Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.028
Filter
1.
Aquat Toxicol ; 271: 106934, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728926

ABSTRACT

Microplastics (MP) and antibiotics coexist in the environment and their combined exposure represents a source of increasing concern. MP may act as carriers of antibiotics because of their sorption capacity. Knowledge of the interactions between them may help improve understanding of their migration and transformation. In this work, the adsorption behaviour of a group of sulfonamides and their acetylated metabolites on different sizes of polyamide (PA) and polystyrene (PS) MP were investigated and compared. Sulfonamides were adsorbed on both MP (qmax up to 0.699 and 0.184 mg/g, for PA and PS, respectively) fitting to a linear isotherm model (R2 > 0.835). A low particle size and an acidic and salinity medium significantly enhances the adsorption capacity of sulfonamides (i.e. removal of sulfamethoxazole increased from 8 % onto 3 mm PA pellets to 80 % onto 50 mm of PA pellets). According to characterization results, adsorption mechanism is explained by pore filling and hydrogen bonds (for PA) and hydrophobic interactions (for PS). After adsorption, surface area was increased in both MP as result of a potential ageing of the particles and the intensity of XRD peaks was higher denoting a MP structure more amorphized. Metabolites were adsorbed more efficiently than their parent compounds on PS while the opposite effect was observed on PA explained by the acetylation of the amine group and, subsequently the reduction of hydrogen bond interactions. Although the dissolved organic matter inhibits sulfonamides adsorption, removal up to 65.2 % in effluent wastewater and up to 72.1 % in surface water were observed in experiments using real matrices denoting the role of MP as vectors of sulfonamide antibiotics in aquatic media.


Subject(s)
Anti-Bacterial Agents , Microplastics , Nylons , Polystyrenes , Sulfonamides , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Polystyrenes/chemistry , Adsorption , Anti-Bacterial Agents/chemistry , Sulfonamides/chemistry , Nylons/chemistry , Microplastics/chemistry , Particle Size
3.
ACS Appl Mater Interfaces ; 16(19): 25304-25316, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38654450

ABSTRACT

Poly(vinyl alcohol) (PVA) hydrogels are water-rich, three-dimensional (3D) network materials that are similar to the tissue structure of living organisms. This feature gives hydrogels a wide range of potential applications, including drug delivery systems, articular cartilage regeneration, and tissue engineering. Due to the large amount of water contained in hydrogels, achieving hydrogels with comprehensive properties remains a major challenge, especially for isotropic hydrogels. This study innovatively prepares a multiscale-reinforced PVA hydrogel from molecular-level coupling to nanoscale enhancement by chemically cross-linking poly(vinylpyrrolidone) (PVP) and in situ assembled aromatic polyamide nanofibers (ANFs). The optimized ANFs-PVA-PVP (APP) hydrogels have a tensile strength of ≈9.7 MPa, an elongation at break of ≈585%, a toughness of ≈31.84 MJ/m3, a compressive strength of ≈10.6 MPa, and a high-water content of ≈80%. It is excellent among all reported PVA hydrogels and even comparable to some anisotropic hydrogels. System characterizations show that those performances are attributed to the particular multiscale load-bearing structure and multiple interactions between ANFs and PVA. Moreover, APP hydrogels exhibit excellent biocompatibility and a low friction coefficient (≈0.4). These valuable performances pave the way for broad potential in many advanced applications such as biological tissue replacement, flexible wearable devices, electronic skin, and in vivo sensors.


Subject(s)
Biocompatible Materials , Hydrogels , Nanofibers , Polyvinyl Alcohol , Povidone , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , Hydrogels/chemistry , Povidone/chemistry , Biocompatible Materials/chemistry , Animals , Mice , Nylons/chemistry , Tensile Strength , Materials Testing , Compressive Strength
4.
Angew Chem Int Ed Engl ; 63(23): e202402509, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38588046

ABSTRACT

Membranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free-volume elements), separation threshold, scalability, and operational stability. In this study, 4,4',4'',4'''-methanetetrayltetrakis(benzene-1,2-diamine) (MTLB) as prepared as a molecular building block for fabricating thin-film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non-coplanar and distorted conformation, produced thin and defect-free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m-2 h-1 bar-1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral-wound module (with an effective area of 2.0 m2). This module exhibited long-term stability and performance that surpassed those of state-of-the-art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high-performance TFCMs for water purification and desalination in the pharmaceutical industry.


