Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Inflamm Res ; 73(4): 641-654, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411634

ABSTRACT

BACKGROUND: Neuroinflammation is crucial in the development of postoperative cognitive dysfunction (POCD), and microglial activation is an active participant in this process. SS-31, a mitochondrion-targeted antioxidant, is widely regarded as a potential drug for neurodegenerative diseases and inflammatory diseases. In this study, we sought to explore whether SS-31 plays a neuroprotective role and the underlying mechanism. METHODS: Internal fixation of tibial fracture was performed in 18-month-old mice to induce surgery-associated neurocognitive dysfunction. LPS was administrated to BV2 cells to induce neuroinflammation. Neurobehavioral deficits, hippocampal injury, protein expression, mitophagy level and cell state were evaluated after treatment with SS-31, PHB2 siRNA and an STING agonist. RESULTS: Our study revealed that SS-31 interacted with PHB2 to activate mitophagy and improve neural damage in surgically aged mice, which was attributed to the reduced cGAS-STING pathway and M1 microglial polarization by decreased release of mitochondrial DNA (mtDNA) but not nuclear DNA (nDNA). In vitro, knockdown of PHB2 and an STING agonist abolished the protective effect of SS-31. CONCLUSIONS: SS-31 conferred neuroprotection against POCD by promoting PHB2-mediated mitophagy activation to inhibit mtDNA release, which in turn suppressed the cGAS-STING pathway and M1 microglial polarization.


Subject(s)
DNA, Mitochondrial , Mitophagy , Postoperative Cognitive Complications , Animals , Humans , Infant , Mice , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/genetics , Mitochondria , Mitophagy/drug effects , Neuroinflammatory Diseases , Nucleotidyltransferases/drug effects , Nucleotidyltransferases/metabolism , Postoperative Cognitive Complications/drug therapy , Postoperative Cognitive Complications/metabolism , Membrane Proteins/drug effects , Membrane Proteins/metabolism
2.
Adv Mater ; 36(15): e2304328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38229577

ABSTRACT

Currently, certain cancer patients exhibit resistance to radiotherapy due to reduced DNA damage under hypoxic conditions and acquired immune tolerance triggered by transforming growth factor-ß1 (TGF-ß1) and membrane-localized programmed death ligand-1 (PD-L1). Meanwhile, cytoplasm-distributed PD-L1 induces radiotherapy resistance through accelerating DNA damage repair (DDR). However, the disability of clinically used PD-L1 antibodies in inhibiting cytoplasm-distributed PD-L1 limits their effectiveness. Therefore, a nanoadjuvant is developed to sensitize cancer to radiotherapy via multi-level immunity activation through depressing PD-L1 and TGF-ß1 by triphenylphosphine-derived metformin, and activating the cGAS-STING pathway by generating Mn2+ from MnO2 and producing more dsDNA via reversing tumor hypoxia and impairing DDR. Thus, Tpp-Met@MnO2@Alb effectively enhances the efficiency of radiotherapy to inhibit the progression of irradiated local and abscopal tumors and tumor lung metastases, offering a long-term memory of antitumor immunity without discernible side effects. Overall, Tpp-Met@MnO2@Alb has the potential to be clinically applied for overcoming radio-immunotherapy resistance.


Subject(s)
Adjuvants, Pharmaceutic , Lung Neoplasms , Neoplasms , Humans , B7-H1 Antigen/antagonists & inhibitors , Immunotherapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/therapy , Manganese Compounds/pharmacology , Neoplasms/radiotherapy , Neoplasms/therapy , Oxides , Transforming Growth Factor beta1/antagonists & inhibitors , Adjuvants, Pharmaceutic/pharmacology , Adjuvants, Pharmaceutic/therapeutic use , Nucleotidyltransferases/drug effects , Membrane Proteins/drug effects
3.
Front Immunol ; 12: 753472, 2021.
Article in English | MEDLINE | ID: mdl-34899704

ABSTRACT

When compartmentally mislocalized within cells, nucleic acids can be exceptionally immunostimulatory and can even trigger the immune-mediated elimination of cancer. Specifically, the accumulation of double-stranded DNA in the cytosol can efficiently promote antitumor immunity by activating the cGAMP synthase (cGAS) / stimulator of interferon genes (STING) cellular signaling pathway. Targeting this cytosolic DNA sensing pathway with interferon stimulatory DNA (ISD) is therefore an attractive immunotherapeutic strategy for the treatment of cancer. However, the therapeutic activity of ISD is limited by several drug delivery barriers, including susceptibility to deoxyribonuclease degradation, poor cellular uptake, and inefficient cytosolic delivery. Here, we describe the development of a nucleic acid immunotherapeutic, NanoISD, which overcomes critical delivery barriers that limit the activity of ISD and thereby promotes antitumor immunity through the pharmacological activation of cGAS at the forefront of the STING pathway. NanoISD is a nanoparticle formulation that has been engineered to confer deoxyribonuclease resistance, enhance cellular uptake, and promote endosomal escape of ISD into the cytosol, resulting in potent activation of the STING pathway via cGAS. NanoISD mediates the local production of proinflammatory cytokines via STING signaling. Accordingly, the intratumoral administration of NanoISD induces the infiltration of natural killer cells and T lymphocytes into murine tumors. The therapeutic efficacy of NanoISD is demonstrated in preclinical tumor models by attenuated tumor growth, prolonged survival, and an improved response to immune checkpoint blockade therapy.


