Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.996
Filter
1.
Molecules ; 29(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38792251

ABSTRACT

The FDA has approved several drugs based on the fluorinated nucleoside pharmacophore, and numerous drugs are currently in clinical trials. Fluorine-containing nucleos(t)ides offer significant antiviral and anticancer activity. The insertion of a fluorine atom, either in the base or sugar of nucleos(t)ides, alters its electronic and steric parameters and transforms the lipophilicity, pharmacodynamic, and pharmacokinetic properties of these moieties. The fluorine atom restricts the oxidative metabolism of drugs and provides enzymatic metabolic stability towards the glycosidic bond of the nucleos(t)ide. The incorporation of fluorine also demonstrates additional hydrogen bonding interactions in receptors with enhanced biological profiles. The present article discusses the synthetic methodology and antiviral activities of FDA-approved drugs and ongoing fluoro-containing nucleos(t)ide drug candidates in clinical trials.


Subject(s)
Antiviral Agents , Halogenation , Nucleosides , Nucleotides , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Fluorine/chemistry , Nucleosides/chemistry , Nucleosides/chemical synthesis , Nucleosides/pharmacology , Nucleotides/chemistry , Nucleotides/pharmacology , Nucleotides/chemical synthesis , Clinical Trials as Topic
2.
J Pharmacol Exp Ther ; 389(2): 229-242, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38453526

ABSTRACT

The drug-drug interaction (DDI) between amiodarone (AMIO) and sofosbuvir (SOF), a direct-acting hepatitis-C NS5B nucleotide polymerase inhibitor, has been associated with severe bradyarrhythmia in patients. Recent cryo-EM data has revealed that this DDI occurs at the α-subunit of L-type Cav channels, with AMIO binding at the fenestration site and SOF [or MSD nucleotide inhibitor #1 (MNI-1): analog of SOF] binding at the central cavity of the conductance pathway. In this study, we investigated the DDI between 21 AMIO analogs, including dronedarone (DRON) and MNI-1 (or SOF) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hCav1.2 models. Our findings indicate that among the tested AMIO analogs in hiPSC-CMs at clinically relevant concentrations, only three analogs (AA-9, AA-10, and AA-17) were able to effectively substitute for AMIO in this DDI with 1 µM MNI-1. This highlights the importance of the diethyl amino group of AMIO for interacting with MNI-1. In the hCav1.2 model, desethylamiodarone (AA-12) demonstrated synergy with 90 µM MNI-1, while three other analogs with modifications to the position of the diethyl amino group or removal of iodo groups showed weaker synergy with 90 µM MNI-1. Interestingly, DRON did not exhibit any interaction with 270 µM SOF or 90 µM MNI-1, suggesting that it could safely replace AMIO in patients requiring SOF treatment, other clinically relevant differences considered. Overall, our functional data align with the cryo-EM data, highlighting that this DDI is dependent on the structure of AMIO and cardiomyocyte resting membrane potential. SIGNIFICANCE STATEMENT: Our findings point to specific residues in the AMIO molecule playing a critical role in the DDI between AMIO and MNI-1 (SOF analog), confirming cryo-EM results. Applied at clinically relevant AMIO's concentrations or projected MNI-1's concentrations at the resting potentials mimicking the sinoatrial node, this DDI significantly slowed down or completely inhibited the beating of hiPSC-CMs. Finally, these in vitro results support the safe replacement of AMIO (Cordarone) with DRON (Multaq) for patients requiring SOF treatment, other clinical caveats considered.


Subject(s)
Amiodarone , Induced Pluripotent Stem Cells , Humans , Amiodarone/pharmacology , Amiodarone/metabolism , Nucleotides/pharmacology , Induced Pluripotent Stem Cells/metabolism , Drug Interactions , Structure-Activity Relationship
3.
J Med Chem ; 67(4): 2864-2883, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38345794

ABSTRACT

We report on the synthesis and characterization of three types of nucleoside tetraphosphate derivatives 4-9 acting as potential prodrugs of d4T nucleotides: (i) the δ-phosph(on)ate is modified by two hydrolytically stable alkyl residues 4 and 5; (ii) the δ-phosph(on)ate is esterified covalently by one biodegradable acyloxybenzyl moiety and a nonbioreversible moiety 6 and 7; or (iii) the δ-phosphate of nucleoside tetraphosphate is masked by two biodegradable prodrug groups 8 and 9. We were able to prove the efficient release of d4T triphosphate (d4TTP, (i)), δ-monoalkylated d4T tetraphosphates (20 and 24, (ii)), and d4T tetraphosphate (d4T4P, (iii)), respectively, by chemical or enzymatic processes. Surprisingly, δ-dialkylated d4T tetraphosphates, δ-monoalkylated d4T tetraphosphates, and d4T4P were substrates for HIV-RT. Remarkably, the antiviral activity of TetraPPPPro-prodrug 7 was improved by 7700-fold (SI 5700) as compared to the parent d4T in CEM/TK- cells, denoting a successful cell membrane passage of these lipophilic prodrugs and an intracellular delivery of the nucleotide metabolites.


