Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.957
Filter
1.
Front Immunol ; 15: 1399926, 2024.
Article in English | MEDLINE | ID: mdl-38817608

ABSTRACT

Immune checkpoint inhibitors (ICIs) represent a groundbreaking advance in the treatment of malignancies such as melanoma and non-small cell lung cancer, showcasing substantial therapeutic benefits. Nonetheless, the efficacy of ICIs is limited to a small subset of patients, primarily benefiting those with "hot" tumors characterized by significant immune infiltration. The challenge of converting "cold" tumors, which exhibit minimal immune activity, into "hot" tumors to enhance their responsiveness to ICIs is a critical and complex area of current research. Central to this endeavor is the activation of the cGAS-STING pathway, a pivotal nexus between innate and adaptive immunity. This pathway's activation promotes the production of type I interferon (IFN) and the recruitment of CD8+ T cells, thereby transforming the tumor microenvironment (TME) from "cold" to "hot". This review comprehensively explores the cGAS-STING pathway's role in reconditioning the TME, detailing the underlying mechanisms of innate and adaptive immunity and highlighting the contributions of various immune cells to tumor immunity. Furthermore, we delve into the latest clinical research on STING agonists and their potential in combination therapies, targeting this pathway. The discussion concludes with an examination of the challenges facing the advancement of promising STING agonists in clinical trials and the pressing issues within the cGAS-STING signaling pathway research.


Subject(s)
Immunotherapy , Membrane Proteins , Neoplasms , Nucleotidyltransferases , Signal Transduction , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Animals , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunity, Innate , Adaptive Immunity
2.
Anticancer Res ; 44(6): 2577-2585, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821598

ABSTRACT

BACKGROUND/AIM: Nuclear factor erythroid-derived 2-related factor-2 (NRF2) is a transcription factor that regulates stress response genes. It negatively regulates the immune system by acting as a transcriptional repressor of inflammatory genes or suppressing type I interferon (IFN) production pathways. NRF2 is often over-expressed in some tumors, including non-small cell lung cancer, and modulates these tumors via an immune-cold microenvironment. Thus, strategies to convert cold tumors into hot tumors are effective for cancer treatment. MATERIALS AND METHODS: NRF2 was knocked-down or over-expressed in human cancer cells (A549, HeLa, H1299, H1650) and mouse mammary adenocarcinoma TS/A cells. Cells were irradiated or transfected with poly(I:C), and changes in type I IFN levels were examined using quantitative real-time polymerase chain reaction and western blotting. Cytosolic DNA was assayed via PicoGreen staining and immune and cancer cells were co-cultured. RESULTS: Regulation of NRF2 expression altered type I IFN levels in the human lung cancer cell line A549 and several solid tumors. Down-regulation of NRF2 resulted in increased levels of cytosolic DNA and activated the cGAS-STING pathway. We confirmed that type I IFN was induced in NRF2-down-regulated tumor cells using ionizing radiation (IR). Furthermore, when dendritic cells and macrophages were co-cultured with IR-exposed NRF2 knockdown tumor cells, the immune cells produced more IFNB1 and CXCL10. CONCLUSION: The immunosuppressive tumor cell environment is improved by NRF2 down-regulation, and IR treatment may promote immune cell signaling activation.


Subject(s)
Interferon Type I , NF-E2-Related Factor 2 , Radiation, Ionizing , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Interferon Type I/metabolism , Animals , Mice , Cell Line, Tumor , A549 Cells , Lung Neoplasms/radiotherapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Tumor Microenvironment/immunology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Macrophages/immunology , Macrophages/metabolism
3.
Front Immunol ; 15: 1384372, 2024.
Article in English | MEDLINE | ID: mdl-38765007