Subject(s)
DNA , Drug Delivery Systems , Nanoparticles , Nucleotidyltransferases , Animals , Female , Humans , Mice , Colonic Neoplasms/therapy , Cytokines/biosynthesis , Cytokines/genetics , DNA/administration & dosage , DNA/chemical synthesis , DNA/pharmacology , DNA/therapeutic use , Drug Screening Assays, Antitumor , Endosomes/physiology , Immunotherapy/methods , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mammary Neoplasms, Experimental/therapy , Melanoma, Experimental/therapy , Membrane Proteins/physiology , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Nanoparticles/therapeutic use , Neoplasms/immunology , Nucleotidyltransferases/drug effects , Signal Transduction/drug effects , T-Lymphocyte Subsets/immunology , Thionucleotides/pharmacology , Tumor Microenvironment/drug effects
4.
Mol Cancer Ther ; 20(12): 2553-2567, 2021 12.
Article in English | MEDLINE | ID: mdl-34583980

ABSTRACT

Taxanes remain one of the most effective medical treatments for breast cancer. Clinical trials have coupled taxanes with immune checkpoint inhibitors in patients with triple-negative breast cancer (TNBC) with promising results. However, the mechanism linking taxanes to immune activation is unclear. To determine if paclitaxel could elicit an antitumoral immune response, we sampled tumor tissues from patients with TNBC receiving weekly paclitaxel (80 mg/m2) and found increased stromal tumor-infiltrating lymphocytes and micronucleation over baseline in three of six samples. At clinically relevant concentrations, paclitaxel can induce chromosome missegregation on multipolar spindles during mitosis. Consequently, post-mitotic cells are multinucleated and contain micronuclei, which often activate cyclic GMP-AMP synthase (cGAS) and may induce a type I IFN response reliant on the stimulator of IFN genes (STING) pathway. Other microtubule-targeting agents, eribulin and vinorelbine, recapitulate this cGAS/STING response and increased the expression of immune checkpoint molecule, PD-L1, in TNBC cell lines. To test the possibility that microtubule-targeting agents sensitize tumors that express cGAS to immune checkpoint inhibitors, we identified 10 patients with TNBC treated with PD-L1 or PD-1, seven of whom also received microtubule-targeting agents. Elevated baseline cGAS expression significantly correlated with treatment response in patients receiving microtubule-targeting agents in combination with immune checkpoint inhibitors. Our study identifies a mechanism by which microtubule-targeting agents can potentiate an immune response in TNBC. Further, baseline cGAS expression may predict patient treatment response to therapies combining microtubule-targeting agents and immune checkpoint inhibitors.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Inflammation/drug therapy , Nucleotidyltransferases/drug effects , Paclitaxel/therapeutic use , Taxoids/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/pharmacology , Humans , Paclitaxel/pharmacology , Signal Transduction , Taxoids/pharmacology , Triple Negative Breast Neoplasms/pathology
5.
Molecules ; 26(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799883

ABSTRACT

Leishmaniasis is a vector-borne disease caused by the protozoan parasite Leishmania found in tropical and sub-tropical areas, affecting 12 million people around the world. Only few treatments are available against this disease and all of them present issues of toxicity and/or resistance. In this context, the development of new antileishmanial drugs specifically directed against a therapeutic target appears to be a promising strategy. The GDP-Mannose Pyrophosphorylase (GDP-MP) has been previously shown to be an attractive therapeutic target in Leishmania. In this study, a chemical library of 5000 compounds was screened on both L. infantum (LiGDP-MP) and human (hGDP-MP) GDP-MPs. From this screening, oncostemonol D was found to be active on both GDP-MPs at the micromolar level. Ten alkyl-resorcinol derivatives, of which oncostemonols E and J (2 and 3) were described for the first time from nature, were then evaluated on both enzymes as well as on L. infantum axenic and intramacrophage amastigotes. From this evaluation, compounds 1 and 3 inhibited both GDP-MPs at the micromolar level, and compound 9 displayed a three-times lower IC50 on LiGDP-MP, at 11 µM, than on hGDP-MP. As they displayed mild activities on the parasite, these compounds need to be further pharmacomodulated in order to improve their affinity and specificity to the target as well as their antileishmanial activity.


