Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.658
Filter
1.
Int Braz J Urol ; 50(4): 480-488, 2024.
Article in English | MEDLINE | ID: mdl-38743066

ABSTRACT

PURPOSE: To evaluate the morphological and stereological parameters of the testicles in mice exposed to bisphenol S and/or high-fat diet-induced obesity. MATERIAL AND METHODS: Forty adult male C57BL/6 mice were fed a standard diet (SC) or high-fat diet (HF) for a total of 12 weeks. The sample was randomly divided into 4 experimental groups with 10 mices as follows: a) SC - animals fed a standard diet; b) SC-B - animals fed a standard diet and administration of BPS (25 µg/kg of body mass/day) in drinking water; c) HF: animals fed a high-fat diet; d) HF-B - animals fed a high-fat diet and administration of BPS (25 µg/Kg of body mass/day) in drinking water. BPS administration lasted 12 weeks, following exposure to the SC and HF diets. BPS was diluted in absolute ethanol (0.1%) and added to drinking water (concentration of 25 µg/kg body weight/day). The animals were euthanized, and the testes were processed and stained with hematoxylin and eosin (H&E) for morphometric and stereological parameters, including density of seminiferous tubules per area, length density and total length of seminiferous tubules, height of the tunica albuginea and the diameter of the seminiferous tubules. The images were captured with an Olympus BX51 microscope and Olympus DP70 camera. The stereological analysis was done with the Image Pro and Image J programs. Means were statistically compared using ANOVA and the Holm-Sidak post-test (p<0.05). RESULTS: The seminiferous tubule density per area reduced in all groups when compared with SC samples (p<0.001): HF (40%), SC-B 3(2%), and HF-B (36%). Length density was reduced significantly (p<0.001) in all groups when compared with SC group: HF (40%), SC-B (32%), and HF-B (36%). The seminiferous tubule total length was reduced (p<0.001) when compared to f HF (28%) and SC-B (26%) groups. The tubule diameter increased significantly (p<0.001) only when we compared the SC group with SC (54%) an SC-B (25%) groups and the tunica thickness increased significantly only in HF group (117%) when compared with SC-B (20%) and HF-B 31%. CONCLUSION: Animals exposed to bisphenol S and/or high-fat diet-induced obesity presented important structural alterations in testicular morphology.


Subject(s)
Benzhydryl Compounds , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Phenols , Testis , Male , Animals , Diet, High-Fat/adverse effects , Testis/drug effects , Testis/pathology , Phenols/toxicity , Obesity/chemically induced , Random Allocation , Seminiferous Tubules/drug effects , Seminiferous Tubules/pathology , Disease Models, Animal , Mice , Reproducibility of Results , Sulfones
2.
Sci Rep ; 14(1): 12530, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822155

ABSTRACT

Growing obesity is linked to shifts in dietary patterns, particularly the increased intake of ultra-processed high-fat foods. This study aimed to evaluate the effects of interesterified palm oil consumption on glucose homeostasis, adipose tissue remodeling, and hepatic lipogenesis in C57BL/6 mice fed a high-fat diet. Sixty C57BL/6 mice were divided into four groups (n = 15): the control group (C) fed a standard diet (4% soybean oil), the high-fat group (HF) (23.8% lard), the high palm oil fat group (HFP) (23.8% palm oil), and the high interesterified palm fat group (HFI) (23.8% interesterified palm oil) for 8 weeks (all groups received 50% energy from lipids). The HFI group exhibited higher body mass than the HF group (+ 11%, P < 0.05), which was attributed to an increased percentage of fat mass. Plasma concentrations of IL-6, insulin, and HOMA-IR were also elevated in the HFI group. Both the HFP and HFI groups showed hypertrophied adipocytes and pancreatic islets, increased alpha and beta cell masses, hepatic steatosis, low expression of genes related to beta-oxidation, and upregulated lipogenesis. In conclusion, the consumption of interesterified palm oil alters inflammatory and glucose profiles.