ABSTRACT

Osteoarthritis (OA) and Rheumatoid Arthritis (RA) are significant health concerns with notable prevalence and economic impact. RA, affecting 0.5% to 1.0% of the global population, leads to chronic joint damage and comorbidities. OA, primarily afflicting the elderly, results in joint degradation and severe pain. Both conditions incur substantial healthcare expenses and productivity losses. The cGAS-STING pathway, consisting of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), is a crucial component of mammalian immunity. This pathway is responsible for detecting foreign DNA, particularly double-stranded DNA (dsDNA), triggering innate immune defense responses. When cGAS recognizes dsDNA, it catalyzes the synthesis of cyclic GMP-AMP (cGAMP), which then binds to and activates STING. Activated STING, in turn, initiates downstream signaling events leading to the production of interferons and other immune mediators. The cGAS-STING pathway is essential for defending against viral infections and maintaining cellular balance. Dysregulation of this pathway has been implicated in various inflammatory diseases, including arthritis, making it a target for potential therapeutic interventions. Understanding the intricate molecular signaling network of cGAS-STING in these arthritis forms offers potential avenues for targeted therapies. Addressing these challenges through improved early detection, comprehensive management, and interventions targeting the cGAS-STING pathway is crucial for alleviating the impact of OA and RA on individuals and healthcare systems. This review offers an up-to-date comprehension of the cGAS-STING pathway's role in the development and therapeutic approaches for these arthritis types.


Subject(s)
Arthritis, Rheumatoid , Membrane Proteins , Nucleotidyltransferases , Osteoarthritis , Signal Transduction , Humans , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/therapy , Osteoarthritis/immunology , Osteoarthritis/therapy , Osteoarthritis/metabolism , Osteoarthritis/etiology , Animals
4.
J Nanobiotechnology ; 22(1): 234, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724978

ABSTRACT

Radiotherapy-induced immune activation holds great promise for optimizing cancer treatment efficacy. Here, we describe a clinically used radiosensitizer hafnium oxide (HfO2) that was core coated with a MnO2 shell followed by a glucose oxidase (GOx) doping nanoplatform (HfO2@MnO2@GOx, HMG) to trigger ferroptosis adjuvant effects by glutathione depletion and reactive oxygen species production. This ferroptosis cascade potentiation further sensitized radiotherapy by enhancing DNA damage in 4T1 breast cancer tumor cells. The combination of HMG nanoparticles and radiotherapy effectively activated the damaged DNA and Mn2+-mediated cGAS-STING immune pathway in vitro and in vivo. This process had significant inhibitory effects on cancer progression and initiating an anticancer systemic immune response to prevent distant tumor recurrence and achieve long-lasting tumor suppression of both primary and distant tumors. Furthermore, the as-prepared HMG nanoparticles "turned on" spectral computed tomography (CT)/magnetic resonance dual-modality imaging signals, and demonstrated favorable contrast enhancement capabilities activated by under the GSH tumor microenvironment. This result highlighted the potential of nanoparticles as a theranostic nanoplatform for achieving molecular imaging guided tumor radiotherapy sensitization induced by synergistic immunotherapy.


Subject(s)
Ferroptosis , Immunotherapy , Manganese Compounds , Membrane Proteins , Mice, Inbred BALB C , Nanoparticles , Nucleotidyltransferases , Oxides , Radiation-Sensitizing Agents , Animals , Mice , Immunotherapy/methods , Oxides/chemistry , Oxides/pharmacology , Female , Nucleotidyltransferases/metabolism , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Cell Line, Tumor , Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry , Membrane Proteins/metabolism , Ferroptosis/drug effects , Glucose Oxidase/metabolism , Reactive Oxygen Species/metabolism , Humans , DNA Damage , Tumor Microenvironment/drug effects
5.
BMC Cancer ; 24(1): 551, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693472

ABSTRACT

OBJECTIVE: We aimed to screen novel gene signatures for ovarian cancer (OC) and explore the role of biomarkers in OC via regulating pyroptosis using bioinformatics analysis. METHODS: Differentially expressed genes (DEGs) of OC were screened from GSE12470 and GSE16709 datasets. Hub genes were determined from protein-protein interaction networks after bioinformatics analysis. The role of Centromeric protein M (CENPM) in OC was assessed by subcutaneous tumor experiment using hematoxylin-eosin and immunohistochemical staining. Tumor metastasis was evaluated by detecting epithelial-mesenchymal transition-related proteins. The proliferation, migration, and invasion were determined using cell counting kit and transwell assay. Enzyme-linked immunosorbent assay was applied to measure inflammatory factors. The mRNA and protein expression were detected using real-time quantitative PCR and western blot. RESULTS: We determined 9 hub genes (KIFC1, PCLAF, CDCA5, KNTC1, MCM3, OIP5, CENPM, KIF15, and ASF1B) with high prediction value for OC. In SKOV3 and A2780 cells, the expression levels of hub genes were significantly up-regulated, compared with normal ovarian cells. CENPM was selected as a key gene. Knockdown of CENPM suppressed proliferation, migration, and invasion of OC cells. Subcutaneous tumor experiment revealed that CENPM knockdown significantly suppressed tumor growth and metastasis. Additionally, pyroptosis was promoted in OC cells and xenograft tumors after CENPM knockdown. Furthermore, CENPM knockdown activated cGAS-STING pathway and the pathway inhibitor reversed the inhibitory effect of CENPM knockdown on viability, migration, and invasion of OC cells. CONCLUSION: CENPM was a novel biomarker of OC, and knockdown of CENPM inhibited OC progression by promoting pyroptosis and activating cGAS-STING pathway.