Subject(s)
Anti-Bacterial Agents , Membranes, Artificial , Nylons , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Nylons/chemistry , Water Purification/methods , Filtration/methods , Permeability
5.
Environ Sci Pollut Res Int ; 31(22): 32637-32648, 2024 May.
Article in English | MEDLINE | ID: mdl-38658510

ABSTRACT

The production of antibacterial colored textiles using nanomaterials (NMs) has become an ideal goal from both a research and industrial perspective. In this study, the clean synthesis and characterization of silver nanoparticles (AgNPs) on polyamide fabrics were performed using mullein extract for the first time. Natural dyes were extracted from mullein leaves using an ultrasonic method, with an optimal amount of 15 g/L. The synthesized AgNPs in different ratios of mullein extract and Ag ions were analyzed (using UV-visible spectroscopy) and dynamic light scattering (DLS). It was found that AgNPs synthesized with a ratio of 1:4 of mullein extract: to Ag ions had a diameter of 85 nm. The active site groups of the synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR). Nylon fabrics dyed with different ratios of mullein extract and Ag ions exhibited acceptable color strength values (K/S) of 3.36. Furthermore, the reduction in bacterial growth for dyed fabrics improved with an increase in the ratio of Ag ions, with a 100% reduction observed for a sample dyed with mullein extract: Ag ions at a ratio of 1:4. Overall, this method offers a simple, low-cost, and compatible process with environment without the consumption of any chemicals to producing nylon with acceptable antibacterial and dyeing properties.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Nylons , Silver , Textiles , Silver/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nylons/chemistry , Colorimetry , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Coloring Agents/chemistry
6.
Environ Sci Technol ; 58(21): 9416-9426, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38662937

ABSTRACT

The polyamide (PA) nanofiltration (NF) membrane has the potential to remove endocrine-disrupting compounds (EDCs) from water and wastewater to prevent risks to both the aquatic ecosystem and human health. However, our understanding of the EDC removal-water permeance trade-off by the PA NF membrane is still limited, although the salt selectivity-water permeance trade-off has been well illustrated. This constrains the precise design of a high-performance membrane for removing EDCs. In this study, we manipulated the PA nanostructures of NF membranes by altering piperazine (PIP) monomer concentrations during the interfacial polymerization (IP) process. The upper bound coefficient for EDC selectivity-water permeance was demonstrated to be more than two magnitudes lower than that for salt selectivity-water permeance. Such variations were derived from the different membrane-solute interactions, in which the water/EDC selectivity was determined by the combined effects of steric exclusion and the hydrophobic interaction, while the electrostatic interaction and steric exclusion played crucial roles in water/salt selectivity. We further highlighted the role of the pore number and residual groups during the transport of EDC molecules across the PA membrane via molecular dynamics (MD) simulations. Fewer pores decreased the transport channels, and the existence of residual groups might cause steric hindrance and dynamic disturbance to EDC transport inside the membrane. This study elucidated the trade-off phenomenon and mechanisms between EDC selectivity and water permeance, providing a theoretical reference for the precise design of PA NF membranes for effective removal of EDCs in water reuse.


Subject(s)
Endocrine Disruptors , Filtration , Membranes, Artificial , Nylons , Water Pollutants, Chemical , Endocrine Disruptors/chemistry , Nylons/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Water/chemistry , Nanostructures/chemistry
7.
Int J Biol Macromol ; 267(Pt 1): 129256, 2024 May.
Article in English | MEDLINE | ID: mdl-38493823

ABSTRACT

In the present study, the commercially available three different fabrics cotton, nylon and cotton/nylon were modified by chitosan and silver nanoparticles using a crosslinker triethyl orthoformate (TEOF). Resulted cotton­silver (Ag-Cs-Cot), nylon­silver (Ag-Cs-Nyl) and cotton-nylon silver (Ag-Cs-Cot-Nyl) fabrics showed significant anti-bacterial activity even after 50 washing cycles. Silver nanoparticles were prepared by reducing silver nitrate through sodium borohydride at 0 °C. In FTIR spectra the peak at near 1650 cm-1 confirmed that TEOF mediated attachment of chitosan with fabrics (due to C=N) and the stretching of secondary amine near the 3375 cm-1 indicated the silver attachment to the amine group of the chitosan. In Scanning Electron Microscope (SEM) images smooth surfaces of fabrics without any damage by modification process were observed. The antibacterial activity was Analyzed by agar diffusion and broth dilution assays against Escherichia coli and Staphylococcus aureus bacterial strains and results showed 90% bacterial inhibition against E. coli and 89% bacterial inhibition against S. aureus. For testing the antibacterial durability, the modified fabrics were washed with non-ionic detergent (10g/l) for 15 minutes under aggressive stirring (100 rpm) at room temperature. The modified fabrics retained antibacterial activity over the 50 washing cycles. Finally, the commercial potential of cotton-silver fabric was evaluated by stitching it with the socks of football players and interestingly results showed that the modified fabric on the socks showed more than 90% bacterial inhibition as compared to the plain fabric after 70 minutes of playing activity.


