Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 855
Filter
1.
Wei Sheng Yan Jiu ; 53(3): 487-507, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38839595

ABSTRACT

OBJECTIVE: To compare the relationship between the nutrient limit in new national standard Infant Formula(GB 10765-2021)(New GB)and the corresponding nutrients in Dietary Reference Intakes for China 2023(DRIs 2023), to determine the scientific and reasonable base of each nutrient in New GB, and provide supports for future revision of it. METHODS: Using a data conversion method, the adequate intake(AI) of each nutrient recommended by DRIs 2023 for infants aged 0-6 months and the nutrient limit in the New GB were input into the Excel table. Based on authoritative data on the representative weight of 0-6 month infants and the recommended energy values, the conversion was done, the ratio of the lower limit of each nutrient in New GB and the AI of corresponding nutrient, as well as the ratio of the upper limit of nutrients in New GB and their tolerable upper intake level(UL) were calculated. RESULTS: For most nutrients in New GB for infant formula, the ratio of the lower limit to their AI is close to 1. For those nutrients with a large ratio of the lower limit to AI, or with a ratio of the upper limit to UL were greater than 1, detail analysis was conducted. CONCLUSION: Based on DRIs 2023, the nutrient limit for each nutrient in New GB for infant formula was scientific and reasonable. For some nutrients with a large ratio, more studies should be done in the future to determine whether the limit in National Standard need to be adjusted.


Subject(s)
Infant Formula , Infant Formula/chemistry , Humans , Infant , China , Infant, Newborn , Recommended Dietary Allowances , Energy Intake , Nutrients/analysis
2.
Wei Sheng Yan Jiu ; 53(3): 455-464, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38839588

ABSTRACT

OBJECTIVE: To establish an ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) method for simultaneous determination of 11 nutritional components(thiamine, riboflavin, nicotinamide, nicotinic acid, pantothenic acid, pyridoxine, pyridoxal, pyridoxamine, biotin, choline, L-carnitine) in liquid milk. METHODS: Milk samples were shaken with 20 mmol/L ammonium formate solution and heated in a water bath at 100 ℃ for 30 min, then incubated with papain and acid phosphatase at 45 ℃ for 16 h, the lower liquid was collected after centrifugation for analysis. UPLC separation was performed on an ACQUITY~(TM) HSS T3(3.0 mm×150 mm, 1.8 µm) column, 2 mmol/L ammonium formate(containing 0.1% formic acid) solution and acetonitrile(containing 0.1% formic acid) were used as mobile phase. Quantitative detection was performed by internal standard method. RESULTS: 11 nutritional components can be effectively separated and detected in 12 min, and the linear correlation coefficients(R~2) were all above 0.995. The limits of detection(LODs) were between 0.05 and 0.50 µg/L, and the limits of quantification(LOQs) were between 0.20 and 1.25 µg/L. The recovery rates of three-level addition were 85.6%-119.3%, and the precision RSDs were between 3.68% and 7.82%(n=6). Based on the detection of 60 liquid milk samples from 5 different animals, it was found that the contents of 11 nutrients in liquid milk from different milk sources were significantly different, but pyridoxine could not be detected. CONCLUSION: The method can quantitatively detect 11 water-soluble nutrients, including free and bound forms, by effective enzymolysis. It is sensitive, reproducible and can meet the needs of quantitative detection.


Subject(s)
Milk , Tandem Mass Spectrometry , Milk/chemistry , Tandem Mass Spectrometry/methods , Animals , Chromatography, High Pressure Liquid/methods , Niacinamide/analysis , Riboflavin/analysis , Nutrients/analysis , Pantothenic Acid/analysis , Cattle , Pyridoxine/analysis , Niacin/analysis , Carnitine/analysis
3.
Environ Monit Assess ; 196(6): 539, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733446

ABSTRACT

Primary production is an important driver of marine carbon storage. Besides the major nutrient elements nitrogen, phosphorus, and silicon, primary production also depends on the availability of nutrient-type metals (e.g., Cu, Fe, Mo) and the absence of toxicologically relevant metals (e.g., Ni, Pb). Especially in coastal oceans, carbon storage and export to the open ocean is highly variable and influenced by anthropogenic eutrophication and pollution. To model future changes in coastal carbon storage processes, a solid baseline of nutrient and metal concentrations is crucial. The North Sea is an important shelf sea, influenced by riverine, atmospheric, Baltic Sea, and North Atlantic inputs. We measured the concentrations of dissolved nutrients (NH4+, NO3-, PO43-, and SiO44-) and 26 metals in 337 water samples from various depths within the entire North Sea and Skagerrak. A principal component analysis enabled us to categorize the analytes into three groups according to their predominant behavior: tracers for seawater (e.g., Mo, U, V), recycling (e.g., NO3-, PO43-, SiO44-), and riverine or anthropogenic input (e.g., Ni, Cu, Gd). The results further indicate an increasing P-limitation and increasing anthropogenic gadolinium input into the German Bight.