Subject(s)
Membrane Proteins , Nucleotidyltransferases , Ovarian Neoplasms , Pyroptosis , Signal Transduction , Humans , Female , Pyroptosis/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Animals , Mice , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Cell Line, Tumor , Gene Knockdown Techniques , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Cell Movement/genetics , Xenograft Model Antitumor Assays , Mice, Nude
6.
Nat Commun ; 15(1): 3734, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702312

ABSTRACT

Mutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. The DDR is required during germ cell development and meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/- or PcnaK164R/K164R) or extension (Rev7 -/-) result in a > 150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.


Subject(s)
DNA Demethylation , DNA Repair , DNA-Directed DNA Polymerase , Germ Cells , Animals , Humans , Mice , Germ Cells/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Male , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Female , DNA Damage , Mice, Knockout , Meiosis/genetics , DNA Replication , Proliferating Cell Nuclear Antigen/metabolism , Epigenesis, Genetic , Translesion DNA Synthesis
7.
Chin J Nat Med ; 22(5): 402-415, 2024 May.
Article in English | MEDLINE | ID: mdl-38796214

ABSTRACT

In the realm of autoimmune and inflammatory diseases, the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) signaling pathway has been thoroughly investigated and established. Despite this, the clinical approval of drugs targeting the cGAS-STING pathway has been limited. The Total glucosides of paeony (TGP) is highly anti-inflammatory and is commonly used in the treatment of rheumatoid arthritis (RA), emerged as a subject of our study. We found that the TGP markedly reduced the activation of the cGAS-STING signaling pathway, triggered by various cGAS-STING agonists, in mouse bone marrow-derived macrophages (BMDMs) and Tohoku Hospital Pediatrics-1 (THP-1) cells. This inhibition was noted alongside the suppression of interferon regulatory factor 3 (IRF3) phosphorylation and the expression of interferon-beta (IFN-ß), C-X-C motif chemokine ligand 10 (CXCL10), and inflammatory mediators such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). The mechanism of action appeared to involve the TGP's attenuation of the STING-IRF3 interaction, without affecting STING oligomerization, thereby inhibiting the activation of downstream signaling pathways. In vivo, the TGP hindered the initiation of the cGAS-STING pathway by the STING agonist dimethylxanthenone-4-acetic acid (DMXAA) and exhibited promising therapeutic effects in a model of acute liver injury induced by lipopolysaccharide (LPS) and D-galactosamine (D-GalN). Our findings underscore the potential of the TGP as an effective inhibitor of the cGAS-STING pathway, offering a new treatment avenue for inflammatory and autoimmune diseases mediated by this pathway.


Subject(s)
Glucosides , Interferon Regulatory Factor-3 , Membrane Proteins , Nucleotidyltransferases , Paeonia , Signal Transduction , Interferon Regulatory Factor-3/metabolism , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Glucosides/pharmacology , Mice , Humans , Paeonia/chemistry , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Signal Transduction/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , THP-1 Cells
8.
Discov Med ; 36(184): 1020-1029, 2024 May.
Article in English | MEDLINE | ID: mdl-38798261