Subject(s)
Leishmaniasis/drug therapy , Nucleotidyltransferases/antagonists & inhibitors , Resorcinols/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Humans , Leishmania/drug effects , Leishmania/pathogenicity , Mice , Nucleotidyltransferases/drug effects , Nucleotidyltransferases/metabolism , Pharmaceutical Preparations , RAW 264.7 Cells , Resorcinols/chemical synthesis , Resorcinols/chemistry , Small Molecule Libraries
6.
Arch Insect Biochem Physiol ; 105(2): e21731, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32761928

ABSTRACT

Jaburetox is a recombinant peptide derived from one of the Canavalia ensiformis urease isoforms. This peptide induces several toxic effects on insects of different orders, including interference on muscle contractility in cockroaches, modulation of UDP-N-acetylglucosamine pyrophosphorylase (UAP) and nitric oxide synthase (NOS) activities in the central nervous system of triatomines, as well as activation of the immune system in Rhodnius prolixus. When injected, the peptide is lethal for R. prolixus and Triatoma infestans. Here, we evaluated Jaburetox toxicity to Nauphoeta cinerea cockroaches, exploring the effects on the central nervous system through the activities of UAP, NOS, acid phosphatases (ACP), and acetylcholinesterase (AChE). The results indicated that N. cinerea is not susceptible to the lethal effect of the peptide. Moreover, both in vivo and in vitro treatments with Jaburetox inhibited NOS activity, without modifying the protein levels. No alterations on ACP activity were observed. In addition, the enzyme activity of UAP only had its activity affected at 18 hr after injection. The peptide increased the AChE activity, suggesting a mechanism involved in overcoming the toxic effects. In conclusion, our findings indicate that Jaburetox affects the nitrinergic signaling as well as the AChE and UAP activities and establishes N. cinerea as a Jaburetox-resistant model for future comparative studies.


Subject(s)
Cockroaches/drug effects , Cockroaches/enzymology , Plant Proteins/toxicity , Urease/toxicity , Acetylcholinesterase/drug effects , Acid Phosphatase/drug effects , Animals , Central Nervous System/drug effects , Female , Male , Nitric Oxide Synthase/drug effects , Nucleotidyltransferases/drug effects , Recombinant Proteins/toxicity
7.
Mol Med Rep ; 22(2): 774-782, 2020 08.
Article in English | MEDLINE | ID: mdl-32468032

ABSTRACT

Colorectal cancer is a digestive tract malignancy and the third leading cause of cancer­related mortality worldwide. Norcantharidin (NCTD), the demethylated form of cantharidin, has been reported to possess anticancer properties. Family­with­sequence­similarity­46c (Fam46c), a non­canonical poly(A) polymerase, has been reported to be critical in NCTD­mediated effects in numerous types of cancer, including hepatoma. In the current study, it was found that Fam46c expression was reduced in colorectal cancer tissues and cells. Treatment with NCTD was observed to significantly enhance apoptosis and inhibit glycolysis in colorectal cancer cells. In addition, Fam46c and cleaved caspase 3 expression levels were found to be increased in response to NCTD treatment, in contrast to tumor­specific pyruvate kinase M2 and phosphorylated ERK expression, which was reduced. Importantly, overexpression of Fam46c exerted similar effects as NCTD treatment on the apoptosis and glycolysis of colorectal cancer cells, whereas Fam46c knockdown strongly attenuated the effect of NCTD. Moreover, epidermal growth factor, which acts as an agonist of ERK1/2 signaling, weakened the effects of NCTD on colorectal cancer cells. Taken together, the results indicated that NCTD promotes apoptosis and suppresses glycolysis in colorectal cancer cells by possibly targeting Fam46c and inhibiting ERK1/2 signaling, hence suggesting that Fam46c may act as a tumor suppressor in colorectal cancer. Thus, the present study identified a novel therapeutic target of NCTD in the clinical treatment of colorectal cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Colorectal Neoplasms/metabolism , Glycolysis/drug effects , MAP Kinase Signaling System/drug effects , Nucleotidyltransferases/biosynthesis , Adolescent , Adult , Aged , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Down-Regulation , Female , Gene Knockdown Techniques , Humans , Male , Middle Aged , Nucleotidyltransferases/drug effects , Nucleotidyltransferases/genetics
8.
Transplant Proc ; 50(7): 2170-2175, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30177131