Subject(s)
Anti-HIV Agents , HIV-1 , Prodrugs , Anti-HIV Agents/chemistry , Nucleosides/chemistry , Stavudine , HIV-1/metabolism , Nucleotides/pharmacology , Prodrugs/chemistry
4.
Poult Sci ; 103(4): 103509, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387289

ABSTRACT

Light pollution is a potential risk factor for intestinal health. Tryptophan plays an important role in the inhibition of intestinal inflammation. However, the mechanism of tryptophan in alleviating intestinal inflammation caused by long photoperiod is still unclear. This study investigated the anti-inflammatory effect of dietary tryptophan on intestinal inflammatory damage induced by long photoperiod and its potential mechanism in broiler chickens. We found that dietary tryptophan mitigated long photoperiod-induced intestinal tissue inflammatory damage and inhibited the activation of Nucleotide-Binding Oligomerization Domain, Leucine-Rich Repeat and Pyrin Domain-Containing 3 inflammasome. Moreover, dietary tryptophan significantly increased the relative abundance of Faecalibacterium, Enterococcus, and Lachnospiraceae_NC2004_group were significantly decreased the relative abundance of Ruminococcus_torques_group and norank_f_UCG-010 under the condition of long photoperiod (P < 0.05). The results of tryptophan targeted metabolomics show that tryptophan significantly increased indole-3-acetic acid (IAA) and indole-3 lactic acid (ILA), and significantly decreased xanthurenic acid (XA) under long photoperiod (P < 0.05). In conclusion, the results indicated that dietary tryptophan alleviates intestinal inflammatory damage caused by long photoperiod via the inhibition of Nucleotide-Binding Oligomerization Domain, Leucine-Rich Repeat and Pyrin Domain-Containing 3 inflammasome activation, which was mediated by tryptophan metabolites. Therefore, tryptophan supplementation could be a promising way to protect the intestine health under the condition of long photoperiod.


Subject(s)
Gastrointestinal Microbiome , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Chickens/physiology , Tryptophan/pharmacology , Tryptophan/metabolism , Leucine/pharmacology , Photoperiod , Inflammation/veterinary , Nucleotides/pharmacology
5.
J Neurosci ; 43(47): 7902-7912, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37739795

ABSTRACT

Chronic alcohol exposure leads to a neuroinflammatory response involving activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome and proinflammatory cytokine production. Acute ethanol (EtOH) exposure activates GABAergic synapses in the central and basolateral amygdala (BLA) ex vivo, but whether this rapid modulation of synaptic inhibition is because of an acute inflammatory response and alters anxiety-like behavior in male and female animals is not known. Here, we tested the hypotheses that acute EtOH facilitates inhibitory synaptic transmission in the BLA by activating the NLRP3 inflammasome-dependent acute inflammatory response, that the alcohol-induced increase in inhibition is cell type and sex dependent, and that acute EtOH in the BLA reduces anxiety-like behavior. Acute EtOH application at a binge-like concentration (22-44 mm) stimulated synaptic GABA release from putative parvalbumin (PV) interneurons onto BLA principal neurons in ex vivo brain slices from male, but not female, rats. The EtOH facilitation of synaptic inhibition was blocked by antagonists of the Toll-like receptor 4 (TLR4), the NLRP3 inflammasome, and interleukin-1 receptors, suggesting it was mediated by a rapid local neuroinflammatory response in the BLA. In vivo, bilateral injection of EtOH directly into the BLA produced an acute concentration-dependent reduction in anxiety-like behavior in male but not female rats. These findings demonstrate that acute EtOH in the BLA regulates anxiety-like behavior in a sex-dependent manner and suggest that this effect is associated with presynaptic facilitation of parvalbumin-expressing interneuron inputs to BLA principal neurons via a local NLRP3 inflammasome-dependent neuroimmune response.SIGNIFICANCE STATEMENT Chronic alcohol exposure produces a neuroinflammatory response, which contributes to alcohol-associated pathologies. Acute alcohol administration increases inhibitory synaptic signaling in the brain, but the mechanism for the rapid alcohol facilitation of inhibitory circuits is unknown. We found that acute ethanol at binge-like concentrations in the basolateral amygdala (BLA) facilitates GABA release from parvalbumin-expressing (PV) interneuron synapses onto principal neurons in ex vivo brain slices from male rats and that intra-BLA ethanol reduces anxiety-like behavior in vivo in male rats, but not female rats. The ethanol (EtOH) facilitation of inhibition in the BLA is mediated by Toll-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation and proinflammatory IL-1ß signaling, which suggests a rapid NLRP3 inflammasome-dependent neuroimmune cascade that plays a critical role in acute alcohol intoxication.