Subject(s)
Environmental Monitoring , Phosphorus , Seawater , Trace Elements , Water Pollutants, Chemical , North Sea , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Seawater/chemistry , Phosphorus/analysis , Nutrients/analysis , Nitrogen/analysis , Metals/analysis , Eutrophication
4.
J Diabetes ; 16(5): e13555, 2024 May.
Article in English | MEDLINE | ID: mdl-38721664

ABSTRACT

BACKGROUND: The association between macronutrient intake and diabetes is unclear. We used data from the China Health and Nutrition Survey to explore the association between macronutrient intake trajectories and diabetes risk in this study. METHODS: We included 6755 participants who did not have diabetes at baseline and participated in at least three surveys. The energy supply ratio of carbohydrate, protein, and fat was further calculated from dietary data; different macronutrient trajectories were determined using multitrajectory models; and multiple Cox regression models were used to evaluate the association between these trajectories and diabetes. RESULTS: We found three multitrajectories: decreased low carbohydrate-increased moderate protein-increased high fat (DLC-IMP-IHF), decreased high carbohydrate-moderate protein-increased low fat (DHC-MP-ILF), and balanced-macronutrients (BM). Compared to the BM trajectory, DHC-MP-ILF trajectories were significantly associated with increased risk of diabetes (hazard ratio [HR]: 3.228, 95% confidence interval [CI]: 1.571-6.632), whereas no association between DLC-IMP-IHF trajectories and diabetes was found in our study (HR: 0.699, 95% CI: 0.351-1.392). CONCLUSIONS: The downward trend of high carbohydrate and the increasing trend of low fat increased the risk of diabetes in Chinese adults.


Subject(s)
Dietary Carbohydrates , Nutrients , Humans , Female , Male , China/epidemiology , Middle Aged , Adult , Nutrients/analysis , Dietary Carbohydrates/adverse effects , Dietary Carbohydrates/administration & dosage , Risk Factors , Nutrition Surveys , Dietary Fats/adverse effects , Dietary Fats/administration & dosage , Diabetes Mellitus/epidemiology , Energy Intake , Dietary Proteins/administration & dosage , Diet/adverse effects , Diet/statistics & numerical data , East Asian People
5.
Environ Monit Assess ; 196(6): 503, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700640

ABSTRACT

Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0-25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha-1), while the lowest yield was in the Hendijan region (3000 kg.ha-1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.


Subject(s)
Environmental Monitoring , Nitrogen , Phosphorus , Soil , Triticum , Soil/chemistry , Nitrogen/analysis , Phosphorus/analysis , Fertilizers/analysis , Agriculture/methods , Nutrients/analysis , Carbon/analysis
6.
Food Res Int ; 187: 114460, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763688

ABSTRACT

In order to fully understand the nutritional heterogeneity of plant-based meat analogues and real meat, this review summarized their similarities and differences in terms of ingredients, nutrient contents, bioavailability and health impacts. Plant-based meat analogues have some similarities to real meat. However, plant-based meat analogues are lower in protein, cholesterol and VB12 but higher in dietary fiber, carbohydrates, sugar, salt and various food additives than real meat. Moreover, some nutrients in plant-based meat analogues, such as protein and iron, are less bioavailable. There is insufficient evidence that plant-based meat analogues are healthier, which may be related to the specific attributes of these products such as formulation and degree of processing. As things stand, it is necessary to provide comprehensive nutrition information on plant-based meat products so that consumers can make informed choices based on their nutritional needs.