ABSTRACT

INTRODUCTION: Aminoglycoside resistance (AR) is common in health care-associated methicillin-resistant Staphylococcus aureus (HA-MRSA). AR is most often associated with the production of antibiotic modifying enzymes: bidomain AAC(6')-Ie/APH(2″)-Ia acetyltransferase and phosphotransferase, ANT(4')-Ia nucleotidyltransferase, and APH(3″)-IIIa phosphotransferase. AIM: Determination of aminoglycoside sensitivity, presence of genes encoding enzymes, and molecular typing of HA-MRSA strains derived from patients hospitalized in surgical and transplantation wards. MATERIALS AND METHODS: Fifty-four HA-MRSA strains, isolated from various materials from patients in the surgical and transplantation wards of Warsaw's clinical hospital, hospitalized between 1991 and 2007. The MIC values of gentamicin-GEN/tobramycin-TOB/amikacin-AK/netilmicin-NET were determined by the E-test (CLSI/EUCAST). Genes mecA/aacA-aphD/aadD/aph(3″)-IIIa were detected using PCR. SCCmec types were determined according to the Oliveira method and the sequence type (ST)/clonal complex (CC) by the MLST method. RESULTS: Of the isolates tested, 36 (66.7%) showed resistance to at least one aminoglycoside: TOB (57.4%), GEN (53.7%), AK (55.6%), NET (24.1%). The aacA-aphD gene was present in 29 MRSA-GEN-R (most often in combination with aadD, 15/29 or aph(3″)-IIIa, 10/29); the aacA-aphD gene was the only determinant of resistance in 1 isolate. The AR variants mainly belonged to the CC8 clonal complex (ST239/247/241/254/8) and most frequently contained SCCmec type III (3A) cassettes. CONCLUSIONS: Resistance to at least one aminoglycoside was present in 66.7% of HA-MRSA and in more than 22% to all of them. The presence of the aacA-aphD gene was sufficient to express the resistance phenotype to GEN/TOB/AK/NET. Resistant isolates were closely related to each other.


Subject(s)
Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/drug effects , Kanamycin Kinase/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Amikacin/pharmacology , Bacterial Proteins/isolation & purification , Gentamicins/pharmacology , Hospital Units , Hospitals , Humans , Kanamycin Kinase/isolation & purification , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Multilocus Sequence Typing , Netilmicin/pharmacology , Nucleotidyltransferases/drug effects , Nucleotidyltransferases/isolation & purification , Penicillin-Binding Proteins/drug effects , Penicillin-Binding Proteins/isolation & purification , Retrospective Studies , Staphylococcal Infections , Tobramycin/pharmacology
9.
J Mol Biol ; 430(17): 2857-2872, 2018 08 17.
Article in English | MEDLINE | ID: mdl-29864443

ABSTRACT

REV1 is a DNA damage tolerance protein and encodes two ubiquitin-binding motifs (UBM1 and UBM2) that are essential for REV1 functions in cell survival under DNA-damaging stress. Here we report the first solution and X-ray crystal structures of REV1 UBM2 and its complex with ubiquitin, respectively. Furthermore, we have identified the first small-molecule compound, MLAF50, that directly binds to REV1 UBM2. In the heteronuclear single quantum coherence NMR experiments, peaks of UBM2 but not of UBM1 are significantly shifted by the addition of ubiquitin, which agrees to the observation that REV1 UBM2 but not UBM1 is required for DNA damage tolerance. REV1 UBM2 interacts with hydrophobic residues of ubiquitin such as L8 and L73. NMR data suggest that MLAF50 binds to the same residues of REV1 UBM2 that interact with ubiquitin, indicating that MLAF50 can compete with the REV1 UBM2-ubiquitin interaction orthosterically. Indeed, MLAF50 inhibited the interaction of REV1 UBM2 with ubiquitin and prevented chromatin localization of REV1 induced by cisplatin in U2OS cells. Our results structurally validate REV1 UBM2 as a target of a small-molecule inhibitor and demonstrate a new avenue to targeting ubiquitination-mediated protein interactions with a chemical tool.


Subject(s)
Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Phenyl Ethers/pharmacology , Small Molecule Libraries/pharmacology , Ubiquitin/chemistry , Ubiquitin/metabolism , Amino Acid Sequence , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Chromatin/chemistry , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , DNA Damage , Humans , Models, Molecular , Nuclear Proteins/drug effects , Nucleotidyltransferases/drug effects , Osteosarcoma/metabolism , Osteosarcoma/pathology , Protein Binding , Protein Conformation , Protein Domains , Tumor Cells, Cultured , Ubiquitin/drug effects , Ubiquitination
10.
Arthritis Rheumatol ; 70(11): 1807-1819, 2018 11.
Article in English | MEDLINE | ID: mdl-29781188