Subject(s)
Anxiety , Basolateral Nuclear Complex , Ethanol , Animals , Female , Male , Rats , Anxiety/chemically induced , Anxiety/metabolism , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Ethanol/toxicity , gamma-Aminobutyric Acid/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleotides/metabolism , Nucleotides/pharmacology , Parvalbumins/metabolism , Toll-Like Receptor 4/metabolism
6.
Zhonghua Gan Zang Bing Za Zhi ; 31(8): 880-885, 2023 Aug 20.
Article in Chinese | MEDLINE | ID: mdl-37723072

ABSTRACT

Nucleoside analogues and nucleotide analogues can not only achieve long-term viral suppression in the treatment of most CHB patients but also have a positive impact on other CHB therapeutic goals and an improved prognosis. A certain difference can be observed in the impact of nucleotide analogues such as TDF and TAF and nucleoside analogues such as ETV on the clinical outcomes of CHB. Studies on the mechanism of action indicate that apart from inhibiting the direct antiviral effects of HBV reverse transcriptase, these two categories of drugs exhibit distinct impacts on immune-related signaling pathways, gene expression, genome stability, and other non-antiviral mechanisms. This article reviews the evidence on the potential non-antiviral mechanism of action of nucleoside analogues and nucleotide analogues and proposes a preliminary explanation for the observation trend of nucleotide analogues having a comparative advantage in clinical outcomes in CHB patients based on the latest research advancement.


Subject(s)
Hepatitis B, Chronic , Nucleosides , Humans , Nucleosides/pharmacology , Nucleosides/therapeutic use , Nucleotides/pharmacology , Nucleotides/therapeutic use , Hepatitis B, Chronic/drug therapy
7.
J Med Chem ; 66(17): 12163-12184, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37647547

ABSTRACT

We report on the synthesis and evaluation of three different nucleotide prodrug systems: (i) nucleoside triphosphate analogues in which the γ-phosph(on)ate has two different lipophilic nonbioreversible alkyl residues with d4TDP as the released nucleotide analogue; (ii) nucleoside diphosphate analogues bearing a bioreversible and a stable ß-alkyl group; or (iii) nucleoside diphosphate analogues bearing two nonhydrolysable lipophilic alkyl moieties. The delivery of d4TDP (for the triphosphate precursor) and d4TMP (for the diphosphate precursor) was demonstrated in CD4+ T-lymphocyte CEM cell extracts as well as in phosphate buffer saline (PBS). In primer extension assay, we found that γ-dialkylated d4TTP derivatives and d4TDP were accepted as substrates by HIV-RT. Several of these compounds were observed to be extremely active against HIV-1/2 replication in HIV-infected cells. A more than 45,000-fold increase in the anti-HIV activity was detected for compound 18a as compared to the parent d4T which results in a selectivity index value of 37,000.


Subject(s)
Diphosphates , Nucleosides , Polyphosphates , Nucleotides/pharmacology
8.
Adv Healthc Mater ; 12(29): e2302187, 2023 11.
Article in English | MEDLINE | ID: mdl-37607115

ABSTRACT

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of non-small cell lung cancer (NSCLC) still face challenges of acquired resistance and non-negligible side effects. To overcome these limitations, a biodegradable coordination polymer using guanine deoxynucleotide and ferrous iron (dGNP) is developed for targeted delivery of EGFR-TKIs. dGNPs can efficiently target nucleoside transporters in tumor cells that are regulated by fasting-mimicking diet (FMD). Meanwhile, FMD can augment the therapeutic efficacy of EGFR-TKIs by suppressing EGFR tyrosine kinase phosphorylation and related downstream pathways. In vivo results demonstrate that EGFR-TKIs-laden dGNPs combined with FMD treatment exhibit superior antitumor efficacy and reduced side effect. This study provides an innovative approach to enhance the therapeutic efficacy of EGFR-TKIs through nucleotide nanocarrier and metabolic modulation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Nucleotides/pharmacology , ErbB Receptors , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm
9.
Cardiovasc Res ; 119(13): 2368-2381, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37523743