Subject(s)
Biological Availability , Meat Products , Nutritive Value , Humans , Meat Products/analysis , Animals , Nutrients/analysis , Diet, Vegetarian , Food Ingredients/analysis , Meat/analysis , Meat Substitutes
7.
Environ Monit Assess ; 196(6): 517, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710902

ABSTRACT

Nowadays, the introduction of nutrients caused by human activities is considered an environmental issue and a significant problem in river basins and coastal ecosystems. In this study, the concentration of nutrients ( NO 3 - and PO 4 3 - ) in the surface water sources of the Maroon-Jarahi watershed in the southwest of Iran was determined, and the pollution status and health risk assessment were done. The average concentration of nitrate and phosphate in Ludab, Maroon, Zard, Allah, Jarahi rivers, and Shadegan wetland were obtained at 2.25-0.59, 4.59-1.84, 4.07-2.02, 5.40-2.81, 11.51-4.67, 21.63 and 6.20 (mg/l), respectively. A comparison of the results with the World Health Organization (WHO) limit showed that nitrate was lower than in all stations, but phosphate was higher than the limit in some stations of the Maroon, Allah, Jarahi rivers, and Shadegan wetland. Calculation of linear regression analysis showed significant positive relationships between nitrate and phosphate in all surface water sources (except Ludab) and based on the N/P ratio, nitrogen was estimated as the limiting factor in phytoplankton growth (N/P < 16). The evaluation of the status of the Nutrient pollution index (NPI) was observed as: Shadegan > Jarahi > Allah > Maroon > Zard > Ludab that the Jarahi River and Shadegan wetland were in the medium pollution class (1 < NPI ≤ 3) and other waterbodies were in the non-polluted to low pollution state (NPI < 1). Calculation of the chronic daily intake (CDI) showed that water body nutrients cause more non-carcinogenic health risks through the oral route than dermal exposure, and according to HI, children's health is more at risk than adults. Findings showed that surface water resources especially downstream of the Maroon-Jarahi watershed are at eutrophication risk, and to control the nearby human activities and as a result increase the nutrients in these water resources, measures should be taken.


Subject(s)
Environmental Monitoring , Nitrates , Rivers , Water Pollutants, Chemical , Iran , Water Pollutants, Chemical/analysis , Risk Assessment , Humans , Rivers/chemistry , Nitrates/analysis , Phosphates/analysis , Wetlands , Water Pollution, Chemical/statistics & numerical data , Nutrients/analysis , Water Resources
8.
PLoS One ; 19(5): e0302638, 2024.
Article in English | MEDLINE | ID: mdl-38718016

ABSTRACT

Hydroponics offers a promising approach to help alleviate pressure on food security for urban residents. It requires minimal space and uses less resources, but management can be complex. Microscale Smart Hydroponics (MSH) systems leverage IoT systems to simplify hydroponics management for home users. Previous work in nutrient management has produced systems that use expensive sensing methods or utilized lower cost methods at the expense of accuracy. This study presents a novel inexpensive nutrient management system for MSH applications that utilises a novel waterproofed, IoT spectroscopy sensor (AS7265x) in a transflective application. The sensor is submerged in a hydroponic solution to monitor the nutrients and MSH system predicts the of nutrients in the hydroponic solution and recommends an adjustment quantity in mL. A three-phase model building process was carried out resulting in significant MLR models for predicting the mL, with an R2 of 0.997. An experiment evaluated the system's performance using the trained models with a 30-day grow of lettuce in a real-world setting, comparing the results of the management system to a control group. The sensor system successfully adjusted and maintained nutrient levels, resulting in plant growth that outperformed the control group. The results of the models in actual deployment showed a strong, significant correlation of 0.77 with the traditional method of measuring the electrical conductivity of nutrients. This novel nutrient management system has the potential to transform the way nutrients are monitored in hydroponics. By simplifying nutrient management, this system can encourage the adoption of hydroponics, contributing to food security and environmental sustainability.


Subject(s)
Hydroponics , Nutrients , Hydroponics/methods , Nutrients/analysis , Spectrum Analysis/methods , Lactuca/growth & development , Food Security
9.
Sci Total Environ ; 931: 172997, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38714256