ABSTRACT

OBJECTIVE: Type I interferon (IFN) is strongly implicated in the pathogenesis of systemic lupus erythematosus (SLE) as well as rare monogenic interferonopathies such as Aicardi-Goutières syndrome (AGS), a disease attributed to mutations in the DNA exonuclease TREX1. The DNA-activated type I IFN pathway cyclic GMP-AMP (cGAMP) synthase (cGAS) is linked to subsets of AGS and lupus. This study was undertaken to identify inhibitors of the DNA-cGAS interaction, and to test the lead candidate drug, X6, in a mouse model of AGS. METHODS: Trex1-/- mice were treated orally from birth with either X6 or hydroxychloroquine (HCQ) for 8 weeks. Expression of IFN-stimulated genes (ISGs) was quantified by quantitative polymerase chain reaction. Multiple reaction monitoring by ultra-performance liquid chromatography coupled with tandem mass spectrometry was used to quantify the production of cGAMP and X6 drug concentrations in the serum and heart tissue of Trex1-/- mice. RESULTS: On the basis of the efficacy-to-toxicity ratio established in vitro, drug X6 was selected as the lead candidate for treatment of Trex1-/- mice. X6 was significantly more effective than HCQ in attenuating ISG expression in mouse spleens (P < 0.01 for Isg15 and Isg20) and hearts (P < 0.05 for Isg15, Mx1, and Ifnb, and P < 0.01 for Cxcl10), and in reducing the production of cGAMP in mouse heart tissue (P < 0.05), thus demonstrating target engagement by the X6 compound. Of note, X6 was also more effective than HCQ in reducing ISG expression in vitro (P < 0.05 for IFI27 and MX1, and P < 0.01 for IFI44L and PKR) in human peripheral blood mononuclear cells from patients with SLE. CONCLUSION: This study demonstrates that X6 is superior to HCQ for the treatment of an experimental autoimmune myocarditis mediated in vivo by the cGAS/stimulator of IFN genes (cGAS/STING) pathway. The findings suggest that drug X6 could be developed as a novel treatment for AGS and/or lupus to inhibit activation of the cGAS/STING pathway.


Subject(s)
Aminoacridines/pharmacology , Antimalarials/pharmacology , Exodeoxyribonucleases/genetics , Heart/drug effects , Interferon-beta/drug effects , Leukocytes, Mononuclear/drug effects , Nucleotidyltransferases/drug effects , Phosphoproteins/genetics , Animals , Chemokine CXCL10/drug effects , Chemokine CXCL10/genetics , Chromatography, Liquid , Cytokines/drug effects , Cytokines/genetics , Humans , Hydroxychloroquine/pharmacology , In Vitro Techniques , Interferon-beta/genetics , Interferon-beta/metabolism , Leukocytes, Mononuclear/metabolism , Lupus Erythematosus, Systemic , Mice , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Myxovirus Resistance Proteins/drug effects , Myxovirus Resistance Proteins/genetics , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , Organ Size , Polymerase Chain Reaction , Spleen/drug effects , Spleen/pathology , Tandem Mass Spectrometry , Ubiquitins/drug effects , Ubiquitins/genetics
11.
Vet Microbiol ; 214: 125-131, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29408023

ABSTRACT

Herpesviruses are ubiquitous in animals and cause economic losses concomitant with many diseases. Most of the domestic animal herpesviruses are within the subfamily Alphaherpesvirinae, which includes human herpes simplex virus 1 (HSV-1). Suppression of HSV-1 replication has been reported with α-hydroxytropolones (αHTs), aromatic ring compounds that have broad bioactivity due to potent chelating activity. It is postulated that αHTs inhibit enzymes within the nucleotidyltransferase superfamily (NTS). These enzymes require divalent cations for nucleic acid cleavage activity. Potential targets include the nuclease component of the herpesvirus terminase (pUL15C), a highly conserved NTS-like enzyme that cleaves viral DNA into genomic lengths prior to packaging into capsids. Inhibition of pUL15C activity in biochemical assays by various αHTs previously revealed a spectrum of potencies. Interestingly, the most potent anti-pUL15C αHT inhibited HSV-1 replication to a limited extent in cell culture. The aim of this study was to evaluate three different αHT molecules with varying biochemical anti-pUL15C activity for a capacity to inhibit replication of veterinary herpesviruses (BoHV-1, EHV-1, and FHV-1) and HSV-1. Given the known discordant potencies between anti-pUL15C and HSV-1 replication inhibition, a second objective was to elucidate the mechanism of action of these compounds. The results show that αHTs broadly inhibit herpesviruses, with similar inhibitory effect against HSV-1, BoHV-1, EHV-1, and FHV-1. Based on immunoblotting, Southern blotting, and real-time qPCR, the compounds were found to specifically inhibit viral DNA replication. Thus, αHTs represent a new class of broadly active anti-herpesviral compounds with potential veterinary applications.