ABSTRACT

AIMS: Vascular calcification (VC) is prevalent in pathological processes such as diabetes, chronic kidney disease (CKD), and atherosclerosis, but effective therapies are still lacking by far. Canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor, has been approved for the treatment of type 2 diabetes mellitus and exhibits beneficial effects against cardiovascular disease. However, the effect of CANA on VC remains unknown. In this study, we hypothesize that CANA protects against VC. METHODS AND RESULTS: Micro-computed tomography analysis and alizarin red staining revealed that CANA treatment prevented aortic calcification in CKD rats and in VitD3-overloaded mice. Moreover, CANA alleviated the calcification of rat and human arterial rings. Alizarin red staining revealed that calcification of rat and human vascular smooth muscle cells (VSMCs) was attenuated by CANA treatment and this phenomenon was confirmed by calcium content assay. In addition, CANA downregulated the expression of osteogenic differentiation markers Runx2 and BMP2. Of interest, qPCR and western blot analysis revealed that CANA downregulated the expression of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3), and the downstream signalling molecules Caspase-1 and IL-1ß in VSMCs as well. Both NLRP3 inhibitor MCC950 and knockdown of NLRP3 by siRNA independently resulted in decreased calcification of VSMCs. By contrast, activation of NLRP3 exacerbated VSMC calcification, and this effect was prevented by the addition of CANA. CONCLUSIONS: Our study for the first time demonstrates that CANA exerts a protective effect on VC at least partially via suppressing the NLRP3 signalling pathway. Therefore, supplementation of CANA as well as inhibition of NLRP3 inflammasome presents a potential therapy for VC.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Vascular Calcification , Rats , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Canagliflozin/pharmacology , Leucine/metabolism , Leucine/pharmacology , Osteogenesis , Diabetes Mellitus, Type 2/metabolism , Pyrin Domain , X-Ray Microtomography , Vascular Calcification/drug therapy , Vascular Calcification/genetics , Vascular Calcification/prevention & control , Renal Insufficiency, Chronic/metabolism , Glucose/metabolism , Nucleotides/metabolism , Nucleotides/pharmacology , Sodium/metabolism , Myocytes, Smooth Muscle/metabolism
10.
Nutrients ; 15(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37299496

ABSTRACT

As one of the most important barriers in the body, the intestinal barrier is a key factor in maintaining human health. Ageing of the intestine is a degenerative process that is closely associated with a variety of poor health conditions in the elderly. Inflammation and the immune system are anti-ageing targets that can regulate the function of the intestine. Nucleotides (NTs) are involved in important physiological and biochemical reactions in the body, but there are few studies about their effect on the ageing intestine. This paper examines the role of exogenous NTs in the ageing intestine. For this purpose, we used senescence-accelerated mouse prone-8 (SAMP8) mice and senescence-accelerated mouse resistant 1 (SAMR1) mice for the experiment, and randomly divided the mice into NTs-free, Normal Control, NTs-low, NTs-medium, NTs-high, and SAMR1 groups. After 9 months of intervention, we collected the colon tissue of mice for testing. In our study, exogenous NTs could increase bodyweight of mice during ageing and improve the morphological structure of the intestine, and we found that NTs could promote the secretion of intestinal protective factors, such as TFF3 and TE. Furthermore, supplementation with NTs suppressed intestinal inflammation and improved intestinal immunity, possibly by activating the p38 signaling pathway. These results suggest that exogenous NTs are able to maintain the health condition of the ageing intestine.


Subject(s)
Aging , Nucleotides , Mice , Humans , Animals , Aged , Nucleotides/pharmacology , Aging/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Signal Transduction
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(5): 521-526, 2023 May 15.
Article in Chinese | MEDLINE | ID: mdl-37272180