ABSTRACT

Diatoms and dinoflagellates are two typical functional groups of phytoplankton, playing important roles in ecosystem processes and biogeochemical cycles. Changes in diatoms and dinoflagellates are thought to be one of the possible mechanisms for the increase in harmful algal blooms (HABs), due to changing hydrological conditions associated with climate change and human activities. However, little is known about their ability to adapt to changing ocean environments, thus making it difficult to know whether and how they are adapting. By analyzing a 44-year monitoring dataset in the central Bohai Sea during 1978-2021, we found that the abundance ratio of diatoms to dinoflagellates showed a decreasing trend seasonally and ecologically, indicating that the phytoplankton community underwent distinct successional processes from diatom dominance to diatom-dinoflagellate co-dominance. These processes exhibited varying responses to temperature, nutrient concentrations and ratios, and their interactions, of which temperature primarily drove the seasonal succession whereas nutrients were responsible for the ecological succession. Specifically, diatoms showed a preference for lower temperatures and higher DIP concentrations, and were able to tolerate lower DIN at lower temperatures. In contrast, dinoflagellates tended to prevail at conditions of warming and high N/P ratios. These different traits of diatoms and dinoflagellates reflected the fact that warming as a result of rising temperature and eutrophication as a consequence of nutrient input would favor dinoflagellates over diatoms. Moreover, the increasing dominance of dinoflagellates indicated that dinoflagellate blooms were likely to become more frequent and intense in the central Bohai Sea.


Subject(s)
Climate Change , Diatoms , Dinoflagellida , Eutrophication , Temperature , Phytoplankton , Nutrients/analysis , Environmental Monitoring , China , Harmful Algal Bloom , Ecosystem , Seasons
10.
Sci Total Environ ; 931: 173024, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38719048

ABSTRACT

Among the problems caused by water eutrophication, the issue of odor compounds has attracted notable attention. ß-Cyclocitral, a widely distributed and versatile odor compound, is commonly derived from both algae and aquatic plants. Planting aquatic plants is a common method of water purification. However, there is limited study on their impact on ß-cyclocitral levels in water. Here, we conducted a study on the ß-cyclocitral levels in water and the submerged plant leaves under three nutrient levels and six plant density treatments. Our findings revealed the following: (1) Chlorophyll-a (Chla), ß-cyclocitral in the water (Wcyc), ß-cyclocitral in Potamogeton lucens leaves (Pcyc) and the biomass of the submerged plants increase with rising nutrient concentration, which increased about 83 %, 95 %, 450 %, 320 % from eutrophic treatment to oligotrophic treatment, respectively. (2) In water, ß-cyclocitral is influenced not only by algae but also by submerged plants, with primary influencing factors varying across different nutrient levels and plant densities. The main source of ß-cyclocitral in water becomes from plants to algae as the water eutrophication and plant density decrease. (3) As submerged plants have the capability to emit ß-cyclocitral, the release of ß-cyclocitral increases with the density of submerged plants. Hence, when considering planting submerged plants for water purification purposes, it is crucial to carefully manage submerged plant density to mitigate the risk of odor pollution emanating from aquatic plants. This study offers fresh insights into selecting optimal water density for submerged plants and their role in mitigating the release of ß-cyclocitral.


Subject(s)
Eutrophication , Odorants , Water Pollutants, Chemical , Odorants/analysis , Water Pollutants, Chemical/analysis , Aldehydes/analysis , Plants , Nutrients/analysis , Environmental Monitoring , Diterpenes
11.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732541

ABSTRACT

Nuts are nutrient-dense foods and can be incorporated into a healthy diet. Artificial intelligence-powered diet-tracking apps may promote nut consumption by providing real-time, accurate nutrition information but depend on data and model availability. Our team developed a dataset comprising 1380 photographs, each in RGB color format and with a resolution of 4032 × 3024 pixels. These images feature 11 types of nuts that are commonly consumed. Each photo includes three nut types; each type consists of 2-4 nuts, so 6-9 nuts are in each image. Rectangular bounding boxes were drawn using a visual geometry group (VGG) image annotator to facilitate the identification of each nut, delineating their locations within the images. This approach renders the dataset an excellent resource for training models capable of multi-label classification and object detection, as it was meticulously divided into training, validation, and test subsets. Utilizing transfer learning in Python with the IceVision framework, deep neural network models were adeptly trained to recognize and pinpoint the nuts depicted in the photographs. The ultimate model exhibited a mean average precision of 0.7596 in identifying various nut types within the validation subset and demonstrated a 97.9% accuracy rate in determining the number and kinds of nuts present in the test subset. By integrating specific nutritional data for each type of nut, the model can precisely (with error margins ranging from 0.8 to 2.6%) calculate the combined nutritional content-encompassing total energy, proteins, carbohydrates, fats (total and saturated), fiber, vitamin E, and essential minerals like magnesium, phosphorus, copper, manganese, and selenium-of the nuts shown in a photograph. Both the dataset and the model have been made publicly available to foster data exchange and the spread of knowledge. Our research underscores the potential of leveraging photographs for automated nut calorie and nutritional content estimation, paving the way for the creation of dietary tracking applications that offer real-time, precise nutritional insights to encourage nut consumption.