ABSTRACT

BACKGROUND: Long-term exposure to cadmium can induce renal toxicity in rats, leading to endoplasmic reticulum (ER) stress and iron death. Notably, in cadmium-exposed rats, there is an increased expression of UNC93B1 (unc-93 homolog B1). Consequently, our investigation aims to determine the impact of UNC93B1 on ER stress and iron death in cadmium-exposed rats by modulating the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway. METHODS: A cadmium-exposed rat model was established by intrabacally injecting chromium chloride (5 mg/kg, once a day for 4 weeks), and the levels of UCd (urine cadmium), UNAG (urine N-acetyl-ß-D-glucosaminidase), and UCr (urine creatinine) in urine were assessed. A silent UNC93B1 lentivirus was constructed, and STING agonists were procured and administered to the rats. Subsequently, kidney tissues were extracted post-mortem, and pathological changes in renal tissue were observed through hematoxylin and eosin (HE) staining. The expression and mRNA levels of UNC93B1, cGAS, and STING were examined using western blot (WB) and polymerase chain reaction (PCR). Autophagy proteins (light chain 3 (LC3), Beclin-1, p62) were also assessed by WB. Additionally, iron concentration was determined using a kit, while oxidative stress markers (cytochrome oxidase subunit 2 (COX2), glutathione peroxidase 4 (GPX4), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH)) were measured through enzyme-linked immunosorbent assay (ELISA). Furthermore, endoplasmic reticulum stress proteins (protein kinase RNA-like ER kinase (PERK), CCAAT enhance-binding protein homologous protein (CHOP), activating transcription factor-4 (ATF4)) were analyzed by WB. RESULTS: Wstaining, WB, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), ELISA, and HE staining collectively revealed a heightened expression of UNC93B1, cGAS, and STING, accompanied by increased levels of autophagy, oxidative stress, and ER stress in cadmium-exposed rats (p < 0.05). Nephrotoxicity exhibited a reduction following the inhibition of UNC93B1, leading to decreased levels of oxidative stress, autophagy, and ER stress (p < 0.05). Notably, this observed phenomenon was reversed upon the addition of STING agonists, suggesting that UNC93B1 might exert a nephroprotective effect in cadmium-exposed rats through modulation of the cGAS-STING pathway. CONCLUSIONS: The inhibition of UNC93B1 mitigates nephrotoxicity in cadmium-exposed rats, and this protective effect is mechanistically linked to the cGAS-STING pathway.


Subject(s)
Cadmium , Endoplasmic Reticulum Stress , Membrane Proteins , Animals , Rats , Endoplasmic Reticulum Stress/drug effects , Cadmium/toxicity , Membrane Proteins/metabolism , Membrane Proteins/genetics , Male , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Iron/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney Diseases/metabolism , Rats, Sprague-Dawley , Oxidative Stress/drug effects
9.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793630

ABSTRACT

During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.


Subject(s)
DNA, Viral , Herpesvirus 8, Human , Immunity, Innate , Signal Transduction , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/physiology , Humans , DNA, Viral/metabolism , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , Sarcoma, Kaposi/virology , Nucleotidyltransferases/metabolism , Host-Pathogen Interactions , Animals , Membrane Proteins/metabolism , Nuclear Proteins , Phosphoproteins
10.
Bioorg Med Chem ; 106: 117755, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749343

ABSTRACT

Translesion synthesis (TLS) is a cellular mechanism through which actively replicating cells recruit specialized, low-fidelity DNA polymerases to damaged DNA to allow for replication past these lesions. REV1 is one of these TLS DNA polymerases that functions primarily as a scaffolding protein to organize the TLS heteroprotein complex and ensure replication occurs in the presence of DNA lesions. The C-Terminal domain of REV1 (REV1-CT) forms many protein-protein interactions (PPIs) with other TLS polymerases, making it essential for TLS function and a promising drug target for anti-cancer drug development. We utilized several lead identification strategies to identify various small molecules capable of disrupting the PPI between REV1-CT and the REV1 Interacting Regions (RIR) present in several other TLS polymerases. These lead compounds were profiled in several in vitro potency and PK assays to identify two scaffolds (1 and 6) as the most promising for further development. Both 1 and 6 synergized with cisplatin in a REV1-dependent fashion and demonstrated promising in vivo PK and toxicity profiles.


Subject(s)
Nucleotidyltransferases , Small Molecule Libraries , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/metabolism , Humans , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Animals , Structure-Activity Relationship , Protein Binding , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , DNA-Directed DNA Polymerase/metabolism , Mice , Translesion DNA Synthesis
11.
Commun Biol ; 7(1): 587, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755254

ABSTRACT

DNA methylation is an important epigenetic mechanism involved in the anti-tumor immune response, and DNA methyltransferase inhibitors (DNMTi) have achieved impressive therapeutic outcomes in patients with certain cancer types. However, it is unclear how inhibition of DNA methylation bridges the innate and adaptive immune responses to inhibit tumor growth. Here, we report that DNMTi zebularine reconstructs tumor immunogenicity, in turn promote dendritic cell maturation, antigen-presenting cell activity, tumor cell phagocytosis by APCs, and efficient T cell priming. Further in vivo and in vitro analyses reveal that zebularine stimulates cGAS-STING-NF-κB/IFNß signaling to enhance tumor cell immunogenicity and upregulate antigen processing and presentation machinery (AgPPM), which promotes effective CD4+ and CD8+ T cell-mediated killing of tumor cells. These findings support the use of combination regimens that include DNMTi and immunotherapy for cancer treatment.