Subject(s)
Adipose Tissue, White , Diet, High-Fat , Inflammation , Mice, Inbred C57BL , Palm Oil , Animals , Diet, High-Fat/adverse effects , Mice , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/pathology , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Male , Lipogenesis/drug effects , Obesity/metabolism , Obesity/etiology , Obesity/chemically induced , Liver/metabolism , Liver/drug effects , Liver/pathology , Insulin/blood , Insulin/metabolism , Insulin Resistance
3.
In Vivo ; 38(3): 1152-1161, 2024.
Article in English | MEDLINE | ID: mdl-38688615

ABSTRACT

BACKGROUND/AIM: The global prevalence of type 2 diabetes (T2D) continues to increase, necessitating the need for understanding the causes of its development. The widespread use of high-fructose corn syrup (HFCS) in drinks and diets is suspected to play a role in metabolic disorders. Although many studies have reported on the effects of excessive HFCS and excessive energy intakes in middle-aged individuals, few have focused on energy restriction. This study aimed to investigate the effects of excessive HFCS drink intake under energy restriction on developing T2D in early middle-aged mice. MATERIALS AND METHODS: Early middle-aged mice were divided in HFCS and control groups; they were provided either 10% HFCS water or deionized water ad libitum for 12 weeks, respectively. Total energy intake was controlled using a standard rodent diet. Oral glucose tolerance test (OGTT), insulin tolerance test (ITT), tissue weight measurements, serum parameter analyses, and mRNA expression assessments were performed. RESULTS: No increase in body and adipose tissue weight was observed with excessive HFCS intake under energy restriction. Moreover, serum lipid parameters did not differ from those of controls. However, in the OGTT and ITT, the HFCS group showed higher blood glucose levels than the control group. Moreover, the pancreatic weight and insulin II mRNA expression were reduced. CONCLUSION: The excessive HFCS drink intake under energy restriction did not induce obesity; however, it induced impaired glucose tolerance, indicating its negative effects on the pancreas in early middle-aged mice. When translated in human physiology, our results show that even if one does not become obese, excessive HFCS may affect the overall metabolic mechanism; these effects may vary depending on age.


Subject(s)
Blood Glucose , Glucose Tolerance Test , High Fructose Corn Syrup , Animals , High Fructose Corn Syrup/adverse effects , High Fructose Corn Syrup/administration & dosage , Mice , Male , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Energy Intake , Disease Models, Animal , Insulin/blood , Body Weight/drug effects , Insulin Resistance , Obesity/etiology , Obesity/metabolism , Obesity/chemically induced
4.
Toxicology ; 504: 153798, 2024 May.
Article in English | MEDLINE | ID: mdl-38588857

ABSTRACT

Bisphenol S (BPS) is a commonly detected chemical raw material in water, which poses significant threats to both the ecological environment and human health. Despite being recognized as a typical endocrine disruptor and a substitute for Bisphenol A, the toxicological effects of BPS remain nonnegligible. In order to comprehensively understand the health impacts of BPS, a long-term (154 days) exposure experiment was conducted on mice, during which the physiological indicators of the liver, intestine, and blood were observed. The findings revealed that exposure to BPS resulted in dysbiosis of the gut microbiota, obesity, hepatic lipid accumulation, intestinal lesions, and dyslipidemia. Furthermore, there exists a significant correlation between gut microbiota and indicators of host health. Consequently, the identification of specific gut microbiota can be considered as potential biomarkers for the evaluation of risk associated with BPS. This study will effectively address the deficiency in toxicological data pertaining to BPS. The novel BPS data obtained from this research can serve as a valuable reference for professionals in the field.