Subject(s)
Antiviral Agents/pharmacology , Herpesviridae/drug effects , Tropolone/analogs & derivatives , Tropolone/pharmacology , Virus Replication/drug effects , Animals , Chlorocebus aethiops , DNA Replication/drug effects , DNA, Viral/genetics , Drug Resistance, Viral , Endodeoxyribonucleases/drug effects , Herpesviridae/enzymology , Humans , Nucleotidyltransferases/drug effects , Tropolone/chemistry , Vero Cells , Viral Proteins/drug effects , Viral Proteins/genetics
12.
Nat Commun ; 8(1): 750, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28963528

ABSTRACT

Cyclic GMP-AMP synthase is essential for innate immunity against infection and cellular damage, serving as a sensor of DNA from pathogens or mislocalized self-DNA. Upon binding double-stranded DNA, cyclic GMP-AMP synthase synthesizes a cyclic dinucleotide that initiates an inflammatory cellular response. Mouse studies that recapitulate causative mutations in the autoimmune disease Aicardi-Goutières syndrome demonstrate that ablating the cyclic GMP-AMP synthase gene abolishes the deleterious phenotype. Here, we report the discovery of a class of cyclic GMP-AMP synthase inhibitors identified by a high-throughput screen. These compounds possess defined structure-activity relationships and we present crystal structures of cyclic GMP-AMP synthase, double-stranded DNA, and inhibitors within the enzymatic active site. We find that a chemically improved member, RU.521, is active and selective in cellular assays of cyclic GMP-AMP synthase-mediated signaling and reduces constitutive expression of interferon in macrophages from a mouse model of Aicardi-Goutières syndrome. RU.521 will be useful toward understanding the biological roles of cyclic GMP-AMP synthase and can serve as a molecular scaffold for development of future autoimmune therapies.Upon DNA binding cyclic GMP-AMP synthase (cGAS) produces a cyclic dinucleotide, which leads to the upregulation of inflammatory genes. Here the authors develop small molecule cGAS inhibitors, functionally characterize them and present the inhibitor and DNA bound cGAS crystal structures, which will facilitate drug development.


Subject(s)
Autoimmune Diseases/immunology , Autoimmunity/drug effects , Benzofurans/pharmacology , Enzyme Inhibitors/pharmacology , Macrophages/drug effects , Animals , Autoimmune Diseases of the Nervous System/immunology , Autoimmunity/immunology , DNA/metabolism , High-Throughput Screening Assays , Immunity, Innate/immunology , Inflammation , Macrophages/immunology , Mass Spectrometry , Mice , Nervous System Malformations/immunology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/drug effects , Small Molecule Libraries , Structure-Activity Relationship
13.
Appl Microbiol Biotechnol ; 101(11): 4521-4532, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28280867

ABSTRACT

The ADP-L-glycero-ß-D-manno-heptose and the GDP-6-deoxy-α-D-manno-heptose biosynthesis pathways play important roles in constructing lipopolysaccharide of Gram-negative bacteria. Blocking the pathways is lethal or increases antibiotic susceptibility to pathogens. Therefore, the enzymes involved in the pathways are novel antibiotic drug targets. Here, we designed an efficient method to assay the whole enzymes in the pathways using mass spectrometry and screened 148 compounds. One promising lead is (-)-nyasol targeting D-glycero-α-D-manno-heptose-1-phosphate guanylyltransferase (HddC) included in the GDP-6-deoxy-α-D-manno-heptose biosynthesis pathway from Burkholderia pseudomallei. The inhibitory activity of the lead compound against HddC has been confirmed by blocking the system transferring the guanosine monophosphate (GMP) moiety to α-D-glucose-1-phosphate. (-)-Nyasol exhibits the half maximal inhibitory concentration (IC50) value of 17.6 µM. A further study is going on using (-)-nyasol derivatives to find better leads with high affinity.


Subject(s)
Biosynthetic Pathways , Burkholderia pseudomallei/enzymology , Enzyme Assays/methods , Heptoses/biosynthesis , Burkholderia pseudomallei/drug effects , Inhibitory Concentration 50 , Lignans/pharmacology , Lipopolysaccharides/biosynthesis , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/drug effects , Phenols/pharmacology , Spectrometry, Mass, Electrospray Ionization/methods , Substrate Specificity
14.
J Med Chem ; 56(5): 1908-21, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23445125

ABSTRACT

In this paper, we present different strategies to vectorize HldE kinase inhibitors with the goal to improve their gram-negative intracellular concentration. Syntheses and biological effects of siderophoric, aminoglycosidic, amphoteric, and polycationic vectors are discussed. While siderophoric and amphoteric vectorization efforts proved to be disappointing in this series, aminoglycosidic and polycationic vectors were able for the first time to achieve synergistic effects of our inhibitors with erythromycin. Although these effects proved to be nonspecific, this study provides information about the required stereoelectronic arrangement of the polycationic amines and their basicity requirements to fulfill outer membrane destabilization resulting in better erythromycin synergies.