Subject(s)
Neural Networks, Computer , Nutritive Value , Nuts , Photography , Humans , Deep Learning , Nutrients/analysis
12.
Food Res Int ; 186: 114363, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729725

ABSTRACT

This study evaluates the impact of high-intensity ultrasound (HIU) on the physicochemical properties and in-vitro digestibility of Atlantic cod (Gadus morhua). Various ultrasound durations (0-60 min) were applied to assess changes in color attributes, total antioxidant capacity (TAC), total flavonoid content (TFC), total phenolic content (TPC), total protein content, and in-vitro protein digestibility (IVPD). Results indicated HIU maximumly increased TAC, TFC, TPC, and peptide content before digestion by 7.28 % (US60), 3.00 % (US30), 32.43 % (US10), and 18.93 % (US60), respectively. While HIU reduced total protein content, it enhanced IVPD by up to 12.24 % (US30). Color attributes electron microscopy reflected structural changes in the cod samples, suggesting the effectiveness of HIU in altering protein structures. These findings highlight HIU's potential as a non-thermal technique for improving the sensory and nutritional quality of Atlantic cod, offering valuable insights for the seafood processing industry and consumers.


Subject(s)
Antioxidants , Digestion , Food Handling , Gadus morhua , Nutritive Value , Seafood , Gadus morhua/metabolism , Animals , Seafood/analysis , Antioxidants/analysis , Antioxidants/chemistry , Food Handling/methods , Phenols/analysis , Ultrasonic Waves , Flavonoids/analysis , Nutrients/analysis , Taste , Color
13.
Trop Anim Health Prod ; 56(4): 156, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727858

ABSTRACT

The current study aimed to determine the polyphenol compounds in Nigella sativa (NS) and Eruca sativa (ES) seeds, and evaluate the impact of their addition either as a sole additive or in combination on the growth performance, digestibility, some rumen and blood parameters and antioxidative status of Barki lambs. Forty-eight male lambs (27.18 ± 0.22 kg, 5-6 months), were divided into 4 balanced groups. The experimental diets were randomly distributed to the control group (CON); fed alfalfa hay plus concentrate feed mixture at a ratio of 30:70% without additives, while, NSD, ESD, and NESD groups: fed CON diet plus 2% NS, 2% ES or 1% NS + 1% ES, respectively as a ratio from total mixed ration (TMR). Results indicated that rutin and catechin were the most phenolic compounds observed either in NS or ES seeds. The NS and ES-supplemented groups recorded the highest (P < 0.05) values for dry matter digestibility, nutritive values, average daily gain, and the best feed conversion ratio. However, growth performance, nutritive value, and all nutrient digestibility except for dry matter were not significantly altered with the NESD group. Concentrations of ruminal NH3-N and TVFA were significantly (P < 0.05) reduced with the NESD group, with no significant differences in pH values among different groups. Values of blood parameters showed significant increases in WBCs, PCV, and T-AOC, and decreases in cholesterol, triglycerides, and MDA with the addition of NS and ES seeds or both. Therefore, the addition of NS and ES seeds is recommended to improve lambs' health and antioxidant status.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Antioxidants , Diet , Dietary Supplements , Digestion , Nigella sativa , Seeds , Sheep, Domestic , Animals , Nigella sativa/chemistry , Animal Feed/analysis , Male , Seeds/chemistry , Antioxidants/metabolism , Antioxidants/analysis , Dietary Supplements/analysis , Diet/veterinary , Digestion/drug effects , Sheep, Domestic/growth & development , Sheep, Domestic/physiology , Rumen/metabolism , Brassicaceae/chemistry , Random Allocation , Nutrients/analysis , Nutrients/metabolism
14.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792193