Subject(s)
Antigen Presentation , Cytidine , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cytidine/analogs & derivatives , Cytidine/pharmacology , Antigen Presentation/drug effects , Mice , Signal Transduction/drug effects , Mice, Inbred C57BL , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Humans , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Female
12.
J Mol Neurosci ; 74(2): 53, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750341

ABSTRACT

Previous studies have demonstrated a brain volume decrease linked to long-term starvation in patients with anorexia nervosa (AN). Food intake is critically diminished in this disorder, leading to one of the highest mortality rates within the psychiatric disease spectrum. As reported in animal models, astrocytes seem to be the most affected cell type in AN. In a recently established primary cell culture model, an elevated unfolded protein response (UPR) was observed in long-term glucose semi-starved astrocytes. A well-functioning protein machinery is essential for every cell, and prolonged UPR will lead to cell death. As a nucleic acid stress-sensing pathway with the activator located in the endoplasmic reticulum, the regulation of the cGAS-STING pathway (cyclic GMP-AMP synthase/stimulator of interferon genes) was additionally investigated in the starvation context. In the current study, a glucose semi-starvation protocol of 15 days, during which cells were supplied with 2 mM glucose in the medium, was prolonged with an additional 6-day long recovery period. Our findings showed that increased UPR mRNA expression was reversible after re-establishing the standard glucose concentration of 25 mM. Furthermore, we were able to verify the presence of cGAS and STING in astrocytes with a characteristic presence of cGAS in the astrocyte nucleus during starvation. A correlation between STING and the glial fibrillary acidic protein (GFAP) could be established, hinting at a conditional presence of STING with a specific astrocyte phenotype.


Subject(s)
Astrocytes , Endoplasmic Reticulum Stress , Glucose , Membrane Proteins , Nucleotidyltransferases , Unfolded Protein Response , Astrocytes/metabolism , Glucose/metabolism , Animals , Cells, Cultured , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics
13.
J Biomed Sci ; 31(1): 55, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802791

ABSTRACT

BACKGROUND: Radioresistance is a key clinical constraint on the efficacy of radiotherapy in lung cancer patients. REV1 DNA directed polymerase (REV1) plays an important role in repairing DNA damage and maintaining genomic stability. However, its role in the resistance to radiotherapy in lung cancer is not clear. This study aims to clarify the role of REV1 in lung cancer radioresistance, identify the intrinsic mechanisms involved, and provide a theoretical basis for the clinical translation of this new target for lung cancer treatment. METHODS: The effect of targeting REV1 on the radiosensitivity was verified by in vivo and in vitro experiments. RNA sequencing (RNA-seq) combined with nontargeted metabolomics analysis was used to explore the downstream targets of REV1. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify the content of specific amino acids. The coimmunoprecipitation (co-IP) and GST pull-down assays were used to validate the interaction between proteins. A ubiquitination library screening system was constructed to investigate the regulatory proteins upstream of REV1. RESULTS: Targeting REV1 could enhance the radiosensitivity in vivo, while this effect was not obvious in vitro. RNA sequencing combined with nontargeted metabolomics revealed that the difference result was related to metabolism, and that the expression of glycine, serine, and threonine (Gly/Ser/Thr) metabolism signaling pathways was downregulated following REV1 knockdown. LC-MS/MS demonstrated that REV1 knockdown results in reduced levels of these three amino acids and that cystathionine γ-lyase (CTH) was the key to its function. REV1 enhances the interaction of CTH with the E3 ubiquitin ligase Rad18 and promotes ubiquitination degradation of CTH by Rad18. Screening of the ubiquitination compound library revealed that the ubiquitin-specific peptidase 9 X-linked (USP9X) is the upstream regulatory protein of REV1 by the ubiquitin-proteasome system, which remodels the intracellular Gly/Ser/Thr metabolism. CONCLUSION: USP9X mediates the deubiquitination of REV1, and aberrantly expressed REV1 acts as a scaffolding protein to assist Rad18 in interacting with CTH, promoting the ubiquitination and degradation of CTH and inducing remodeling of the Gly/Ser/Thr metabolism, which leads to radioresistance. A novel inhibitor of REV1, JH-RE-06, was shown to enhance lung cancer cell radiosensitivity, with good prospects for clinical translation.


