized by electron microscopy and analysis of its genome sequence. The isolate, formerly referred to as Pseudoletia (Mythimna) sp. nucleopolyhedrovirus #7 (MyspNPV#7), was determined by barcoding PCR to derive from the host species Mythimna unipuncta (true armyworm) and was renamed Mythimna unipuncta nucleopolyhedrovirus #7 (MyunNPV#7). The occlusion bodies (OBs) and virions exhibited a size and morphology typical for OBs produced by the species of genus Alphabaculovirus, with occlusion-derived virions consisting of 2-5 nucleocapsids within a single envelope. The MyunNPV#7 genome was determined to be 148,482 bp with a 48.58% G+C nucleotide distribution. A total of 159 ORFs of 150 bp or larger were annotated in the genome sequence, including the 38 core genes of family Baculoviridae. The genome contained six homologous repeat regions (hrs) consisting of multiple copies of a 34-bp imperfect palindrome. Phylogenetic inference from concatenated baculovirus core gene amino acid sequence alignments placed MyunNPV#7 with group II alphabaculoviruses isolated from other armyworm and cutworm host species of lepidopteran family Noctuidae. MyunNPV#7 could be distinguished from other viruses in this group on the basis of differences in gene content and order. Pairwise nucleotide distances suggested that MyunNPV#7 represents a distinct species in Alphabaculovirus. The MyunNPV#7 genome was found to contain two copies of the late expression factor-7 (lef-7) gene, a feature not reported for any other baculovirus genome to date. Both copies of lef-7 encoded an F-box domain, which is required for the function of LEF-7 in baculovirus DNA replication.


Subject(s)
Genes, Viral , Genome, Viral , Lepidoptera/virology , Nucleopolyhedroviruses/genetics , Animals , Base Composition , Cluster Analysis , DNA Barcoding, Taxonomic , Inclusion Bodies, Viral/ultrastructure , Nucleopolyhedroviruses/isolation & purification , Nucleopolyhedroviruses/ultrastructure , Open Reading Frames , Phylogeny , Polymerase Chain Reaction , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Virion/ultrastructure
16.
Viruses ; 9(10)2017 10 21.
Article in English | MEDLINE | ID: mdl-29065456

ABSTRACT

Operophtera brumata nucleopolyhedrovirus (OpbuNPV) infects the larvae of the winter moth, Operophtera brumata. As part of an effort to explore the pesticidal potential of OpbuNPV, an isolate of this virus from Massachusetts (USA)-OpbuNPV-MA-was characterized by electron microscopy of OpbuNPV occlusion bodies (OBs) and by sequencing of the viral genome. The OBs of OpbuNPV-MA consisted of irregular polyhedra and contained virions consisting of a single rod-shaped nucleocapsid within each envelope. Presumptive cypovirus OBs were also detected in sections of the OB preparation. The OpbuNPV-MA genome assembly yielded a circular contig of 119,054 bp and was found to contain little genetic variation, with most polymorphisms occurring at a frequency of < 6%. A total of 130 open reading frames (ORFs) were annotated, including the 38 core genes of Baculoviridae, along with five homologous repeat (hr) regions. The results of BLASTp and phylogenetic analysis with selected ORFs indicated that OpbuNPV-MA is not closely related to other alphabaculoviruses. Phylogenies based on concatenated core gene amino acid sequence alignments placed OpbuNPV-MA on a basal branch lying outside other alphabaculovirus clades. These results indicate that OpbuNPV-MA represents a divergent baculovirus lineage that appeared early during the diversification of genus Alphabaculovirus.


Subject(s)
Baculoviridae/classification , Larva/virology , Nucleopolyhedroviruses/chemistry , Nucleopolyhedroviruses/genetics , Phylogeny , Animals , Baculoviridae/genetics , Biological Control Agents , Genetic Variation , Genome, Viral , High-Throughput Nucleotide Sequencing , Microscopy, Electron , Moths/virology , Nucleopolyhedroviruses/classification , Nucleopolyhedroviruses/ultrastructure , Open Reading Frames
17.
J Virol ; 91(23)2017 12 01.
Article in English | MEDLINE | ID: mdl-28904203

ABSTRACT

Baculoviruses encode a conserved sulfhydryl oxidase, P33, which is necessary for budded virus (BV) production and multinucleocapsid occlusion-derived virus (ODV) formation. Here, the structural and functional relationship of P33 was revealed by X-ray crystallography, site-directed mutagenesis, and functional analysis. Based on crystallographic characterization and structural analysis, a series of P33 mutants within three conserved regions, i.e., the active site, the dimer interface, and the R127-E183 salt bridge, were constructed. In vitro experiments showed that mutations within the active site and dimer interface severely impaired the sulfhydryl oxidase activity of P33, while the mutations in the salt bridge had a relatively minor influence. Recombinant viruses containing mutated P33 were constructed and assayed in vivo Except for the active-site mutant AXXA, all other mutants produced infectious BVs, although certain mutants had a decreased BV production. The active-site mutant H114A, the dimer interface mutant H227D, and the salt bridge mutant R127A-E183A were further analyzed by electron microscopy and bioassays. The occlusion bodies (OBs) of mutants H114A and R127A-E183A had a ragged surface and contained mostly ODVs with a single nucleocapsid. The OBs of all three mutants contained lower numbers of ODVs and had a significantly reduced oral infectivity in comparison to control virus. Crystallographic analyses further revealed that all three regions may coordinate with one another to achieve optimal function of P33. Taken together, our data revealed that all the three conserved regions are involved in P33 activity and are crucial for virus morphogenesis and peroral infectivity.IMPORTANCE Sulfhydryl oxidase catalyzes disulfide bond formation of substrate proteins. P33, a baculovirus-encoded sulfhydryl oxidase, is different from other cellular and viral sulfhydryl oxidases, bearing unique features in tertiary and quaternary structure organizations. In this study, we found that three conserved regions, i.e., the active site, dimer interface, and the R127-E183 salt bridge, play important roles in the enzymatic activity and function of P33. Previous observations showed that deletion of p33 results in a total loss of budded virus (BV) production and in morphological changes in occlusion-derived virus (ODV). Our study revealed that certain P33 mutants lead to occlusion bodies (OBs) with a ragged surface, decreased embedded ODVs, and reduced oral infectivity. Interestingly, some P33 mutants with impaired ODV/OB still retained BV productivity, indicating that the impacts on BV and on ODV/OB are two distinctly different functions of P33, which are likely to be performed via different substrate proteins.