ABSTRACT

The European Union's (EU) agricultural self-sufficiency is challenged by its reliance on imported plant proteins, particularly soy from the Americas, contributing to deforestation and greenhouse gas emissions. Addressing the EU's protein deficit, this study evaluates alternative protein sources for aquaculture, focusing on their nutritional value, elemental content, and polycyclic aromatic hydrocarbons (PAHs). Protein flours from gastropods (Helix pomatia, Arion lusitanicus, Arion vulgaris) and their hepatopancreas, along with plant-based proteins from food industry by-products (oilcakes, coffee grounds, spent brewer's yeast), were analyzed. Results revealed that snail flour contained the highest protein content at 59.09%, significantly outperforming hepatopancreas flour at 42.26%. Plant-based proteins demonstrated substantial nutritional value, with coffee grounds flour exhibiting a remarkable protein content of 71.8% and spent brewer's yeast flour at 57.9%. Elemental analysis indicated high levels of essential minerals such as magnesium in hepatopancreas flour (5719.10 mg/kg) and calcium in slug flour (48,640.11 mg/kg). However, cadmium levels in hepatopancreas flour (11.45 mg/kg) necessitate caution due to potential health risks. PAH concentrations were low across all samples, with the highest total PAH content observed in hepatopancreas flour at 0.0353 µg/kg, suggesting minimal risk of PAH-related toxicity. The analysis of plant-based protein sources, particularly oilcakes derived from sunflower, hemp, flax, and pumpkin seeds, revealed that these by-products not only exhibit high protein contents but present a promising avenue for enhancing the nutritional quality of feed. This study underscores the potential of utilizing gastropod and plant-based by-products as sustainable and nutritionally adequate alternatives to conventional feeds in aquaculture, contributing to the EU's environmental sustainability goals.


Subject(s)
Nutritive Value , Animals , Fishes/metabolism , Animal Feed/analysis , Hepatopancreas/chemistry , Hepatopancreas/metabolism , Plant Proteins/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Aquaculture/methods , Nutrients/analysis
15.
Nutrients ; 16(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794648

ABSTRACT

In Japan, many workers are exposed to chronic stress, sleep deprivation, and nutritional imbalance. They tend still to go to work when ill, leading to decreased work performance and productivity, which has become a major social problem. We conducted a human entry study with the aim of finding a link between these two factors and proposing an optimized diet, believing that a review of diet may lead to an improvement in labor productivity. In this study, we used subjective accomplishment (SA) as a measure of productivity. First, we compared nutrient intake between groups with high and low SA using data from a health survey of 1564 healthy male and female adults. Significant differences were found in the intake of 13 nutrients in males and 15 nutrients in females, including potassium, vitamin A, insoluble fiber, and biotin. Recommended daily intake of these nutrients was determined from survey data. Next, we designed test meals containing sufficient amounts of 17 nutrients and conducted a single-arm intervention study (registration code UMIN000047054) in Kameyama City, Mie Prefecture, Japan. Healthy working adults (males and females aged 20-79 years) were recruited and supplied with test meals, which were eaten once a day 5 days a week for 8 weeks. SA was significantly higher and daytime sleepiness (DS) was significantly lower after lunch on workdays in younger participants (under 60 years) when they ate the test meals as breakfast or lunch. Our results suggest that SA and DS, which change daily, are strongly influenced by the meal eaten before work, and that taking the 17 nutrients may help prevent presenteeism and improve labor productivity.


Subject(s)
Health Surveys , Nutrients , Humans , Male , Female , Adult , Middle Aged , Japan , Aged , Nutrients/analysis , Young Adult , Efficiency , Diet/methods , Diet/statistics & numerical data , Work Performance , Meals
16.
Nutrients ; 16(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38794693

ABSTRACT

Human milk (HM) contains the essential macronutrients and bioactive compounds necessary for the normal growth and development of newborns. The milk collected by human milk banks is stored frozen and pasteurized, reducing its nutritional and biological value. The purpose of this study was to determine the effect of hyperbaric storage at subzero temperatures (HS-ST) on the macronutrients and bioactive proteins in HM. As control samples, HM was stored at the same temperatures under 0.1 MPa. A Miris HM analyzer was used to determine the macronutrients and the energy value. The lactoferrin (LF), lysozyme (LYZ) and α-lactalbumin (α-LAC) content was checked using high-performance liquid chromatography, and an ELISA test was used to quantify secretory immunoglobulin A (sIgA). The results showed that the macronutrient content did not change significantly after 90 days of storage at 60 MPa/-5 °C, 78 MPa/-7 °C, 111 MPa/-10 °C or 130 MPa/-12 °C. Retention higher than 90% of LYZ, α-LAC, LF and sIgA was observed in the HM stored at conditions of up to 111 MPa/-10 °C. However, at 130 MPa/-12 °C, there was a reduction in LYZ and LF, by 39 and 89%, respectively. The storage of HM at subzero temperatures at 0.1 MPa did not affect the content of carbohydrates or crude and true protein. For fat and the energy value, significant decreases were observed at -5 °C after 90 days of storage.