Subject(s)
Anti-Bacterial Agents , Chitosan , Cotton Fiber , Escherichia coli , Metal Nanoparticles , Nylons , Silver , Staphylococcus aureus , Textiles , Chitosan/chemistry , Chitosan/pharmacology , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nylons/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Formates/chemistry
8.
Environ Sci Technol ; 58(14): 6435-6443, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38551393

ABSTRACT

Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.


Subject(s)
Biofouling , Nanoparticles , Osmosis , Nylons/chemistry , Engraving and Engravings , Membranes, Artificial , Water/chemistry
9.
Methods ; 225: 20-27, 2024 May.
Article in English | MEDLINE | ID: mdl-38471600

ABSTRACT

Aberrant gene expression underlies numerous human ailments. Hence, developing small molecules to target and remedy dysfunctional gene regulation has been a long-standing goal at the interface of chemistry and medicine. A major challenge for designing small molecule therapeutics aimed at targeting desired genomic loci is the minimization of widescale disruption of genomic functions. To address this challenge, we rationally design polyamide-based multi-functional molecules, i.e., Synthetic Genome Readers/Regulators (SynGRs), which, by design, target distinct sequences in the genome. Herein, we briefly review how SynGRs access chromatin-bound and chromatin-free genomic sites, then highlight the methods for the study of chromatin processes using SynGRs on positioned nucleosomes in vitro or disease-causing repressive genomic loci in vivo.


Subject(s)
Chromatin , Nucleosomes , Humans , Chromatin/genetics , Chromatin/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Nylons/chemistry , Nylons/pharmacology , Gene Expression Regulation/drug effects , Animals , Chromatin Assembly and Disassembly/drug effects , Chromatin Assembly and Disassembly/genetics , Genomics/methods
10.
Environ Sci Technol ; 58(11): 5174-5185, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38451543

ABSTRACT

Nanofiltration (NF) has the potential to achieve precise ion-ion separation at the subnanometer scale, which is necessary for resource recovery and a circular water economy. Fabricating NF membranes for selective ion separation is highly desirable but represents a substantial technical challenge. Dipole-dipole interaction is a mechanism of intermolecular attractions between polar molecules with a dipole moment due to uneven charge distribution, but such an interaction has not been leveraged to tune membrane structure and selectivity. Herein, we propose a novel strategy to achieve tunable surface charge of polyamide membrane by introducing polar solvent with a large dipole moment during interfacial polymerization, in which the dipole-dipole interaction with acyl chloride groups of trimesoyl chloride (TMC) can successfully intervene in the amidation reaction to alter the density of surface carboxyl groups in the polyamide selective layer. As a result, the prepared positively charged (PEI-TMC)-NH2 and negatively charged (PEI-TMC)-COOH composite membranes, which show similarly high water permeance, demonstrate highly selective separations of cations and anions in engineering applications, respectively. Our findings, for the first time, confirm that solvent-induced dipole-dipole interactions are able to alter the charge type and density of polyamide membranes and achieve tunable surface charge for selective and efficient ion separation.


Subject(s)
Chlorides , Nylons , Chlorides/chemistry , Nylons/chemistry , Membranes, Artificial , Solvents , Water
11.
Chemosphere ; 353: 141108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423147