Subject(s)
Dysbiosis , Dyslipidemias , Gastrointestinal Microbiome , Lipid Metabolism , Liver , Obesity , Phenols , Sulfones , Animals , Phenols/toxicity , Gastrointestinal Microbiome/drug effects , Dyslipidemias/chemically induced , Dysbiosis/chemically induced , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , Obesity/chemically induced , Obesity/metabolism , Lipid Metabolism/drug effects , Male , Sulfones/toxicity , Endocrine Disruptors/toxicity , Intestines/drug effects , Intestines/microbiology
6.
Diabetes Obes Metab ; 26(5): 1850-1867, 2024 May.
Article in English | MEDLINE | ID: mdl-38468148

ABSTRACT

There are conflicting data on the weight-reducing potential of metformin (MTF) in nondiabetic patients with obesity. The purpose of this systematic review and meta-analysis was to evaluate the effect of MTF on weight and cardiometabolic parameters in adults with overweight/obesity with or without nonalcoholic fatty liver disease (NAFLD) (CRD42018085512). We included randomized controlled trials (RCTs) in adults without diabetes mellitus, with mean body mass index (BMI) ≥ 25 kg/m2, with or without NAFLD, comparing MTF to placebo/control, lifestyle modification (LSM) or a US Food and Drug Administration-approved anti-obesity drug, reporting on weight or metabolic parameters, and extending over at least 3 months. We conducted a systematic search in MEDLINE, EMBASE, PubMed and the Cochrane Library without time limitation (until March 2022). We screened and selected eligible articles, abstracted relevant data, and assessed the risk of bias. All steps were in duplicate and independently. We conducted a random-effects model meta-analysis using Review Manager version 5.3, with prespecified subgroup analyses in case of heterogeneity. We identified 2650 citations and included 49 trials (55 publications). Compared to placebo, MTF was associated with a significant reduction in BMI (mean difference [MD] -0.56 [-0.74, -0.37] kg/m2; p < 0.0001), at doses ranging from 500 to 2550 mg/day, and with a significant percentage change in BMI of -2.53% (-2.90, -2.17) at the dose 1700 mg/day. There was no interaction by baseline BMI, MTF dose or duration, nor presence or absence of NAFLD. There was no significant difference between MTF and LSM. Orlistat was more effective than MTF (at doses of 1000-1700 mg/day) in terms of weight loss, with an MD in BMI of -3.17 (-5.88; -0.47) kg/m2, favouring the former. Compared to placebo/control, MTF improved insulin parameters, while no effect was detected when compared to LSM. A few small trials showed heterogenous effects on liver parameters in patients with NAFLD treated with MTF compared to placebo/control. There was a large variability in the expression of outcome measures and RCTs were of low quality. In conclusion, MTF was associated with a modest weight reduction in obese nondiabetic patients. Further high-quality and better powered studies are needed to examine the impact of MTF in patients with insulin resistance and NAFLD.


Subject(s)
Metformin , Non-alcoholic Fatty Liver Disease , Adult , Humans , Metformin/therapeutic use , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Randomized Controlled Trials as Topic , Obesity/complications , Obesity/drug therapy , Obesity/chemically induced , Overweight/complications , Overweight/drug therapy , Weight Loss
7.
Obes Rev ; 25(5): e13717, 2024 May.
Article in English | MEDLINE | ID: mdl-38463003

ABSTRACT

Potent incretin-based therapy shows promise for the treatment of obesity along with reduced incidence of cardiovascular events in patients with preexisting cardiovascular disease and obesity. This study assessed the efficacy and safety of the incretin-based obesity treatments, once-weekly subcutaneous semaglutide 2.4 mg and tirzepatide 10 or 15 mg, in people with obesity without diabetes. Of the 744 records identified, seven randomized controlled trials (n = 5140) were included. Five studies (n = 3288) investigated semaglutide and two studies (n = 1852) investigated tirzepatide. The treatment effect, shown as placebo-subtracted difference, on body weight was -15.0% (95% CI, -17.8 to -12.2) with -12.9% (95% CI, -14.7 to -11.1) for semaglutide and -19.2% (95% CI, -22.2 to -16.2) for tirzepatide. The treatment effect on waist circumference was -11.4 cm (95% CI, -13.7 to -9.2) with -9.7 cm (95% CI, -10.8 to -8.5) for semaglutide and -14.6 cm (95% CI, -15.8 to -13.4) for tirzepatide. The adverse events related to semaglutide and tirzepatide were primarily of mild-to-moderate severity and mostly gastrointestinal, which was more frequent during the dose-titration period and leveled off during the treatment period. This emphasizes that once-weekly subcutaneous semaglutide 2.4 mg and tirzepatide 10 or 15 mg induce large reductions in body weight and waist circumference and are generally well-tolerated.