ABSTRACT

OBJECTIVES: To study the effect of procalcitonin (PCT) on lipopolysaccharide (LPS)-induced expression of the pyroptosis-related proteins nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) and caspase-1 in human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs were induced by LPS to establish a model of sepsis-induced inflammatory endothelial cell injury. The experiment was divided into two parts. In the first part, HUVECs were randomly divided into four groups: normal control, LPS (1 µg/mL), PCT (10 ng/mL), and LPS+PCT (n=3 each). In the second part, HUVECs were randomly grouped: normal control, LPS, and LPS+PCT of different concentrations (0.1, 1, 10, and 100 ng/mL) (n=3 each). Quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression levels of NLRP3 and caspase-1 in each group. RESULTS: In the first experiment: compared with the normal control group, the PCT, LPS, and LPS+PCT groups had significantly upregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05); compared with the LPS group, the LPS+PCT group had significantly downregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05). In the second experiment: compared with those in the LPS group, the mRNA and protein expression levels of NLRP3 and caspase-1 in the LPS+PCT of different concentrations groups were significantly downregulated in a concentration-dependent manner (P<0.05). CONCLUSIONS: LPS can promote the expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs, while PCT can inhibit the LPS-induced expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs in a concentration-dependent manner.


Subject(s)
Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Caspase 1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Procalcitonin , Nucleotides/metabolism , Nucleotides/pharmacology
12.
Int J Mycobacteriol ; 12(2): 122-128, 2023.
Article in English | MEDLINE | ID: mdl-37338471

ABSTRACT

Background: The atpE gene is a target for bedaquiline (Bdq)-activating drug action and mutations in the gene are fixed to cause resistance. However, changes in the amino acid of ATPase have been little reported from a clinical setting since it was first used in 2015 in Indonesia. This study aims to observe the sequence of nucleotide and amino acid from rifampicin-resistant (RR) pulmonary tuberculosis (TB) patients, both new and relapse cases treated with Bdq. Methods: This is an observational descriptive study performed in the referral hospital Dr Soetomo, Indonesia, at August 2022-November 2022. We performed Sanger sequencing and comparison of the atpE gene from the patient's sputum from August to November 2022 to wild-type Mycobacterium tuberculosis H37Rv and species of mycobacteria using BioEdit version 7.2 and BLAST NCBI software. We also conducted an epidemiological study on patients' characteristics. This study uses a descriptive statistic to show the percentage of data. Results: The total of 12 M. tuberculosis isolates showed that the atpE gene sequence was 100% similar to the wild-type M. tuberculosis H37Rv. No single-nucleotide polymorphisms or mutations were found, and no change in the amino acid structure at position 28 (Asp), 61 (Glu), 63 (Ala), and 66 (Ile). The percentage identity of atpE to M. tuberculosis H37Rv and M. tuberculosis complex was 99%-100%, while the similarity with the other mycobacteria species other than TB (Mycobacterium avium complex, Mycobacterium abscessus, and Mycobacterium lepraemurium) was 88%-91%. Conclusions: This study revealed M. tuberculosis -atpE gene sequence profile of RR-TB patients had no mutations, as the specific gene region, and no change in the amino acid structure. Therefore, Bdq can be continually trusted as an effective anti-tubercular drug in RR-TB patients.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Indonesia , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Nucleotides/pharmacology , Microbial Sensitivity Tests
13.
Proc Natl Acad Sci U S A ; 120(27): e2301170120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37364094

ABSTRACT

Bacterial antimicrobial resistance (AMR) is among the most significant challenges to current human society. Exposing bacteria to antibiotics can activate their self-saving responses, e.g., filamentation, leading to the development of bacterial AMR. Understanding the molecular changes during the self-saving responses can reveal new inhibition methods of drug-resistant bacteria. Herein, we used an online microfluidics mass spectrometry system for real-time characterization of metabolic changes of bacteria during filamentation under the stimulus of antibiotics. Significant pathways, e.g., nucleotide metabolism and coenzyme A biosynthesis, correlated to the filamentation of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) were identified. A cyclic dinucleotide, c-di-GMP, which is derived from nucleotide metabolism and reported closely related to bacterial resistance and tolerance, was observed significantly up-regulated during the bacterial filamentation. By using a chemical inhibitor, ebselen, to inhibit diguanylate cyclases which catalyzes the synthesis of c-di-GMP, the minimum inhibitory concentration of ceftriaxone against ESBL-E. coli was significantly decreased. This inhibitory effect was also verified with other ESBL-E. coli strains and other beta-lactam antibiotics, i.e., ampicillin. A mutant strain of ESBL-E. coli by knocking out the dgcM gene was used to demonstrate that the inhibition of the antibiotic resistance to beta-lactams by ebselen was mediated through the inhibition of the diguanylate cyclase DgcM and the modulation of c-di-GMP levels. Our study uncovers the molecular changes during bacterial filamentation and proposes a method to inhibit antibiotic-resistant bacteria by combining traditional antibiotics and chemical inhibitors against the enzymes involved in bacterial self-saving responses.