ABSTRACT

Thin film composite (TFC) reverse osmosis (RO) membrane shows good promise for treating wastewater containing endocrine disrupting chemical (EDC) pollutants. The incorporation of functional materials with exceptional structural and physico-chemical properties offers opportunities for the membranes preparation with enhanced permselectivity and better antifouling properties. The present study aims to improve the EDC removal efficiency of TFC RO membrane using two-dimensional titania nanosheets (TNS). RO membrane was prepared by incorporating TNS in the dense layer of polyamide (PA) layer to form thin film nanocomposite (TFN) membrane. The TNS loading was varied and the influences on membrane morphology, surface hydrophilicity, surface charge, as well as water permeability and rejection of EDC were investigated. The results revealed that the inclusion of TNS in the membrane resulted in the increase of water permeability and EDC rejection. When treating the mixture of bisphenol A (BPA) and caffeine at 100 ppm feed concentration, the TFN membrane incorporated with 0.05% TNS achieved water permeability of 1.45 L/m2·h·bar, which was 38.6% higher than that of unmodified TFC membrane, while maintaining satisfactory rejection of >97%. The enhancement of water permeability for TFN membrane can be attributed to their hydrophilic surface and unique nanochannel structure created by the nanoscale interlayer spacing via staking of TiO2 nanosheets. Furthermore, the 0.05TFN membrane exhibited excellent fouling resistance towards BPA and caffeine pollutants with almost 100% flux recovery for three cycles of operations.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Environmental Pollutants , Phenols , Osmosis , Nylons/chemistry , Caffeine , Water/chemistry
12.
Macromol Rapid Commun ; 45(3): e2300524, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37903330

ABSTRACT

Polyamides (PA) are among the most essential and versatile polymers due to their outstanding characteristics, for example, high chemical resistance and temperature stability. Furthermore, nature-derived monomers can introduce hard-to-synthesize structures into the PAs for unique polymer properties. Pinene, as one of the most abundant terpenes in nature and its presumable stability-giving bicyclic structure, is therefore highly promising. This work presents simple anionic ring-opening polymerizations of ß-pinene lactam (AROP) in-bulk and in solution. PAs with high molecular weights, suitable for further processing, are produced. Their good mechanical, thermal (Td s up to 440 °C), and transparent appearance render them promising high-performance biomaterials. In the following, the suitability of different initiators is discussed. Thereby, it is found that NaH is the most successful for in-bulk polymerization, with a degree of polymerization (DP) of about 322. For solution-AROP, iPrMgCl·LiCl is successfully used for the first time, achieving DPs up to about 163. The obtained PAs are also hot-pressed, and the dynamic mechanical properties are analyzed.


Subject(s)
Bicyclic Monoterpenes , Lactams , beta-Lactams , Lactams/chemistry , Nylons/chemistry , Molecular Weight , Polymers/chemistry , Forests , Polymerization
13.
J Pharmacol Sci ; 154(1): 1-8, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081679

ABSTRACT

PURPOSE: The DNA recognition peptide compounds pyrrole-imidazole (PI) polyamides bind to the minor groove and can block the binding of transcription factors to target sequences. To develop more PI polyamides as potential treatments for fibrotic diseases, including chronic renal failure, we developed multifunctional PI polyamides that increase hepatocyte growth factor (HGF) and decrease transforming growth factor (TGF)-ß1. METHODS: We designed seven PI polyamides (HGF-1 to HGF-7) that bind to the chicken ovalbumin upstream promoter transcription factor-1 (COUP-TF1) binding site of the HGF promoter sequence. We selected PI polyamides that increase HGF and suppress TGF-ß1 in human dermal fibroblasts (HDFs). FINDINGS: Gel shift assays showed that HGF-2 and HGF-4 bound the appropriate dsDNAs. HGF-2 and HGF-4 significantly inhibited the TGF-ß1 mRNA expression in HDFs stimulated by phorbol 12-myristate 13-acetate. HGF-2 and HGF-4 significantly inhibited the TGF-ß1 protein expression in HDFs with siRNA targeting HGF, indicating that HGF-2 and HGF-4 directly inhibited the expression of TGF-ß1. CONCLUSION: The designed and synthetic HGF PI polyamides targeting the HGF promoter, which increased the expression of HGF and suppressed the expression of TGF-ß, will be a potential practical medicine for fibrotic diseases, including progressive renal diseases.