Subject(s)
Lung Neoplasms , Nucleotidyltransferases , Radiation Tolerance , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Cell Line, Tumor , Mice , Animals , DNA-Directed DNA Polymerase
14.
Front Immunol ; 15: 1402817, 2024.
Article in English | MEDLINE | ID: mdl-38803502

ABSTRACT

Sterile inflammation, characterized by a persistent chronic inflammatory state, significantly contributes to the progression of various diseases such as autoimmune, metabolic, neurodegenerative, and cardiovascular disorders. Recent evidence has increasingly highlighted the intricate connection between inflammatory responses and cardiovascular diseases, underscoring the pivotal role of the Stimulator of Interferon Genes (STING). STING is crucial for the secretion of type I interferon (IFN) and proinflammatory cytokines in response to cytosolic nucleic acids, playing a vital role in the innate immune system. Specifically, research has underscored the STING pathway involvement in unregulated inflammations, where its aberrant activation leads to a surge in inflammatory events, enhanced IFN I responses, and cell death. The primary pathway triggering STING activation is the cyclic GMP-AMP synthase (cGAS) pathway. This review delves into recent findings on STING and the cGAS-STING pathways, focusing on their regulatory mechanisms and impact on cardiovascular diseases. It also discusses the latest advancements in identifying antagonists targeting cGAS and STING, and concludes by assessing the potential of cGAS or STING inhibitors as treatments for cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Humans , Nucleotidyltransferases/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/immunology , Membrane Proteins/metabolism , Animals , Immunity, Innate , Inflammation/immunology , Inflammation/metabolism
15.
Int Immunopharmacol ; 134: 112185, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38701540

ABSTRACT

Chronic ethanol consumption is a prevalent condition in contemporary society and exacerbates anxiety symptoms in healthy individuals. The activation of microglia, leading to neuroinflammatory responses, may serve as a significant precipitating factor; however, the precise molecular mechanisms underlying this phenomenon remain elusive. In this study, we initially confirmed that chronic ethanol exposure (CEE) induces anxiety-like behaviors in mice through open field test and elevated plus maze test. The cGAS/STING signaling pathway has been confirmed to exhibits a significant association with inflammatory signaling responses in both peripheral and central systems. Western blot analysis confirmed alterations in the cGAS/STING signaling pathway during CEE, including the upregulation of p-TBK1 and p-IRF3 proteins. Moreover, we observed microglial activation in the prefrontal cortex (PFC) of CEE mice, characterized by significant alterations in branching morphology and an increase in cell body size. Additionally, we observed that administration of CEE resulted in mitochondrial dysfunction within the PFC of mice, accompanied by a significant elevation in cytosolic mitochondrial DNA (mtDNA) levels. Furthermore, our findings revealed that the inhibition of STING by H-151 effectively alleviated anxiety-like behavior and suppressed microglial activation induced by CEE. Our study unveiled a significant association between anxiety-like behavior, microglial activation, inflammation, and mitochondria dysfunction during CEE.


Subject(s)
Anxiety , Ethanol , Membrane Proteins , Mice, Inbred C57BL , Microglia , Nucleotidyltransferases , Prefrontal Cortex , Signal Transduction , Animals , Microglia/drug effects , Microglia/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Anxiety/chemically induced , Membrane Proteins/metabolism , Membrane Proteins/genetics , Ethanol/toxicity , Signal Transduction/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Male , Mice , Behavior, Animal/drug effects , DNA, Mitochondrial/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Disease Models, Animal , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Protein Serine-Threonine Kinases
16.
Biomed Pharmacother ; 175: 116698, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713946

ABSTRACT

Neurotoxicity can cause a range of symptoms and disorders in humans, including neurodegenerative diseases, neurodevelopmental disorders, nerve conduction abnormalities, neuroinflammation, autoimmune disorders, and cognitive deficits. The cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway and NF-κB pathway are two important signaling pathways involved in the innate immune response. The cGAS-STING pathway is activated by the recognition of intracellular DNA, which triggers the production of type I interferons and pro-inflammatory cytokines, such as tumor necrosis factor, IL-1ß, and IL-6. These cytokines play a role in oxidative stress and mitochondrial dysfunction in neurons. The NF-κB pathway is activated by various stimuli, such as bacterial lipopolysaccharide, viral particle components, and neurotoxins. NF-κB activation may lead to the production of pro-inflammatory cytokines, which promote neuroinflammation and cause neuronal damage. A potential interaction exists between the cGAS-STING and NF-κB pathways, and NF-κB activation blocks STING degradation by inhibiting microtubule-mediated STING transport. This review examines the progress of research on the roles of these pathways in neurotoxicity and their interrelationships. Understanding the mechanisms of these pathways will provide valuable therapeutic insights for preventing and controlling neurotoxicity.