Subject(s)
Bacterial Infections , Escherichia coli Infections , Humans , Escherichia coli , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Nucleotides/pharmacology , Escherichia coli Infections/microbiology
14.
Neuropeptides ; 100: 102346, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37178626

ABSTRACT

Botulinum toxin type A (BoNT/A) induces direct analgesic effects in neuropathic pain by inhibiting the release of substance P, calcitonin gene-related peptide (CGRP) and glutamate. Vesicular nucleotide transporter (VNUT) was responsible for the storage and release of ATP in vivo, and one of the mechanisms underlying neuropathic pain is VNUT-dependent release of extracellular ATP from dorsal horn neurons. However, the analgesic effect of BoNT/A by affecting the expression of VNUT remained largely unknown. Thus, in this study, we aimed to elucidate the antinociceptive potency and analgesic mechanism of BoNT/A in chronic constriction injury of the sciatic nerve (CCI) induced neuropathic pain. Our results showed that a single intrathecal injection of 0.1 U BoNT/A seven days after CCI surgery produced significant analgesic activity and decreased the expression of VNUT in the spinal cord of CCI rats. Similarly, BoNT/A inhibited the CCI-induced increase in ATP content in the rat spinal cord. Overexpression of VNUT in the spinal cord of CCI-induced rats markedly reversed the antinociceptive effect of BoNT/A. Furthermore, 33 U/mL BoNT/A dramatically reduced the expression of VNUT in pheochromocytoma (PC12) cells but overexpressing SNAP-25 increased VNUT expression in PC12 cells. Our current study is the first to demonstrate that BoNT/A is involved in neuropathic pain by regulating the expression of VNUT in the spinal cord in rats.


Subject(s)
Botulinum Toxins, Type A , Neuralgia , Rats , Animals , Botulinum Toxins, Type A/therapeutic use , Botulinum Toxins, Type A/metabolism , Botulinum Toxins, Type A/pharmacology , Nucleotides/metabolism , Nucleotides/pharmacology , Constriction , Neuralgia/drug therapy , Neuralgia/metabolism , Spinal Cord/metabolism , Sciatic Nerve , Analgesics/therapeutic use , Analgesics/pharmacology , Adenosine Triphosphate/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism
15.
J Thromb Thrombolysis ; 55(4): 626-633, 2023 May.
Article in English | MEDLINE | ID: mdl-36961669

ABSTRACT

Several purinergic receptors have been identified on platelets which are involved in hemostatic and thrombotic processes. The aim of the present study was to investigate the effects of uridine and its nucleotides on platelet aggregation and hemostasis in platelet-rich plasma (PRP) and whole blood. The effects of uridine, UMP, UDP, and UTP at different final concentrations (1 to 1000 µM) on platelet aggregation were studied using an aggregometer. In PRP samples, platelet aggregation was induced by ADP, collagen and epinephrine 3 min after addition of uridine, UMP, UDP, UTP and saline (as a control). All thromboelastogram experiments were performed at 1000 µM final concentrations of uridine and its nucleotides in whole blood. UDP and UTP were also tested in thromboelastogram with PRP. Our results showed that UDP, and especially UTP, inhibited ADP- and collagen-induced aggregation in a concentration-dependent manner. In whole blood thromboelastogram experiments, UDP stimulated clot formation while UTP suppressed clot formation. When thromboelastogram experiments were repeated with PRP, UTP's inhibitory effect on platelets was confirmed, while UDP's stimulated clot forming effect disappeared. Collectively, our data showed that UTP inhibited platelet aggregation in a concentration-dependent manner and suppressed clot formation. On the other hand, UDP exhibited distinct effects on whole blood or PRP in thromboelastogram. These data suggest that the difference on effects of UTP and UDP might have arisen from the different receptors that they stimulate and warrant further investigation with regard to their in vivo actions on platelet aggregation and hemostasis.


Subject(s)
Adenosine Triphosphate , Nucleotides , Humans , Nucleotides/pharmacology , Uridine/pharmacology , Uridine Triphosphate/pharmacology , Adenosine Triphosphate/pharmacology , Platelet Aggregation , Uridine Diphosphate/pharmacology , Collagen/pharmacology , Uridine Monophosphate/pharmacology
16.
J Med Chem ; 66(6): 3995-4008, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36898000

ABSTRACT

Treatment of triple-negative breast cancer (TNBC) has long been a medical challenge because of the lack of effective therapeutic targets. Targeting lipid, carbohydrate, and nucleotide metabolism pathways has recently been proven as a promising option in view of three heterogeneous metabolic-pathway-based TNBC subtypes. Here, we present a multimodal anticancer platinum(II) complex, named Pt(II)caffeine, with a novel mode of action involving simultaneous mitochondrial damage, inhibition of lipid, carbohydrate, and nucleotide metabolic pathways, and promotion of autophagy. All these biological processes eventually result in a strong suppression of TNBC MDA-MB-231 cell proliferation both in vitro and in vivo. The results indicate that Pt(II)caffeine, influencing cellular metabolism at multiple levels, is a metallodrug with increased potential to overcome the metabolic heterogeneity of TNBC.


