Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 159(1): 306-319.e12, 2020 07.
Article in English | MEDLINE | ID: mdl-32179091

ABSTRACT

BACKGROUND & AIMS: Advanced pancreatic ductal adenocarcinoma (PDAC) is resistant to therapy, including immune checkpoint inhibitors. We evaluated the effects of a neutralizing antibody against programmed cell death 1 (PD-1) and an agonist of OX40 (provides a survival signal to activated T cells) in mice with pancreatic tumors. METHODS: We performed studies in C57BL/6 mice (controls), KrasG12D/+;Trp53R172H/+;Pdx-1-Cre (KPC) mice, and mice with orthotopic tumors grown from Panc02 cells, KrasG12D;P53flox/flox;PDX-1-Cre;Luciferase (KPC-Luc) cells, or mT4 cells. After tumors developed, mice were given injections of control antibody or anti-OX40 and/or anti-PD-1 antibody. Some mice were then given injections of antibodies against CD8, CD4, or NK1.1 to deplete immune cells, and IL4 or IL7RA to block cytokine signaling. Bioluminescence imaging was used to monitor tumor growth. Tumor tissues collected and single-cell suspensions were analyzed by time of flight mass spectrometry analysis. Mice that were tumor-free 100 days after implantation of orthotopic tumors were rechallenged with PDAC cells (KPC-Luc or mT4) and survival was measured. Median levels of PD-1 and OX40 mRNAs in PDACs were determined from The Cancer Genome Atlas and compared with patient survival times. RESULTS: In mice with orthotopic tumors, all those given control antibody or anti-PD-1 died within 50 days, whereas 43% of mice given anti-OX40 survived for 225 days; almost 100% of mice given the combination of anti-PD-1 and anti-OX40 survived for 225 days, and tumors were no longer detected. KPC mice given control antibody, anti-PD-1, or anti-OX40 had median survival times of 50 days or less, whereas mice given the combination of anti-PD-1 and anti-OX40 survived for a median 88 days. Mice with orthotopic tumors that were given the combination of anti-PD-1 and anti-OX40 and survived 100 days were rechallenged with a second tumor; those rechallenged with mT4 cells survived an additional median 70 days and those rechallenged with KPC-Luc cells survived long term, tumor free. The combination of anti-PD-1 and anti-OX40 did not slow tumor growth in mice with antibody-mediated depletion of CD4+ T cells. Mice with orthotopic tumors given the combination of anti-PD-1 and anti-OX40 that survived after complete tumor rejection were rechallenged with KPC-Luc cells; those with depletion of CD4+ T cells before the rechallenge had uncontrolled tumor growth. Furthermore, KPC orthotopic tumors from mice given the combination contained an increased number of CD4+ T cells that expressed CD127 compared with mice given control antibody. The combination of agents reduced the proportion of T-regulatory and exhausted T cells and decreased T-cell expression of GATA3; tumor size was negatively associated with numbers of infiltrating CD4+ T cells, CD4+CD127+ T cells, and CD8+CD127+ T cells, and positively associated with numbers of CD4+PD-1+ T cells, CD4+CD25+ T cells, and CD8+PD-1+ T cells. PDACs with high levels of OX40 and low levels of PD-1 were associated with longer survival times of patients. CONCLUSIONS: Pancreatic tumors appear to evade the immune response by inducing development of immune-suppressive T cells. In mice, the combination of anti-PD-1 inhibitory and anti-OX40 agonist antibodies reduces the proportion of T-regulatory and exhausted T cells in pancreatic tumors and increases numbers of memory CD4+ and CD8+ T cells, eradicating all detectable tumor. This information can be used in development of immune-based combination therapies for PDAC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Immune Checkpoint Inhibitors/pharmacology , OX40 Ligand/agonists , Pancreatic Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor/transplantation , Disease Models, Animal , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunologic Memory/drug effects , Male , Mice , Pancreas/immunology , Pancreas/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
2.
MAbs ; 11(6): 996-1011, 2019.
Article in English | MEDLINE | ID: mdl-31156033