Subject(s)
Nylons , Transforming Growth Factor beta1 , Humans , Nylons/chemistry , Nylons/pharmacology , Hepatocyte Growth Factor , Transforming Growth Factor beta/genetics , Pyrroles/pharmacology , Pyrroles/chemistry , Imidazoles/pharmacology , Imidazoles/chemistry
14.
Environ Sci Technol ; 58(1): 391-399, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38147515

ABSTRACT

Low-cost polyamide thin-film composite membranes are being explored as alternatives to expensive cation exchange membranes for seawater electrolysis. However, transport of chloride from seawater to the anode chamber must be reduced to minimize the production of chlorine gas. A double-polyamide composite structure was created that reduced the level of chloride transport. Adding five polyamide layers on the back of a conventional polyamide composite membrane reduced the chloride ion transport by 53% and did not increase the applied voltage. Decreased chloride permeation was attributed to enhanced electrostatic and steric repulsion created by the new polyamide layers. Charge was balanced through increased sodium ion transport (52%) from the anolyte to the catholyte rather than through a change in the transport of protons and hydroxides. As a result, the Nernstian loss arising from the pH difference between the anolyte and catholyte remained relatively constant during electrolysis despite membrane modifications. This lack of a change in pH showed that transport of protons and hydroxides during electrolysis was independent of salt ion transport. Therefore, only sodium ion transport could compensate for the reduction of chloride flux to maintain the set current. Overall, these results prove the feasibility of using a double-polyamide structure to control chloride permeation during seawater electrolysis without sacrificing energy consumption.


Subject(s)
Chlorides , Nylons , Nylons/chemistry , Protons , Electrolysis , Seawater/chemistry , Hydroxides , Sodium , Membranes, Artificial
15.
Chemosphere ; 344: 140309, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37797897

ABSTRACT

In this study, considering the serious problem of lack of fresh water worldwide and the effectiveness of reverse osmosis (RO) membranes in water purification, we prepared improved RO membranes with two-dimensional quasi-MXene nanosheets. In this study, the MAX phase with the chemical formula of Ti2AlN was prepared through the reactive sintering route. Prosperous preparation of the MAX phase with the hexagonal crystalline structure was approved by an X-ray diffraction pattern. Compacted sheets morphology was recognized for the prepared MAX phase from transmittance electron microscopy and scanning electron microscopy micrographs. Then, Ti2NTx quasi-MXene nanosheets were prepared by selective ultrasonic-assisted exfoliation of the MAX phase. Polyamide (PA) thin-layer composite RO membranes with different weight percentages of Ti2NTx quasi-MXene were fabricated by the interfacial polymerization (IP) method. The addition of ultrasonic-assisted prepared quasi-MXene creates numerous and coherent nanochannels on the surface of the membrane. The optimum membrane with 0.01 wt% of quasi-MXene showed the highest pure water flux of 31.9 L m-2. h-1 with an improved salt rejection of 98.2%. Therefore, these nanosheets showed that they can partially solve the trade-off between water permeability and salt rejection, which is a serious challenge in RO membranes. Also, the membranes containing quasi-MXene showed good resistance against fouling by humic acid. This research can be a scalable development in making high-performance membranes.


Subject(s)
Biofouling , Nylons , Osmosis , Nylons/chemistry , Biofouling/prevention & control , Titanium , Water/chemistry
16.
Water Res ; 247: 120774, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37898000

ABSTRACT

While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.


Subject(s)
Nylons , Water Purification , Permeability , Nylons/chemistry , Membranes, Artificial , Water Purification/methods , Sodium Chloride
17.
Macromol Rapid Commun ; 44(24): e2300371, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37657922

ABSTRACT

Polyamide 56 (PA56) has gained significant attention in the academic field due to its remarkable mechanical and thermal properties as a highly efficient and versatile biobased material. Its superior moisture absorption property also makes it a unique advantage in the realm of fiber textiles. However, despite extensive investigations on PA56's molecular and aggregate state structure, as well as processing modifications, little attention has been paid to its polymerization mechanism. Herein, the influence of temperature and time on PA56's polycondensation reaction is detailed studied by end-group titration and carbon nuclear magnetic resonance (NMR) techniques. The reaction kinetics equations for the pre-polymerization and vacuum melt-polymerization stages of PA56 are established, and possible side reactions during the polycondensation process are analyzed. By optimizing the reaction process based on kinetic characteristics, PA56 resin with superior comprehensive properties (melting temperature of 252.6 °C, degradation temperature of 371.6 °C, and tensile strength of 75 MPa) is obtained. The findings provide theoretical support for the industrial production of high-quality biobased PA56.