Subject(s)
Diabetes Mellitus, Type 2 , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide-2 Receptor , Glucagon-Like Peptides , Incretins , Humans , Incretins/therapeutic use , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Waist Circumference , Body Weight , Obesity/drug therapy , Obesity/chemically induced , Glucagon-Like Peptide-1 Receptor
9.
Schizophr Res ; 267: 173-181, 2024 May.
Article in English | MEDLINE | ID: mdl-38552340

ABSTRACT

BACKGROUND: The mechanisms by which antipsychotic medications (APs) contribute to obesity in schizophrenia are not well understood. Because AP effects on functional brain connectivity may contribute to weight effects, the current study investigated how AP-associated weight-gain risk relates to functional connectivity in schizophrenia. METHODS: Fifty-five individuals with schizophrenia (final N = 54) were divided into groups based on previously reported AP weight-gain risk (no APs/low risk [N = 19]; moderate risk [N = 17]; high risk [N = 18]). Resting-state functional magnetic resonance imaging (fMRI) was completed after an overnight fast ("fasted") and post-meal ("fed"). Correlations between AP weight-gain risk and functional connectivity were assessed at the whole-brain level and in reward- and eating-related brain regions (anterior insula, caudate, nucleus accumbens). RESULTS: When fasted, greater AP weight-gain risk was associated with increased connectivity between thalamus and sensorimotor cortex (pFDR = 0.021). When fed, greater AP weight-gain risk was associated with increased connectivity between left caudate and left precentral/postcentral gyri (pFDR = 0.048) and between right caudate and multiple regions, including the left precentral/postcentral gyri (pFDR = 0.001), intracalcarine/precuneal/cuneal cortices (pFDR < 0.001), and fusiform gyrus (pFDR = 0.008). When fed, greater AP weight-gain risk was also associated with decreased connectivity between right anterior insula and ventromedial prefrontal cortex (pFDR = 0.002). CONCLUSIONS: APs with higher weight-gain risk were associated with greater connectivity between reward-related regions and sensorimotor regions when fasted, perhaps relating to motor anticipation for consumption. Higher weight-gain risk APs were also associated with increased connectivity between reward, salience, and visual regions when fed, potentially reflecting greater desire for consumption following satiety.


Subject(s)
Antipsychotic Agents , Magnetic Resonance Imaging , Schizophrenia , Weight Gain , Humans , Schizophrenia/drug therapy , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Male , Female , Adult , Antipsychotic Agents/adverse effects , Antipsychotic Agents/pharmacology , Weight Gain/drug effects , Brain/diagnostic imaging , Brain/drug effects , Brain/physiopathology , Young Adult , Middle Aged , Reward , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/drug effects , Risk , Connectome , Obesity/physiopathology , Obesity/chemically induced
10.
Biochem Pharmacol ; 222: 116074, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395265

ABSTRACT

Olanzapine, a widely prescribed atypical antipsychotic, poses a great risk to the patient's health by fabricating a plethora of severe metabolic and cardiovascular adverse effects eventually reducing life expectancy and patient compliance. Its heterogenous receptor binding profile has made it difficult to point out a specific cause or treatment for the related side effects. Growing body of evidence suggest that transient receptor potential (TRP) channel subfamily Ankyrin 1 (TRPA1) has pivotal role in pathogenesis of type 2 diabetes and obesity. With this background, we aimed to investigate the role of pharmacological manipulations of TRPA1 channels in antipsychotic (olanzapine)-induced metabolic alterations in female mice using allyl isothiocyanate (AITC) and HC-030031 (TRPA1 agonist and antagonist, respectively). It was found that after 6 weeks of treatment, AITC prevented olanzapine-induced alterations in body weight and adiposity; serum, and liver inflammatory markers; glucose and lipid metabolism; and hypothalamic appetite regulation, nutrient sensing, inflammatory and TRPA1 channel signaling regulating genes. Furthermore, several of these effects were absent in the presence of HC-030031 (TRPA1 antagonist) indicating protective role of TRPA1 agonism in attenuating olanzapine-induced metabolic alterations. Supplementary in-depth studies are required to study TRPA1 channel effect on other aspects of olanzapine-induced metabolic alterations.