ABSTRACT

Agonism of members of the tumor necrosis factor receptor superfamily (TNFRSF) with monoclonal antibodies is of high therapeutic interest due to their role in immune regulation and cell proliferation. A major hurdle for pharmacologic activation of this receptor class is the requirement for high-order clustering, a mechanism that imposes a reliance in vivo on Fc receptor-mediated crosslinking. This extrinsic dependence represents a potential limitation of virtually the entire pipeline of agonist TNFRSF antibody drugs, of which none have thus far been approved or reached late-stage clinical trials. We show that tetravalent biepitopic targeting enables robust intrinsic antibody agonism for two members of this family, OX40 and DR5, that is superior to extrinsically crosslinked native parental antibodies. Tetravalent biepitopic anti-OX40 engagement co-stimulated OX40low cells, obviated the requirement for CD28 co-signal for T cell activation, and enabled superior pharmacodynamic activity relative to native IgG in a murine vaccination model. This work establishes a proof of concept for an engineering approach that addresses a major gap for the therapeutic activation of this important receptor class.


Subject(s)
Antibodies, Monoclonal/immunology , Immunologic Capping , OX40 Ligand/agonists , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , CD28 Antigens/immunology , CHO Cells , Cricetulus , Humans , Jurkat Cells , Mice , Mice, SCID , Mice, Transgenic , OX40 Ligand/immunology , Receptors, Fc/immunology , Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology , T-Lymphocytes/cytology
3.
Nat Commun ; 8(1): 606, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928458

ABSTRACT

The presence of tumor-infiltrating lymphocytes in triple-negative breast cancers is correlated with improved outcomes. Ras/MAPK pathway activation is associated with significantly lower levels of tumor-infiltrating lymphocytes in triple-negative breast cancers and while MEK inhibition can promote recruitment of tumor-infiltrating lymphocytes to the tumor, here we show that MEK inhibition adversely affects early onset T-cell effector function. We show that α-4-1BB and α-OX-40 T-cell agonist antibodies can rescue the adverse effects of MEK inhibition on T cells in both mouse and human T cells, which results in augmented anti-tumor effects in vivo. This effect is dependent upon increased downstream p38/JNK pathway activation. Taken together, our data suggest that although Ras/MAPK pathway inhibition can increase tumor immunogenicity, the negative impact on T-cell activity is functionally important. This undesirable impact is effectively prevented by combination with T-cell immune agonist immunotherapies resulting in superior therapeutic efficacy.MEK inhibition in breast cancer is associated with increased tumour infiltrating lymphocytes (TILs), however, MAPK activity is required for T cells function. Here the authors show that TILs activity following MEK inhibition can be enhanced by agonist immunotherapy resulting in synergic therapeutic effects.


Subject(s)
4-1BB Ligand/agonists , Cell Proliferation/drug effects , Immunotherapy , Lymphocytes, Tumor-Infiltrating/drug effects , Mammary Neoplasms, Animal/immunology , OX40 Ligand/agonists , Protein Kinase Inhibitors/pharmacology , Pyridones/pharmacology , Pyrimidinones/pharmacology , T-Lymphocyte Subsets/drug effects , Triple Negative Breast Neoplasms/immunology , Animals , Breast Neoplasms/immunology , Cell Line, Tumor , Female , Humans , Lymphocytes, Tumor-Infiltrating/immunology , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Mice , T-Lymphocytes/drug effects
4.
Eur J Cancer ; 74: 55-72, 2017 03.
Article in English | MEDLINE | ID: mdl-28335888