Subject(s)
Food Storage , Lactoferrin , Milk, Human , Muramidase , Nutritive Value , Humans , Milk, Human/chemistry , Lactoferrin/analysis , Food Storage/methods , Muramidase/analysis , Muramidase/metabolism , Lactalbumin/analysis , Immunoglobulin A, Secretory/analysis , Immunoglobulin A, Secretory/metabolism , Nutrients/analysis , Milk Proteins/analysis , Female
17.
Nutrients ; 16(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794733

ABSTRACT

Older adults living in nursing homes (NH) are considered a population group that could be at risk in terms of nutrition, even more so than their community-dwelling peers. Evidence on the nutritional status of NH residents is scarce, as they are commonly excluded from population-based dietary studies. This is also the case in Slovenia. In the presented pilot study, we assessed the intake of macronutrients as well as the intake and status of vitamin D and vitamin B12 on a sample of NH and NH daycare center users to explore the need for a larger representative study. The pilot study included 37 participants from three Slovenian NH (20 participants) and their daycare centers (17 participants). Daycare centers offer daytime care services for older adults, where users are also provided with major meals during their stay. Intakes of energy and nutrients were estimated by three 24 h dietary records. Fasting blood samples were collected for the assessment of vitamin D and vitamin B12 status. Over 90% of the participants had daily energy and protein intakes below recommendations (reference values: energy intake: males 2100 kcal and females 1700 kcal; protein intake > 1 g/kg body mass). The males' median daily intakes of vitamin D were 1.7 µg (1.5 µg females), and 2.3 µg for vitamin B12 (2.0 µg females). None of the participants had adequate vitamin D intake (>20 µg), and 92.3% males and 87.5% females had inadequate vitamin B12 intake (<4 µg). The prevalence of vitamin D deficiency (serum 25-OH-D conc. < 30 nmol/L) was 100% among NH residents and 53% among NH daycare center users. The prevalence of vitamin B12 deficiency was found in 20% of NH residents. The study results highlighted that certain nutrients might be critical in this population, especially among NH residents; however, a more thorough investigation with the inclusion of other important markers of nutritional status should be performed on a larger, representative sample to support the development and implementation of appropriate public health interventions.


Subject(s)
Nursing Homes , Nutritional Status , Vitamin B 12 , Vitamin D Deficiency , Vitamin D , Humans , Female , Pilot Projects , Male , Vitamin B 12/blood , Vitamin B 12/administration & dosage , Aged , Vitamin D/blood , Vitamin D/administration & dosage , Aged, 80 and over , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/blood , Slovenia/epidemiology , Nutrients/analysis , Nutrients/administration & dosage , Energy Intake , Homes for the Aged , Vitamin B 12 Deficiency/epidemiology , Vitamin B 12 Deficiency/blood , Diet/statistics & numerical data , Nutrition Assessment
18.
PLoS One ; 19(5): e0301459, 2024.
Article in English | MEDLINE | ID: mdl-38805505