Subject(s)
Membrane Proteins , NF-kappa B , Nucleotidyltransferases , Signal Transduction , Humans , NF-kappa B/metabolism , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism , Animals , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/etiology
17.
J Transl Med ; 22(1): 519, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816831

ABSTRACT

BACKGROUND: Telomerase, by safeguarding damaged telomeres and bolstering DNA damage repair, has the capacity to heighten the radioresistance of tumour cells. Thus, in turn, can compromise the efficacy of radiotherapy (RT) and radioimmunotherapy. Our previous studies have revealed that the highly selective telomerase inhibitor, BIBR1532, possesses the potential to enhance the radiosensitivity of Non-small cell lung cancer (NSCLC). In this study, we delve further into the impact of BIBR1532 on the immune activation induced by RT and elucidate the underlying mechanisms. METHODS: Biological information analyses, immunofluorescence assays, western blot assays, flow cytometry analysis were conducted to elucidate the functions of the combination of BIBR1532 with radiotherapy in NSCLC. Intracellular levels of lipid peroxides, glutathione, malondialdehyde, and Fe2+ were measured as indicators of ferroptosis status. Both in vitro and in vivo studies were conducted to examine the antitumor effects. RESULTS: Our findings indicate that the confluence of BIBR1532 with RT significantly augments the activation of the cGAS-STING pathway in both in vivo and in vitro settings, thereby fostering an effective anti-tumoral immune response. The effects can be ascribed to two key processes. Firstly, ionizing radiation, in precipitating DNA double-strand breaks (DSBs), prompts the release of tumour-derived double-stranded DNA (dsDNA) into the cytoplasm. Subsequently, BIBR1532 amplifies the activation of antigen-presenting cells by dsDNA post-RT and instigates the cGAS-STING pathway. Secondly, BIBR1532 enhances the ferroptosis response in NSCLC following RT, thereby promoting unrestrained lipid peroxidation and elevated levels of reactive oxygen species (ROS) within tumour cells. This ultimately leads to mitochondrial stress and the release of endogenous mitochondrial DNA (mtDNA) into the cytoplasm, thus facilitating the activation of the STING pathway and the induction of a type I interferon (IFN)-linked adaptive immune response. CONCLUSION: This study underscores the potential of BIBR1532 as an efficacious and safe radiosensitizer and radioimmunotherapy synergist, providing robust preclinical research evidence for the treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Humans , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Lung Neoplasms/metabolism , Lung Neoplasms/immunology , Membrane Proteins/metabolism , Signal Transduction/radiation effects , Nucleotidyltransferases/metabolism , Cell Line, Tumor , Animals , Immunity/radiation effects , Mice, Nude , Mice
18.
Int J Biol Sci ; 20(7): 2507-2531, 2024.
Article in English | MEDLINE | ID: mdl-38725846

ABSTRACT

Neuropeptide substance P (SP) belongs to a family of bioactive peptides and regulates many human diseases. This study aims to investigate the role and underlying mechanisms of SP in colitis. Here, activated SP-positive neurons and increased SP expression were observed in dextran sodium sulfate (DSS)-induced colitis lesions in mice. Administration of exogenous SP efficiently ameliorated the clinical symptoms, impaired intestinal barrier function, and inflammatory response. Mechanistically, SP protected mitochondria from damage caused by DSS or TNF-α exposure, preventing mitochondrial DNA (mtDNA) leakage into the cytoplasm, thereby inhibiting the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. SP can also directly prevent STING phosphorylation through the neurokinin-1 receptor (NK1R), thereby inhibiting the activation of the TBK1-IRF3 signaling pathway. Further studies revealed that SP alleviated the DSS or TNF-α-induced ferroptosis process, which was associated with repressing the cGAS-STING signaling pathway. Notably, we identified that the NK1R inhibition reversed the effects of SP on inflammation and ferroptosis via the cGAS-STING pathway. Collectively, we unveil that SP attenuates inflammation and ferroptosis via suppressing the mtDNA-cGAS-STING or directly acting on the STING pathway, contributing to improving colitis in an NK1R-dependent manner. These findings provide a novel mechanism of SP regulating ulcerative colitis (UC) disease.


