Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 21133, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702850

ABSTRACT

Chemotherapeutic drugs such as the alkylating agent Temozolomide (TMZ), in addition to reducing tumor mass, can also sensitize tumors to immune recognition by transient upregulation of multiple stress induced NKG2D ligands (NKG2DL). However, the potential for an effective response by innate lymphocyte effectors such as NK and γδ T cells that recognize NKG2DL is limited by the drug's concomitant lymphodepleting effects. We have previously shown that modification of γδ T cells with a methylguanine DNA methyltransferase (MGMT) transgene confers TMZ resistance via production of O6-alkylguanine DNA alkyltransferase (AGT) thereby enabling γδ T cell function in therapeutic concentrations of TMZ. In this study, we tested this strategy which we have termed Drug Resistant Immunotherapy (DRI) to examine whether combination therapy of TMZ and MGMT-modified γδ T cells could improve survival outcomes in four human/mouse xenograft models of primary and refractory GBM. Our results confirm that DRI leverages the innate response of γδ T cells to chemotherapy-induced stress associated antigen expression and achieves synergies that are significantly greater than either individual approach.


Subject(s)
Brain Neoplasms/therapy , Glioma/therapy , Immunotherapy , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes , Temozolomide/pharmacology , Transgenes , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioma/metabolism , Glioma/pathology , Humans , Mice, Nude , O(6)-Methylguanine-DNA Methyltransferase/biosynthesis , O(6)-Methylguanine-DNA Methyltransferase/economics , T-Lymphocytes/enzymology , T-Lymphocytes/transplantation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...