Subject(s)
Acetanilides , Antipsychotic Agents , Diabetes Mellitus, Type 2 , Purines , Transient Receptor Potential Channels , Mice , Humans , Female , Animals , TRPA1 Cation Channel , Olanzapine , Antipsychotic Agents/toxicity , Isothiocyanates/pharmacology , Obesity/chemically induced , Obesity/drug therapy , Liver/metabolism
11.
Int J Biol Macromol ; 263(Pt 2): 130485, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423434

ABSTRACT

The effects of seaweed cellulose (SC) on high fat-sugar diet (HFSD)-induced glucolipid metabolism disorders in mice and potential mechanisms were investigated. SC was isolated from dealginated residues of giant kelp (Macrocystis pyrifera), with a crystallinity index of 85.51 % and an average particle size of 678.2 nm. Administering SC to C57BL/6 mice at 250 or 500 mg/kg BW/day via intragastric gavage for six weeks apparently inhibited the development of HFSD-induced obesity, dyslipidemia, insulin resistance, oxidative stress and liver damage. Notably, SC intervention partially restored the structure and composition of the gut microbiota altered by the HFSD, substantially lowering the Firmicutes to Bacteroidetes ratio, and greatly increasing the relative abundance of Lactobacillus, Bifidobacterium, Oscillospira, Bacteroides and Akkermansia, which contributed to improved short-chain fatty acid (SCFA) production. Supplementing with a higher dose of SC led to more significant increases in total SCFA (67.57 %), acetate (64.56 %), propionate (73.52 %) and butyrate (66.23 %) concentrations in the rectal contents of HFSD-fed mice. The results indicated that highly crystalline SC microparticles could modulate gut microbiota dysbiosis and ameliorate HFSD-induced obesity and related metabolic syndrome in mice. Furthermore, particle size might have crucial impact on the prebiotic effects of cellulose as insoluble dietary fiber.


Subject(s)
Gastrointestinal Microbiome , Hyperlipidemias , Metabolic Diseases , Animals , Mice , Sugars/pharmacology , Cellulose/pharmacology , Mice, Inbred C57BL , Obesity/etiology , Obesity/chemically induced , Fatty Acids, Volatile/metabolism , Diet , Diet, High-Fat/adverse effects
12.
Int J Biol Macromol ; 262(Pt 1): 130018, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331057

ABSTRACT

The potential prebiotic feature of Bletilla striata polysaccharides (BSP) has been widely accepted, while the beneficial effect of BSP on high-fat-diet-induced obesity is unclear. Moreover, the "crosstalk" between microbiota and metabolomic profile in high-fat-diet-induced obese mice supplemented with BSP still need to be further explored. The present study attempted to illustrate the effect of BSP and/or composite polysaccharides on high-fat-diet-induced obese mice by combining multi-matrix (feces, urine, liver) metabolomics and gut microbiome. The results showed that BSP and/or composite polysaccharides were able to reduce the abnormal weight gain induced by high-fat diet. A total of 175 molecules were characterized by proton nuclear magnetic resonance (1H NMR) in feces, urine and liver, suggesting that multi-matrix metabolomics could provide a comprehensive view of metabolic regulatory mechanism of BSP in high-fat-diet-induced obese mice. Several pathways were altered in response to BSP supplementation, mainly pertaining to amino acid, purine, pyrimidine, ascorbate and aldarate metabolisms. In addition, BSP ameliorated high-fat-diet-induced imbalanced gut microbiome, by lowering the ratio of Firmicutes/Bacteroidetes. Significant correlations were illustrated between particular microbiota's features and specific metabolites. Overall, the anti-obesity effect of BSP could be attributed to the amelioration of the disorders of gut microbiota and to the regulation of the "gut-liver axis" metabolism.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Animals , Mice , Diet, High-Fat/adverse effects , Mice, Obese , Obesity/etiology , Obesity/chemically induced , Polysaccharides/chemistry , Dietary Supplements , Mice, Inbred C57BL
13.
Hum Exp Toxicol ; 43: 9603271241236346, 2024.
Article in English | MEDLINE | ID: mdl-38394684