ABSTRACT

Wastewater treatment plants (WWTPs) are a point source of nutrients, emit greenhouse gases (GHGs), and produce large volumes of excess sludge. The use of aquatic organisms may be an alternative to the technical post-treatment of WWTP effluent, as they play an important role in nutrient dynamics and carbon balance in natural ecosystems. The aim of this study was therefore to assess the performance of an experimental wastewater-treatment cascade of bioturbating macroinvertebrates and floating plants in terms of sludge degradation, nutrient removal and lowering GHG emission. To this end, a full-factorial experiment was designed, using a recirculating cascade with a WWTP sludge compartment with or without bioturbating Chironomus riparius larvae, and an effluent container with or without the floating plant Azolla filiculoides, resulting in four treatments. To calculate the nitrogen (N), phosphorus (P) and carbon (C) mass balance of this system, the N, P and C concentrations in the effluent, biomass production, and sludge degradation, as well as the N, P and C content of all compartments in the cascade were measured during the 26-day experiment. The presence of Chironomus led to an increased sludge degradation of 44% compared to 25% in the control, a 1.4 times decreased transport of P from the sludge and a 2.4 times increased transport of N out of the sludge, either into Chironomus biomass or into the water column. Furthermore, Chironomus activity decreased methane emissions by 92%. The presence of Azolla resulted in a 15% lower P concentration in the effluent than in the control treatment, and a CO2 uptake of 1.13 kg ha-1 day-1. These additive effects of Chironomus and Azolla resulted in an almost two times higher sludge degradation, and an almost two times lower P concentration in the effluent. This is the first study that shows that a bio-based cascade can strongly reduce GHG and P emissions simultaneously during the combined polishing of wastewater sludge and effluent, benefitting from the additive effects of the presence of both macrophytes and invertebrates. In addition to the microbial based treatment steps already employed on WWTPs, the integration of higher organisms in the treatment process expands the WWTP based ecosystem and allows for the inclusion of macroinvertebrate and macrophyte mediated processes. Applying macroinvertebrate-plant cascades may therefore be a promising tool to tackle the present and future challenges of WWTPs.


Subject(s)
Chironomidae , Greenhouse Gases , Sewage , Wastewater , Chironomidae/metabolism , Animals , Greenhouse Gases/metabolism , Greenhouse Gases/analysis , Wastewater/chemistry , Phosphorus/metabolism , Phosphorus/analysis , Nitrogen/metabolism , Nitrogen/analysis , Waste Disposal, Fluid/methods , Carbon/metabolism , Carbon/analysis , Biodegradation, Environmental , Water Purification/methods , Nutrients/metabolism , Nutrients/analysis , Methane/metabolism , Methane/analysis
19.
Sci Rep ; 14(1): 12408, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38811751

ABSTRACT

Eutrophication is a main threat to continental aquatic ecosystems. Prevention and amelioration actions have been taken under the assumption of a stable climate, which needs reconsideration. Here, we show that reduced precipitation can bring a lake ecosystem to a more productive regime even with a decline in nutrient external load. By analyzing time series of several decades in the largest lake of the Iberian Peninsula, we found autocorrelated changes in the variance of state variables (i.e., chlorophyll and oxygen) indicative of a transient situation towards a new ecosystem regime. Indeed, exceptional planktonic diatom blooms have occurred during the last few years, and the sediment record shows a shift in phytoplankton composition and an increase in nutrient retention. Reduced precipitation almost doubled the water residence time in the lake, enhancing the relevance of internal processes. This study demonstrates that ecological quality targets for aquatic ecosystems must be tailored to the changing climatic conditions for appropriate stewardship.


Subject(s)
Ecosystem , Eutrophication , Lakes , Nutrients , Phytoplankton , Nutrients/analysis , Rain , Chlorophyll/analysis , Chlorophyll/metabolism , Climate Change , Diatoms/metabolism , Spain
20.
Environ Sci Pollut Res Int ; 31(24): 34817-34838, 2024 May.
Article in English | MEDLINE | ID: mdl-38739340

ABSTRACT

The purpose of this review was to survey the recent applications of the diffusive gradients in thin films (DGT) technique in the assessment of mobility and bioavailability of nutrients and potentially toxic elements (PTEs) in agricultural soil. Many studies compared the capabilities of the DGT technique with those of classical soil chemical extractants used in single or sequential procedures to predict nutrients and PTE bioavailability to crops. In most of the published works, the DGT technique was reported to be superior to the conventional chemical extraction and fractionation methods in obtaining significant correlations with the metals and metalloids accumulated in crops. In the domain of nutrient bioavailability assessment, DGT-based studies focused mainly on phosphorous and selenium labile fraction measurement, but potassium, manganese, and nitrogen were also studied using the DGT tool. Different DGT configurations are reported, using binding and diffusive layers specific for certain analytes (Hg, P, and Se) or gels with wider applicability, such as Chelex-based binding gels for metal cations and ferrihydrite-based hydrogels for oxyanions. Overall, the literature demonstrates that the DGT technique is relevant for the evaluation of metal and nutrient bioavailability to crops, due to its capacity to mimic the plant root uptake process, which justifies future improvement efforts.


Subject(s)
Agriculture , Crops, Agricultural , Nutrients , Soil Pollutants , Soil , Soil/chemistry , Nutrients/analysis , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...