Subject(s)
Platinum , Triple Negative Breast Neoplasms , Humans , Platinum/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Caffeine/therapeutic use , Cell Line, Tumor , Carbohydrates/pharmacology , Nucleotides/pharmacology , Lipids/pharmacology , Cell Proliferation , Apoptosis
17.
J Neurosci ; 43(12): 2140-2152, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36813577

ABSTRACT

Ovulation disorders are a serious problem for humans and livestock. In female rodents, kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) are responsible for generating a luteinizing hormone (LH) surge and consequent ovulation. Here, we report that adenosine 5-triphosphate (ATP), a purinergic receptor ligand, is a possible neurotransmitter that stimulates AVPV kisspeptin neurons to induce an LH surge and consequent ovulation in rodents. Administration of an ATP receptor antagonist (PPADS) into the AVPV blocked the LH surge in ovariectomized (OVX) rats treated with a proestrous level of estrogen (OVX + high E2) and significantly reduced the ovulation rate in proestrous ovary-intact rats. AVPV ATP administration induced a surge-like LH increase in OVX + high E2 rats in the morning. Importantly, AVPV ATP administration could not induce the LH increase in Kiss1 KO rats. Furthermore, ATP significantly increased intracellular Ca2+ levels in immortalized kisspeptin neuronal cell line, and coadministration of PPADS blocked the ATP-induced Ca2+ increase. Histologic analysis revealed that the proestrous level of estrogen significantly increased the number of P2X2 receptor (an ATP receptor)-immunopositive AVPV kisspeptin neurons visualized by tdTomato in Kiss1-tdTomato rats. The proestrous level of estrogen significantly increased varicosity-like vesicular nucleotide transporter (a purinergic marker)-immunopositive fibers projecting to the vicinity of AVPV kisspeptin neurons. Furthermore, we found that some hindbrain vesicular nucleotide transporter-positive neurons projected to the AVPV and expressed estrogen receptor α, and the neurons were activated by the high E2 treatment. These results suggest that hindbrain ATP-purinergic signaling triggers ovulation via activation of AVPV kisspeptin neurons.SIGNIFICANCE STATEMENT Ovulation disorders, which cause infertility and low pregnancy rates, are a serious problem for humans and livestock. The present study provides evidence that adenosine 5-triphosphate, acting as a neurotransmitter in the brain, stimulates kisspeptin neurons in the anteroventral periventricular nucleus, known as the gonadotropin-releasing hormone surge generator, via purinergic receptors to induce the gonadotropin-releasing hormone/luteinizing hormone surge and ovulation in rats. In addition, histologic analyses indicate that adenosine 5-triphosphate is likely to be originated from the purinergic neurons in the A1 and A2 of the hindbrain. These findings may contribute to new therapeutic controls for hypothalamic ovulation disorders in humans and livestock.


Subject(s)
Kisspeptins , Receptors, Purinergic P2 , Humans , Rats , Female , Animals , Kisspeptins/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Luteinizing Hormone/metabolism , Hypothalamus, Anterior/metabolism , Gonadotropin-Releasing Hormone/metabolism , Estrogens/pharmacology , Estrogens/metabolism , Neurons/metabolism , Ovulation , Rhombencephalon/metabolism , Adenosine Triphosphate/metabolism , Nucleotides/metabolism , Nucleotides/pharmacology , Adenosine/metabolism
18.
Acta Biomater ; 158: 560-570, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36596434