ABSTRACT

INTRODUCTION: In bipolar women who took lithium during pregnancy, several epidemiology studies have reported small increases in a rare fetal cardiac defect termed Ebstein's anomaly. METHODS: Behavioral, environmental, and lifestyle-associated risk factors associated with bipolar disorder and health insurance status were determined from an Internet search. The search was conducted from October 1, 2023, through October 14, 2023. The search terms employed included the following: bipolar, bipolar disorder, mood disorders, pregnancy, congenital heart defects, Ebstein's anomaly, diabetes, hypertension, Medicaid, Medicaid patients, alcohol use, cigarette smoking, marijuana, cocaine, methamphetamine, narcotics, nutrition, diet, obesity, body mass index, environment, environmental exposures, poverty, socioeconomic status, divorce, unemployment, and income. No quotes, special fields, truncations, etc., were used in the searches. No filters of any kind were used in the searches. RESULTS: Women who remain on lithium in the United States throughout their pregnancy are likely to be experiencing mania symptoms and/or suicidal ideation refractory to other drugs. Pregnant women administered the highest doses of lithium salts would be expected to have been insufficiently responsive to lower doses. Any small increases in the retrospectively determined risk of fetal cardiac anomalies in bipolar women taking lithium salts cannot be disentangled from potential developmental effects resulting from very high rates of cigarette smoking, poor diet, alcohol abuse, ingestion of illegal drugs like cocaine or opioids, marijuana smoking, obesity, and poverty. CONCLUSIONS: The small risks in fetal cardiac abnormalities reported in the epidemiology literature do not establish a causal association for lithium salts and Ebstein's anomaly.


Subject(s)
Cocaine , Ebstein Anomaly , Teratogenesis , Humans , Pregnancy , Female , Lithium/toxicity , Ebstein Anomaly/chemically induced , Ebstein Anomaly/epidemiology , Teratogens , Salts , Retrospective Studies , Antimanic Agents , Obesity/epidemiology , Obesity/chemically induced
14.
Environ Sci Pollut Res Int ; 31(10): 15872-15884, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38302837

ABSTRACT

Glyphosate-based herbicides (GBH) are the most widely used pesticides globally. Studies have indicated that they may increase the risk of various organic dysfunctions. Herein, we verified whether exposure to GBH during puberty increases the susceptibility of male and female mice to obesity when they are fed a high-fat diet (HFD) in adulthood. From the 4th-7th weeks of age, male and female C57Bl/6 mice received water (CTL group) or 50 mg GBH /kg body weight (BW; GBH group). From the 8th-21st weeks of age, the mice were fed a standard diet or a HFD. It was found that pubertal GBH exposure exacerbated BW gains and hyperphagia induced by HFD, but only in female GBH-HFD mice. These female mice also exhibited high accumulation of perigonadal and subcutaneous fat, as well as reduced lean body mass. Both male and female GBH-HFD displayed hypertrophic white adipocytes. However, only in females, pubertal GBH exposure aggravated HFD-induced fat accumulation in brown adipocytes. Furthermore, GBH increased plasma cortisol levels by 80% in GBH-HFD males, and 180% in GBH-HFD females. In conclusion, pubertal GBH exposure aggravated HFD-induced obesity, particularly in adult female mice. This study provides novel evidence that GBH misprograms lipid metabolism, accelerating the development of obesity when individuals are challenged by a second metabolic stressor, such as an obesogenic diet.