ABSTRACT

Recent success in cancer immunotherapy (anti-CTLA-4, anti-PD1/PD-L1) has confirmed the hypothesis that the immune system can control many cancers across various histologies, in some cases producing durable responses in a way not seen with many small-molecule drugs. However, only less than 25% of all patients do respond to immuno-oncology drugs and several resistance mechanisms have been identified (e.g. T-cell exhaustion, overexpression of caspase-8 and ß-catenin, PD-1/PD-L1 gene amplification, MHC-I/II mutations). To improve response rates and to overcome resistance, novel second- and third-generation immuno-oncology drugs are currently evaluated in ongoing phase I/II trials (either alone or in combination) including novel inhibitory compounds (e.g. TIM-3, VISTA, LAG-3, IDO, KIR) and newly developed co-stimulatory antibodies (e.g. CD40, GITR, OX40, CD137, ICOS). It is important to note that co-stimulatory agents strikingly differ in their proposed mechanism of action compared with monoclonal antibodies that accomplish immune activation by blocking negative checkpoint molecules such as CTLA-4 or PD-1/PD-1 or others. Indeed, the prospect of combining agonistic with antagonistic agents is enticing and represents a real immunologic opportunity to 'step on the gas' while 'cutting the brakes', although this strategy as a novel cancer therapy has not been universally endorsed so far. Concerns include the prospect of triggering cytokine-release syndromes, autoimmune reactions and hyper immune stimulation leading to activation-induced cell death or tolerance, however, toxicity has not been a major issue in the clinical trials reported so far. Although initial phase I/II clinical trials of agonistic and novel antagonistic drugs have shown highly promising results in the absence of disabling toxicity, both in single-agent studies and in combination with chemotherapy or other immune system targeting drugs; however, numerous questions remain about dose, schedule, route of administration and formulation as well as identifying the appropriate patient populations. In our view, with such a wealth of potential mechanisms of action and with the ability to fine-tune monoclonal antibody structure and function to suit particular requirements, the second and third wave of immuno-oncology drugs are likely to provide rapid advances with new combinations of novel immunotherapy (especially co-stimulatory antibodies). Here, we will review the mechanisms of action and the clinical data of these new antibodies and discuss the major issues facing this rapidly evolving field.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Immunotherapy/methods , Neoplasms/therapy , Antigens, CD/drug effects , B-Lymphocytes/immunology , B7 Antigens/antagonists & inhibitors , B7 Antigens/immunology , CD40 Antigens/agonists , CTLA-4 Antigen/antagonists & inhibitors , Cytokines/immunology , Glucocorticoid-Induced TNFR-Related Protein/drug effects , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Humans , Immunity, Cellular/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Inducible T-Cell Co-Stimulator Protein/agonists , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Major Histocompatibility Complex/immunology , Neoplasms/immunology , OX40 Ligand/agonists , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, KIR/antagonists & inhibitors , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists , Lymphocyte Activation Gene 3 Protein
5.
Semin Oncol ; 37(5): 524-32, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21074068

ABSTRACT

The existence of tumor-specific T cells, as well as their ability to be primed in cancer patients, confirms that the immune response can be deployed to combat cancer. However, there are obstacles that must be overcome to convert the ineffective immune response commonly found in the tumor environment to one that leads to sustained destruction of tumor. Members of the tumor necrosis factor (TNF) superfamily direct diverse immune functions. OX40 and its ligand, OX40L, are key TNF members that augment T-cell expansion, cytokine production, and survival. OX40 signaling also controls regulatory T-cell differentiation and suppressive function. Studies over the past decade have demonstrated that OX40 agonists enhance antitumor immunity in preclinical models using immunogenic tumors; however, treatment of poorly immunogenic tumors has been less successful. Combining strategies that prime tumor-specific T cells together with OX40 signaling could generate and maintain a therapeutic antitumor immune response.


Subject(s)
Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , OX40 Ligand/immunology , Receptors, OX40/immunology , Signal Transduction/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Cancer Vaccines , Combined Modality Therapy , Humans , Immunotherapy, Adoptive , Mice , OX40 Ligand/agonists , Receptors, OX40/agonists , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...