ABSTRACT

Platinum-based chemotherapy is a first-line therapeutic regimen against ovarian cancer (OC); however, the therapeutic potential is always reduced by glutamine metabolism. Herein, a valid strategy of inhibiting glutamine metabolism was proposed to cause tumor starvation and chemosensitization. Specifically, reactive oxygen species-responsive liposomes were developed to co-deliver cisplatin (CDDP) and bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) [C@B LPs]. The C@B LPs induced effective tumor cell starvation and significantly sensitized OC cells to CDDP by reducing glutathione generation to prevent CDDP detoxification, suppressing ATP production to avoid CDDP efflux, hindering nucleotide synthesis to aggravate DNA damage induced by CDDP, and blocking mammalian target of rapamycin (mTOR) signaling to promote cell apoptosis. More importantly, C@B LPs remarkably inhibited tumor growth in vivo and reduced the side effects. Taken together, this study provided a successful strategy of synergistic chemosensitization and starvation therapy escalating the rate of therapeutic success in OCs. STATEMENT OF SIGNIFICANCE: This work proposed a valid strategy of inhibiting glutamine metabolism to cause tumor starvation and chemosensitization. Specifically, ROS-responsive liposomes were developed to co-deliver cisplatin CDDP and BPTES [C@B LPs]. The C@B LPs induced effective tumor cell starvation and significantly sensitized OC cells to cisplatin by reducing glutathione generation to prevent cisplatin detoxification, suppressing ATP production to avoid cisplatin efflux, hindering nucleotide synthesis to aggravate DNA damage induced by cisplatin, and blocking mTOR signaling to promote cell apoptosis. More importantly, C@B LPs remarkably inhibited tumor growth in vivo and reduced the side effects. Taken together, this study provided a successful strategy of synergistic chemosensitization and starvation therapy escalating the rate of therapeutic success in OCs.


Subject(s)
Antineoplastic Agents , Glutamine , Liposomes , Ovarian Neoplasms , Female , Humans , Adenosine Triphosphate , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Glutamine/metabolism , Glutathione , Lipopolysaccharides/therapeutic use , Liposomes/pharmacology , Liposomes/therapeutic use , Nucleotides/pharmacology , Nucleotides/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , TOR Serine-Threonine Kinases
19.
Eur J Med Chem ; 249: 115113, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36706621

ABSTRACT

Coronaviruses (CoVs) infect a broad range of hosts, including humans and various animals, with a tendency to cross the species barrier, causing severe harm to human society and fostering the need for effective anti-coronaviral drugs. GS-441524 is a broad-spectrum antiviral nucleoside with potent anti-CoVs activities. However, its application is limited by poor oral bioavailability. Herein, we designed and synthesized several conjugates via covalently binding NSAIDs to 5'-OH of GS-441524 through ester bonds. The ibuprofen conjugate, ATV041, exhibited potent in vitro anti-coronaviral efficacy against four zoonotic coronaviruses in the alpha- and beta-genera. Oral-dosed ATV041 resulted in favorable bioavailability and rapid tissue distribution of GS-441524 and ibuprofen. In MHV-A59 infected mice, ATV041 dose-dependently decreased viral RNA replication and significantly reduced the proinflammatory cytokines in the liver and the lung at 3 dpi. As a result, the MHV-A59-induced lung and liver inflammatory injury was significantly alleviated. Taken together, this work provides a novel drug conjugate strategy to improve oral PK and offers a potent anti-coronaviral lead compound for further studies.


Subject(s)
Coronavirus Infections , Coronavirus , Animals , Humans , Mice , Ibuprofen/pharmacology , Cell Line , Coronavirus Infections/drug therapy , Virus Replication , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents/pharmacology , Nucleotides/pharmacology
20.
Antiviral Res ; 210: 105501, 2023 02.
Article in English | MEDLINE | ID: mdl-36567022

ABSTRACT

Nucleoside/tide analogues (NAs) have long been used in the fight against viral diseases, and now present a promising option for the treatment of COVID-19. Once activated to the 5'-triphosphate state, NAs act by targeting the viral RNA-dependent RNA-polymerase for incorporation into the viral RNA genome. Incorporated analogues can either 'kill' (terminate) synthesis, or 'corrupt' (genetically or chemically) the RNA. Against coronaviruses, the use of NAs has been further complicated by the presence of a virally encoded exonuclease domain (nsp14) with proofreading and repair capacities. Here, we describe the mechanism of action of four promising anti-COVID-19 NAs; remdesivir, molnupiravir, favipiravir and bemnifosbuvir. Their distinct mechanisms of action best exemplify the concept of 'killers' and 'corruptors'. We review available data regarding their ability to be incorporated and excised, and discuss the specific structural features that dictate their overall potency, toxicity, and mutagenic potential. This should guide the synthesis of novel analogues, lend insight into the potential for resistance mutations, and provide a rational basis for upcoming combinations therapies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleotides/pharmacology , Nucleotides/chemistry , Antiviral Agents/therapeutic use , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...