Subject(s)
Erythromycin/metabolism , Escherichia coli/metabolism , Multienzyme Complexes/antagonists & inhibitors , Nucleotidyltransferases/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Aminoglycosides/pharmacology , Anti-Bacterial Agents/metabolism , Erythromycin/chemistry , Erythromycin/pharmacology , Escherichia coli/drug effects , Lipopolysaccharides/biosynthesis , Microbial Sensitivity Tests , Multienzyme Complexes/drug effects , Nucleotidyltransferases/drug effects , Phosphotransferases (Alcohol Group Acceptor)/drug effects , Polyamines/pharmacology , Polyelectrolytes
15.
Lancet Oncol ; 4(1): 37-44, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12517538

ABSTRACT

Tumour resistance and dose-limiting toxic effects restrict treatment with most chemotherapeutic drugs. Elucidation of the mechanisms of these effects could permit the development of ways to improve the effectiveness of currently used agents until better therapeutic agents are developed. Several types of alkylating agents are used in the treatment of cancer. The DNA repair protein, O6-alkylguanine-DNA alkyltransferase (ATase) is an important cellular resistance mechanism to one class of alkylating agents. This enzyme removes potentially lethal damage from DNA and experiments in vitro and in vivo have shown that its inactivation can reverse resistance to such agents. Clinical trials of drugs that inactivate ATase are underway and early results indicate that they are active in tumour tissues. However, the ATase present in normal tissues, particularly bone marrow, is also inactivated, necessitating a reduction in the dose of alkylating agent. An important question is whether, in the absence of any tumour-specific delivery strategy, such drugs will improve therapeutic effectiveness; initial reports are not promising.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , DNA Repair , Neoplasms/metabolism , Nucleotidyltransferases/metabolism , Animals , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/chemistry , DNA Damage , DNA Repair/drug effects , DNA Repair/physiology , Drug Resistance, Neoplasm/physiology , Humans , Neoplasms/drug therapy , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/drug effects , O(6)-Methylguanine-DNA Methyltransferase/metabolism
16.
Plant Cell ; 14(9): 2191-213, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12215515

ABSTRACT

Transcriptional and allosteric regulation of ADP-Glc pyrophosphorylase (AGPase) plays a major role in the regulation of starch synthesis. Analysis of the response after detachment of growing potato tubers from the mother plant revealed that this concept requires extension. Starch synthesis was inhibited within 24 h of tuber detachment, even though the catalytic subunit of AGPase (AGPB) and overall AGPase activity remained high, the substrates ATP and Glc-1-P increased, and the glycerate-3-phosphate/inorganic orthophosphate (the allosteric activator and inhibitor, respectively) ratio increased. This inhibition was abolished in transformants in which a bacterial AGPase replaced the potato AGPase. Measurements of the subcellular levels of each metabolite between Suc and starch established AGPase as the only step whose substrates increase and mass action ratio decreases after detachment of wild-type tubers. Separation of extracts on nonreducing SDS gels revealed that AGPB is present as a mixture of monomers and dimers in growing tubers and becomes dimerized completely in detached tubers. Dimerization led to inactivation of the enzyme as a result of a marked decrease of the substrate affinity and sensitivity to allosteric effectors. Dimerization could be reversed and AGPase reactivated in vitro by incubating extracts with DTT. Incubation of tuber slices with DTT or high Suc levels reduced dimerization, increased AGPase activation, and stimulated starch synthesis in vivo. In intact tubers, the Suc content correlated strongly with AGPase activation across a range of treatments, including tuber detachment, aging of the mother plant, heterologous overexpression of Suc phosphorylase, and antisense inhibition of endogenous AGPase activity. Furthermore, activation of AGPase resulted in a stimulation of starch synthesis and decreased levels of glycolytic intermediates.


Subject(s)
Nucleotidyltransferases/metabolism , Plant Stems/enzymology , Solanum tuberosum/enzymology , Starch/biosynthesis , Sucrose/metabolism , Chloroplasts/metabolism , Cytosol/metabolism , Dithiothreitol/pharmacology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Glucose-1-Phosphate Adenylyltransferase , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glyceraldehyde 3-Phosphate/metabolism , Kinetics , Models, Biological , Nucleotidyltransferases/drug effects , Nucleotidyltransferases/genetics , Oxidation-Reduction , Phosphates/metabolism , Plant Stems/genetics , Plant Stems/metabolism , Plants, Genetically Modified , Protein Processing, Post-Translational , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Vacuoles/metabolism
17.
FEBS Lett ; 520(1-3): 88-92, 2002 Jun 05.
Article in English | MEDLINE | ID: mdl-12044876

ABSTRACT

It has been proposed that the REV1 protein plays an important role in the induced-mutagenesis pathway. We show that purified REV1 protein inserts dCMP opposite template G, A, T and C, and dGMP and dTMP opposite template G in the presence of magnesium, while in the presence of manganese the specificity for dCMP was found to be relaxed and the REV1 protein acquired the ability to insert dCMP, dGMP, dAMP and dTMP opposite templates G, A, T, and C. Kinetic analysis provided evidence for high affinity for dCTP with template G, suggesting that the REV1 protein is specialized for dCTP and template G.