Subject(s)
Nylons , Nylons/chemistry , Polymerization , Temperature
18.
Environ Sci Technol ; 57(29): 10860-10869, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37428116

ABSTRACT

Thin film composite polyamide (TFC) nanofiltration (NF) membranes represent extensive applications at the water-energy-environment nexus, which motivates unremitting efforts to explore membranes with higher performance. Intrusion of polyamide into substrate pores greatly restricts the overall membrane permeance because of the excessive hydraulic resistance, while the effective inhibition of intrusion remains technically challenging. Herein, we propose a synergetic regulation strategy of pore size and surface chemical composition of the substrate to optimize selective layer structure, achieving the inhibition of polyamide intrusion effective for the membrane separation performance enhancement. Although reducing the pore size of the substrate prevented polyamide intrusion at the intrapore, the membrane permeance was adversely affected due to the exacerbated "funnel effect". Optimizing the polyamide structure via surface chemical modification of the substrate, where reactive amino sites were in situ introduced by the ammonolysis of polyethersulfone substrate, allowed for maximum membrane permeance without reducing the substrate pore size. The optimal membrane exhibited excellent water permeance, ion selectivity, and emerging contaminants removal capability. The accurate optimization of selective layer is anticipated to provide a new avenue for the state-of-the-art membrane fabrication, which opens opportunities for promoting more efficient membrane-based water treatment applications.


Subject(s)
Nylons , Water Purification , Nylons/chemistry , Membranes, Artificial , Filtration
19.
Chemosphere ; 338: 139556, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37467861

ABSTRACT

The novel thin film composite (TFC) forward osmosis (FO) membrane with electrospinning nanofibers as support layer can alleviate internal concentration polarization (ICP). While the macropores of the nanofiber support layer cause defects in the polyamide (PA) layer. Therefore, hydrophobic polyvinylidene fluoride (PVDF) fine nanofibers were used as an interlayer to modulate the process of interfacial polymerization (IP) in this study. The results showed that the introduction of the interlayer improved the hydrophobicity of the support layer for achieving uniform, thin and defect-free selective polyamide (PA) layer. The water flux of TFC-PVDF was 58.26 LMH in the FO mode of 2 M NaCl, which was two times higher than that of the unmodified FO membrane. Lower reverse salt flux (4.91 gMH) and structural parameter (179.43 µm) alleviated the ICP. In addition, TFC-PVDF membrane showed good anti-fouling performance for SA (flux recovery ratio of 93.97%) due to high hydrophilicity, low zeta potential and low roughness. This study provides an easy and promising method to prepare defect-free PA selective layer on the macropores nanofiber support layer. The novel FO membrane shows high desalination performance and anti-fouling properties.


Subject(s)
Nanofibers , Water Purification , Nylons/chemistry , Membranes, Artificial , Water Purification/methods , Osmosis , Sodium Chloride , Hydrophobic and Hydrophilic Interactions
20.
J Am Soc Mass Spectrom ; 34(7): 1383-1391, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37262418

ABSTRACT

Enzymatic biodegradation of polymers, such as polyamides (PA), has the potential to cost-effectively reduce plastic waste, but enhancements in degradation efficiency are needed. Engineering enzymes through directed evolution is one pathway toward identification of critical domains needed for improving activity. However, screening such enzymatic libraries (100s-to-1000s of samples) is time-consuming. Here we demonstrate the use of robotic autosampler (PAL) and immediate drop on demand technology (I.DOT) liquid handling systems coupled with open-port sampling interface-mass spectrometry (OPSI-MS) to screen for PA6 and PA66 hydrolysis by 6-aminohexanoate-oligomer endo-hydrolase (nylon hydrolase, NylC) in a high-throughput (8-20 s/sample) manner. The OPSI-MS technique required minimal sample preparation and was amenable to 96-well plate formats for automated processing. Enzymatic hydrolysis of PA characteristically produced soluble linear oligomer products that could be identified by OPSI-MS. Incubation temperatures and times were optimized for PA6 (65 °C, 24 h) and PA66 (75 °C, 24 h) over 108 experiments. In addition, the I.DOT/OPSI-MS quantified production of PA6 linear dimer (8.3 ± 1.6 µg/mL) and PA66 linear monomer (13.5 ± 1.5 µg/mL) by NylC with a lower limit of detection of 0.029 and 0.032 µg/mL, respectively. For PA6 and PA66, linear oligomer production corresponded to 0.096 ± 0.018% and 0.204 ± 0.028% conversion of dry pellet mass, respectively. The developed methodology is expected to be utilized to assess enzymatic hydrolysis of engineered enzyme libraries, comprising hundreds to thousands of individual samples.


Subject(s)
Hydrolases , Nylons , Nylons/chemistry , Nylons/metabolism , Hydrolases/metabolism , Mass Spectrometry , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...