Subject(s)
Nucleopolyhedroviruses/enzymology , Viral Proteins/chemistry , Viral Proteins/metabolism , Animals , Catalytic Domain , Crystallography, X-Ray , Microscopy, Electron , Mutagenesis, Site-Directed , Nucleocapsid/metabolism , Nucleopolyhedroviruses/physiology , Nucleopolyhedroviruses/ultrastructure , Oxidoreductases/metabolism , Sf9 Cells , Spodoptera , Viral Proteins/genetics , Virion/genetics , Virus Assembly , Virus Replication
18.
J Virol ; 91(20)2017 10 15.
Article in English | MEDLINE | ID: mdl-28747507

ABSTRACT

In eukaryotic cells, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) proteins comprise the minimal machinery that triggers fusion of transport vesicles with their target membranes. Comparative studies revealed that genes encoding the components of the SNARE system are highly conserved in yeast, insect, and human genomes. Upon infection of insect cells by the virus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the transcript levels of most SNARE genes initially were upregulated. We found that overexpression of dominant-negative (DN) forms of NSF or knockdown of the expression of NSF, the key regulator of the SNARE system, significantly affected infectious AcMNPV production. In cells expressing DN NSF, entering virions were trapped in the cytoplasm or transported to the nucleus with low efficiency. The presence of DN NSF also moderately reduced trafficking of the viral envelope glycoprotein GP64 to the plasma membrane but dramatically inhibited production of infectious budded virions (BV). Transmission electron microscopy analysis of infections in cells expressing DN NSF revealed that progeny nucleocapsids were retained in a perinuclear space surrounded by inner and outer nuclear membranes. Several baculovirus conserved (core) proteins (Ac76, Ac78, GP41, Ac93, and Ac103) that are important for infectious budded virion production were found to associate with NSF, and NSF was detected within the assembled BV. Together, these data indicate that the cellular SNARE system is involved in AcMNPV infection and that NSF is required for efficient entry and nuclear egress of budded virions of AcMNPV.IMPORTANCE Little is known regarding the complex interplay between cellular factors and baculoviruses during viral entry and egress. Here, we examined the cellular SNARE system, which mediates the fusion of vesicles in healthy cells, and its relation to baculovirus infection. Using a DN approach and RNA interference knockdown, we demonstrated that a general disruption of the SNARE machinery significantly inhibited the production of infectious BV of AcMNPV. The presence of a DN NSF protein resulted in low-efficiency entry of BV and the retention of progeny nucleocapsids in the perinuclear space during egress. Combined with these effects, we also found that several conserved (core) baculovirus proteins closely associate with NSF, and these results suggest their involvement in the egress of BV. Our findings are the first to demonstrate that the SNARE system is required for efficient entry of BV and nuclear egress of progeny nucleocapsids of baculoviruses.


Subject(s)
N-Ethylmaleimide-Sensitive Proteins/genetics , N-Ethylmaleimide-Sensitive Proteins/metabolism , Nucleopolyhedroviruses/physiology , SNARE Proteins/metabolism , Virus Internalization , Virus Release , Active Transport, Cell Nucleus , Animals , Cell Line , Cell Nucleus/virology , Cytoplasm/virology , Humans , Microscopy, Electron, Transmission , N-Ethylmaleimide-Sensitive Proteins/deficiency , Nucleocapsid/metabolism , Nucleopolyhedroviruses/ultrastructure , RNA Interference , SNARE Proteins/genetics , Sf9 Cells , Spodoptera/cytology , Spodoptera/virology , Viral Envelope Proteins/metabolism , Virion , Virus Assembly , Yeasts/metabolism
19.
J Virol Methods ; 242: 58-66, 2017 04.
Article in English | MEDLINE | ID: mdl-28065747

ABSTRACT

In the present investigation, silver nanoparticles (AgNPs) interactions with Bombyx mori Nuclear Polyhedrosis virus (BmNPV) were characterized using High-Resolution Scanning Electron Microscopy (HR-SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Atomic Force Microcopy (AFM) and Confocal Microscope (CM). HR-SEM study reveals that the biosynthesized AgNPs have interacted with BmNPV and were found on the surface. TEM micrographs of normal and viral polyhedra treated with AgNPs showed that the nanoparticles were accumulated in the membrane and it was noted that some of the AgNPs successfully penetrated the membrane by reaching the capsid of BmNPV. AFM and confocal microscopy studies reveal that the disruption in the shell membrane tends to lose its stability due to exposure of AgNPs to BmNPV.


Subject(s)
Bombyx/virology , Metal Nanoparticles , Nucleopolyhedroviruses/ultrastructure , Silver , Animals , Metal Nanoparticles/chemistry , Microscopy, Atomic Force , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nucleopolyhedroviruses/drug effects , Nucleopolyhedroviruses/isolation & purification , Nucleopolyhedroviruses/metabolism , Silver/pharmacology , Spirulina/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...