Subject(s)
Diet, High-Fat , Herbicides , Mice , Male , Female , Animals , Diet, High-Fat/adverse effects , Glyphosate , Herbicides/toxicity , Obesity/chemically induced , Lipid Metabolism
15.
Sci Total Environ ; 914: 169919, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38199361

ABSTRACT

Di-2-ethylhexyl phthalate (DEHP), a widely utilized plasticizer, has been described as a potential obesogen based on in vivo disruption of hepatic lipid homeostasis and in vitro promotion of lipid accumulation. However, limited literature exists regarding the specific ramifications of DEHP exposure on obese individuals, and the precise mechanisms underlying the adverse effects of DEHP exposure remain unclear. This study aimed to assess the impact of DEHP on hepatic lipid metabolism in obese mice by comparing them to normal mice. Following a 10-week DEHP exposure period, the obese mice exhibited higher blood lipid levels, more severe hepatic steatosis, and more infiltrations of inflammatory cells in liver tissue than normal mice. Interestingly, the body weight of the mice exhibited no significant alteration. In addition, transcriptomic analyses revealed that both lipogenesis and fatty acid oxidation contributed to hepatic lipid metabolism dysregulation following DEHP exposure. More specifically, alterations in the transcription of genes associated with hepatic lipid metabolism were linked to the different responses to DEHP exposure observed in normal and obese mice. Additionally, the outcomes of in vitro experiments validated the in vivo findings and demonstrated that DEHP exposure could modify hepatic lipid metabolism in normal mice by activating the LXR/SREBP-1c signaling pathway to promote lipogenesis. At the same time, DEHP exposure led to inhibition of the Camkkß/AMPK pathway to suppress ß-fatty acid oxidation. Conversely, in obese mice, DEHP exposure was found to be associated with the stimulation of both lipogenesis and fatty acid oxidation via activation of the LXR/SREBP-1c and PPAR-α signaling pathways, respectively. The findings presented in this study first elucidate the contrasting mechanisms underlying DEHP-induced liver damage in obese and normal mice, thereby offering valuable insights into the pathogenesis of DEHP-induced liver damage in individuals with obesity.


Subject(s)
Diethylhexyl Phthalate , Lipid Metabolism , Phthalic Acids , Animals , Mice , Diethylhexyl Phthalate/metabolism , Fatty Acids/metabolism , Lipids , Liver/metabolism , Mice, Obese , Obesity/chemically induced , Obesity/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 1/metabolism
16.
Diabetes Obes Metab ; 26(4): 1346-1354, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240127

ABSTRACT

AIM: To identify the sociodemographic, clinical and laboratory determinants relating to patient adherence to liraglutide treatment among individuals with overweight or obesity. METHODS: We retrospectively analysed patients with overweight or obesity who were treated with liraglutide between 2019 and 2022. Over a 6-month follow-up period, measurements of body mass index, sociodemographic characteristics, clinical and laboratory data, and prescription records for liraglutide were collected. Treatment adherence was assessed using the proportion of days covered (PDC) measure, with a PDC ≥80% indicating high adherence. RESULTS: The study population included 1890 participants (78.1% female, mean age 46 ± 12 years). At the end of the follow-up period, 84.9% of the participants exhibited low adherence to liraglutide treatment. Adherence to treatment improved with age (p = 0.04, odds ratio [OR] 1.013, confidence interval [CI] 1.001-1.025). Significant weight loss during treatment increased the likelihood of high adherence (p < 0.001, OR 1.251, CI 1.167-1.341). Individuals with a higher socioeconomic status displayed greater adherence (p = 0.023, OR 1.906, CI 1.091-3.328). Greater adherence was also seen in non-smokers (p = 0.047, OR 0.725, CI 0.528-0.996). CONCLUSIONS: Only 15.1% of study participants exhibited high adherence to treatment (PDC ≥80%) after 6 months of follow-up. Further research is needed to explore approaches to enhance adherence to liraglutide, including strategies to educate and support patients in their efforts to achieve and maintain weight loss with the use of this drug.