Subject(s)
Colitis , Dextran Sulfate , Ferroptosis , Inflammation , Membrane Proteins , Mice, Inbred C57BL , Nucleotidyltransferases , Signal Transduction , Substance P , Animals , Nucleotidyltransferases/metabolism , Signal Transduction/drug effects , Mice , Colitis/metabolism , Colitis/chemically induced , Substance P/metabolism , Membrane Proteins/metabolism , Ferroptosis/drug effects , Inflammation/metabolism , Dextran Sulfate/toxicity , Male , Receptors, Neurokinin-1/metabolism , Tumor Necrosis Factor-alpha/metabolism , DNA, Mitochondrial/metabolism
19.
Virol J ; 21(1): 101, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693578

ABSTRACT

The Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) serves as a key innate immune signaling axis involved in the regulation of various human diseases. It has been found that cGAS-STING pathway can recognize a variety of cytosolic double-stranded DNA (dsDNA), contributing to cause a robust type I interferon response thereby affecting the occurrence and progression of viral infection. Accumulating evidence indicates RNA virus-derived components play an important role in regulating cGAS-STING signaling, either as protective or pathogenic factors in the pathogenesis of diseases. Thus, a comprehensive understanding of the function of RNA virus-derived components in regulating cGAS-STING signaling will provide insights into developing novel therapies. Here, we review the existing literature on cGAS-STING pathway regulated by RNA virus-derived components to propose insights into pharmacologic strategies targeting the cGAS-STING pathway.


Subject(s)
Immunity, Innate , Membrane Proteins , Nucleotidyltransferases , RNA Viruses , Signal Transduction , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , RNA Viruses/physiology , RNA Viruses/immunology , Animals , Interferon Type I/metabolism
20.
J Transl Med ; 22(1): 436, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720350

ABSTRACT

BACKGROUND: Subarachnoid hemorrhage (SAH) represents a form of cerebrovascular event characterized by a notable mortality and morbidity rate. Fibroblast growth factor 21 (FGF21), a versatile hormone predominantly synthesized by the hepatic tissue, has emerged as a promising neuroprotective agent. Nevertheless, the precise impacts and underlying mechanisms of FGF21 in the context of SAH remain enigmatic. METHODS: To elucidate the role of FGF21 in inhibiting the microglial cGAS-STING pathway and providing protection against SAH-induced cerebral injury, a series of cellular and molecular techniques, including western blot analysis, real-time polymerase chain reaction, immunohistochemistry, RNA sequencing, and behavioral assays, were employed. RESULTS: Administration of recombinant fibroblast growth factor 21 (rFGF21) effectively mitigated neural apoptosis, improved cerebral edema, and attenuated neurological impairments post-SAH. Transcriptomic analysis revealed that SAH triggered the upregulation of numerous genes linked to innate immunity, particularly those involved in the type I interferon (IFN-I) pathway and microglial function, which were notably suppressed upon adjunctive rFGF21 treatment. Mechanistically, rFGF21 intervention facilitated mitophagy in an AMP-activated protein kinase (AMPK)-dependent manner, thereby preventing mitochondrial DNA (mtDNA) release into the cytoplasm and dampening the activation of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Conditional knockout of STING in microglia markedly ameliorated the inflammatory response and mitigated secondary brain injuries post-SAH. CONCLUSION: Our results present the initial evidence that FGF21 confers a protective effect against neuroinflammation-associated brain damage subsequent to SAH. Mechanistically, we have elucidated a novel pathway by which FGF21 exerts this neuroprotection through inhibition of the cGAS-STING signaling cascade.


Subject(s)
Fibroblast Growth Factors , Membrane Proteins , Mice, Inbred C57BL , Mitophagy , Neuroinflammatory Diseases , Nucleotidyltransferases , Signal Transduction , Subarachnoid Hemorrhage , Animals , Membrane Proteins/metabolism , Fibroblast Growth Factors/metabolism , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Mitophagy/drug effects , Signal Transduction/drug effects , Nucleotidyltransferases/metabolism , Male , Mice , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Apoptosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...