Subject(s)
Nucleotidyltransferases/metabolism , Base Sequence , Cations, Divalent/pharmacology , Deoxycytidine Monophosphate/metabolism , Dose-Response Relationship, Drug , Escherichia coli/genetics , Gene Expression , Humans , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Nuclear Proteins , Nucleotidyltransferases/drug effects , Nucleotidyltransferases/genetics , Plasmids/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism
18.
Planta ; 214(3): 428-34, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11855648

ABSTRACT

ADP-glucose pyrophosphorylase (AGPase; EC 2.7.7.27) was purified and characterized from two wheat (Triticum aestivum L.) tissues: leaf and endosperm. The leaf enzyme, purified over 1,300-fold, was found to be a heterotetramer composed of subunits of 51 and 54 kDa and possessing regulatory properties typical of AGPases from photosynthetic tissues, being mainly regulated by 3-phosphoglycerate (activator; A0.5=0.01 mM) and orthophosphate (inhibitor; I0.5=0.2 mM). Conversely, the enzyme from wheat endosperm was insensitive to activation by 3-phosphoglycerate and other metabolites. It was, however, inhibited by orthophosphate (I0.5=0.7 mM), ADP (I0.5=3.2 mM) and fructose-1,6-bisphosphate (0.5 = 1.5 mM). All of these inhibitory actions were reversed by 3-phosphoglycerate and fructose-6-phosphate. The endosperm enzyme was found to be a heterotetramer composed of subunits of 52 and 53 kDa, which were recognized by antiserum raised to spinach leaf AGPase. The results suggest that wheat endosperm AGPase possesses distinctive regulatory properties that are relevant in vivo.


Subject(s)
Nucleotidyltransferases/metabolism , Seeds/enzymology , Triticum/enzymology , Adenosine Diphosphate/pharmacology , Enzyme Activation/drug effects , Fructosediphosphates/pharmacology , Glucose-1-Phosphate Adenylyltransferase , Glyceric Acids/pharmacology , Molecular Weight , Nucleotidyltransferases/drug effects , Nucleotidyltransferases/isolation & purification , Phosphates/pharmacology , Plant Leaves/enzymology
20.
Biochim Biophys Acta ; 1304(1): 11-20, 1996 Nov 11.
Article in English | MEDLINE | ID: mdl-8944746

ABSTRACT

The effects of bezafibrate and clofibric acid, fibrate hypolipidemic agents, on phosphatidylcholine (PC) synthesis via the phosphatidylethanolamine (PE) methylation pathway were studied. In cultured rat hepatocytes, bezafibrate and clofibric acid added to the medium rapidly and markedly reduced the conversion of ethanolamine-labeled PE to PC (IC50 30 and 150 microM, respectively). Furthermore, the methylation of PE derived from serine was also blocked by bezafibrate, as was the secretion of PC derived from either serine or ethanolamine. The microsomal activity of PE N-methyltransferase was inhibited by these agents. Perfluorooctanoic acid but not DCQVA, though both are potent peroxisome proliferators comparable to fibrates, produced this inhibition. The inhibitory effects produced by these agents were diminished by dithiothreitol (DTT) added to the assay or alkaline pH assay condition. Inhibition by oleic acid was also attenuated under these conditions, suggesting a common mechanism of inhibition. However, unlike fatty acids, fibrates did not have rapid stimulatory effects on the CDP-choline pathway in hepatocytes. These results suggest that fibrates may mimic fatty acids in regulating PC synthesis from the PE methylation pathway but not the CDP-choline pathway.


Subject(s)
Butyrates/pharmacology , Enzyme Inhibitors/pharmacology , Liver/metabolism , Methyltransferases/antagonists & inhibitors , Phosphatidylcholines/biosynthesis , Phosphatidylethanolamines/metabolism , Animals , Bezafibrate/pharmacology , Cells, Cultured , Choline-Phosphate Cytidylyltransferase , Clofibric Acid/pharmacology , Dose-Response Relationship, Drug , Female , Liver/cytology , Liver/drug effects , Liver/enzymology , Methylation/drug effects , Microsomes/drug effects , Microsomes/enzymology , Nucleotidyltransferases/drug effects , Phosphatidylethanolamine N-Methyltransferase , Rats , Rats, Wistar , Sulfhydryl Reagents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...