Subject(s)
Diabetes Mellitus, Type 2 , Liraglutide , Humans , Female , Adult , Middle Aged , Male , Liraglutide/therapeutic use , Overweight/complications , Overweight/drug therapy , Overweight/chemically induced , Hypoglycemic Agents/therapeutic use , Retrospective Studies , Diabetes Mellitus, Type 2/drug therapy , Obesity/complications , Obesity/drug therapy , Obesity/chemically induced , Weight Loss
17.
Toxicol Sci ; 198(2): 210-220, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38291899

ABSTRACT

Microplastics (MP) derived from the weathering of polymers, or synthesized in this size range, have become widespread environmental contaminants and have found their way into water supplies and the food chain. Despite this awareness, little is known about the health consequences of MP ingestion. We have previously shown that the consumption of polystyrene (PS) beads was associated with intestinal dysbiosis and diabetes and obesity in mice. To further evaluate the systemic metabolic effects of PS on the gut-liver-adipose tissue axis, we supplied C57BL/6J mice with normal water or that containing 2 sizes of PS beads (0.5 and 5 µm) at a concentration of 1 µg/ml. After 13 weeks, we evaluated indices of metabolism and liver function. As observed previously, mice drinking the PS-containing water had a potentiated weight gain and adipose expansion. Here we found that this was associated with an increased abundance of adipose F4/80+ macrophages. These exposures did not cause nonalcoholic fatty liver disease but were associated with decreased liver:body weight ratios and an enrichment in hepatic farnesoid X receptor and liver X receptor signaling. PS also increased hepatic cholesterol and altered both hepatic and cecal bile acids. Mice consuming PS beads and treated with the berry anthocyanin, delphinidin, demonstrated an attenuated weight gain compared with those mice receiving a control intervention and also exhibited a downregulation of cyclic adenosine monophosphate (cAMP) and peroxisome proliferator-activated receptor (PPAR) signaling pathways. This study highlights the obesogenic role of PS in perturbing the gut-liver-adipose axis and altering nuclear receptor signaling and intermediary metabolism. Dietary interventions may limit the adverse metabolic effects of PS consumption.


Subject(s)
Non-alcoholic Fatty Liver Disease , Plastics , Animals , Mice , Plastics/metabolism , Plastics/pharmacology , Polystyrenes/toxicity , Polystyrenes/metabolism , Microplastics/metabolism , Microplastics/pharmacology , Mice, Inbred C57BL , Liver , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/chemically induced , Obesity/metabolism , Weight Gain
18.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203845

ABSTRACT

Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Phenols , Phthalic Acids , Animals , Female , Pregnancy , Endocrine Disruptors/toxicity , Obesity/chemically induced , Weight Gain , Humans
19.
Environ Sci Pollut Res Int ; 31(6): 8291-8311, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38165541

ABSTRACT

Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.


Subject(s)
Arsenic , Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Arsenic/toxicity , Diabetes Mellitus, Type 2/metabolism , Obesity/chemically induced , Adipose Tissue/metabolism , Lipids/toxicity
20.
Am J Psychiatry ; 181(1): 26-38, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38161305

ABSTRACT

Psychotropic drug-related weight gain (PDWG) is a common occurrence and is highly associated with non-initiation, discontinuation, and dissatisfaction with psychiatric drugs. Moreover, PDWG intersects with the elevated risk for obesity and associated morbidity that has been amply reported in the psychiatric population. Evidence indicates that differential liability for PDWG exists for antipsychotics, antidepressants, and anticonvulsants. During the past two decades, agents within these classes have become available with significantly lower or no liability for PDWG and as such should be prioritized. Although lithium is associated with weight gain, the overall extent of weight gain is significantly lower than previously estimated. The benefit of lifestyle and behavioral modification for obesity and/or PDWG in psychiatric populations is established, with effectiveness similar to that in the general population. Metformin is the most studied pharmacological treatment in the prevention and treatment of PDWG, and promising data are emerging for glucagon-like peptide-1 (GLP-1) receptor agonists (e.g., liraglutide, exenatide, semaglutide). Most pharmacologic antidotes for PDWG are supported with low-confidence data (e.g., topiramate, histamine-2 receptor antagonists). Future vistas for pharmacologic treatment for PDWG include large, adequately controlled studies with GLP-1 receptor agonists and possibly GLP-1/glucose-dependent insulinotropic polypeptide co-agonists (e.g., tirzepatide) as well as specific dietary modifications.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Liraglutide/therapeutic use , Weight Gain , Obesity/chemically induced , Obesity/drug therapy , Psychotropic Drugs/adverse effects , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...